
Cassandra - A Decentralized Structured Storage System

Avinash Lakshman
Facebook

Prashant Malik
Facebook

ABSTRACT
Cassandra is a distributed storage system for managing very
large amounts of structured data spread out across many
commodity servers, while providing highly available service
with no single point of failure. Cassandra aims to run on top
of an infrastructure of hundreds of nodes (possibly spread
across different data centers). At this scale, small and large
components fail continuously. The way Cassandra man-
ages the persistent state in the face of these failures drives
the reliability and scalability of the software systems rely-
ing on this service. While in many ways Cassandra resem-
bles a database and shares many design and implementation
strategies therewith, Cassandra does not support a full rela-
tional data model; instead, it provides clients with a simple
data model that supports dynamic control over data lay-
out and format. Cassandra system was designed to run on
cheap commodity hardware and handle high write through-
put while not sacrificing read efficiency.

1. INTRODUCTION
Facebook runs the largest social networking platform that
serves hundreds of millions users at peak times using tens of
thousands of servers located in many data centers around
the world. There are strict operational requirements on
Facebook’s platform in terms of performance, reliability and
efficiency, and to support continuous growth the platform
needs to be highly scalable. Dealing with failures in an in-
frastructure comprised of thousands of components is our
standard mode of operation; there are always a small but
significant number of server and network components that
are failing at any given time. As such, the software systems
need to be constructed in a manner that treats failures as the
norm rather than the exception. To meet the reliability and
scalability needs described above Facebook has developed
Cassandra.

Cassandra uses a synthesis of well known techniques to achieve
scalability and availability. Cassandra was designed to ful-
fill the storage needs of the Inbox Search problem. Inbox
Search is a feature that enables users to search through their
Facebook Inbox. At Facebook this meant the system was
required to handle a very high write throughput, billions
of writes per day, and also scale with the number of users.
Since users are served from data centers that are geograph-
ically distributed, being able to replicate data across data
centers was key to keep search latencies down. Inbox Search
was launched in June of 2008 for around 100 million users
and today we are at over 250 million users and Cassandra

has kept up the promise so far. Cassandra is now deployed
as the backend storage system for multiple services within
Facebook.

This paper is structured as follows. Section 2 talks about
related work, some of which has been very influential on our
design. Section 3 presents the data model in more detail.
Section 4 presents the overview of the client API. Section
5 presents the system design and the distributed algorithms
that make Cassandra work. Section 6 details the experiences
of making Cassandra work and refinements to improve per-
formance. In Section 6.1 we describe how one of the appli-
cations in the Facebook platform uses Cassandra. Finally
Section 7 concludes with future work on Cassandra.

2. RELATED WORK
Distributing data for performance, availability and durabil-
ity has been widely studied in the file system and database
communities. Compared to P2P storage systems that only
support flat namespaces, distributed file systems typically
support hierarchical namespaces. Systems like Ficus[14] and
Coda[16] replicate files for high availability at the expense
of consistency. Update conflicts are typically managed us-
ing specialized conflict resolution procedures. Farsite[2] is
a distributed file system that does not use any centralized
server. Farsite achieves high availability and scalability us-
ing replication. The Google File System (GFS)[9] is another
distributed file system built for hosting the state of Google’s
internal applications. GFS uses a simple design with a sin-
gle master server for hosting the entire metadata and where
the data is split into chunks and stored in chunk servers.
However the GFS master is now made fault tolerant using
the Chubby[3] abstraction. Bayou[18] is a distributed rela-
tional database system that allows disconnected operations
and provides eventual data consistency. Among these sys-
tems, Bayou, Coda and Ficus allow disconnected operations
and are resilient to issues such as network partitions and
outages. These systems differ on their conflict resolution
procedures. For instance, Coda and Ficus perform system
level conflict resolution and Bayou allows application level
resolution. All of them however, guarantee eventual consis-
tency. Similar to these systems, Dynamo[6] allows read and
write operations to continue even during network partitions
and resolves update conflicts using different conflict resolu-
tion mechanisms, some client driven. Traditional replicated
relational database systems focus on the problem of guar-
anteeing strong consistency of replicated data. Although
strong consistency provides the application writer a con-

35



venient programming model, these systems are limited in
scalability and availability [10]. These systems are not ca-
pable of handling network partitions because they typically
provide strong consistency guarantees.

Dynamo[6] is a storage system that is used by Amazon to
store and retrieve user shopping carts. Dynamo’s Gossip
based membership algorithm helps every node maintain in-
formation about every other node. Dynamo can be defined
as a structured overlay with at most one-hop request rout-
ing. Dynamo detects updated conflicts using a vector clock
scheme, but prefers a client side conflict resolution mecha-
nism. A write operation in Dynamo also requires a read to
be performed for managing the vector timestamps. This is
can be very limiting in environments where systems need
to handle a very high write throughput. Bigtable[4] pro-
vides both structure and data distribution but relies on a
distributed file system for its durability.

3. DATA MODEL
A table in Cassandra is a distributed multi dimensional map
indexed by a key. The value is an object which is highly
structured. The row key in a table is a string with no size
restrictions, although typically 16 to 36 bytes long. Every
operation under a single row key is atomic per replica no
matter how many columns are being read or written into.
Columns are grouped together into sets called column fam-
ilies very much similar to what happens in the Bigtable[4]
system. Cassandra exposes two kinds of columns families,
Simple and Super column families. Super column families
can be visualized as a column family within a column family.

Furthermore, applications can specify the sort order of columns
within a Super Column or Simple Column family. The
system allows columns to be sorted either by time or by
name. Time sorting of columns is exploited by applica-
tion like Inbox Search where the results are always displayed
in time sorted order. Any column within a column family
is accessed using the convention column family : column
and any column within a column family that is of type
super is accessed using the convention column family :
super column : column. A very good example of the su-
per column family abstraction power is given in Section 6.1.
Typically applications use a dedicated Cassandra cluster and
manage them as part of their service. Although the system
supports the notion of multiple tables all deployments have
only one table in their schema.

4. API
The Cassandra API consists of the following three simple
methods.

• insert(table, key, rowMutation)

• get(table, key, columnName)

• delete(table, key, columnName)

columnName can refer to a specific column within a column
family, a column family, a super column family, or a column
within a super column.

5. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate
in a production setting is complex. In addition to the actual
data persistence component, the system needs to have the
following characteristics; scalable and robust solutions for
load balancing, membership and failure detection, failure
recovery, replica synchronization, overload handling, state
transfer, concurrency and job scheduling, request marshalling,
request routing, system monitoring and alarming, and con-
figuration management. Describing the details of each of the
solutions is beyond the scope of this paper, so we will focus
on the core distributed systems techniques used in Cassan-
dra: partitioning, replication, membership, failure handling
and scaling. All these modules work in synchrony to handle
read/write requests. Typically a read/write request for a
key gets routed to any node in the Cassandra cluster. The
node then determines the replicas for this particular key.
For writes, the system routes the requests to the replicas
and waits for a quorum of replicas to acknowledge the com-
pletion of the writes. For reads, based on the consistency
guarantees required by the client, the system either routes
the requests to the closest replica or routes the requests to
all replicas and waits for a quorum of responses.

5.1 Partitioning
One of the key design features for Cassandra is the ability
to scale incrementally. This requires, the ability to dynam-
ically partition the data over the set of nodes (i.e., storage
hosts) in the cluster. Cassandra partitions data across the
cluster using consistent hashing [11] but uses an order pre-
serving hash function to do so. In consistent hashing the
output range of a hash function is treated as a fixed circular
space or “ring” (i.e. the largest hash value wraps around
to the smallest hash value). Each node in the system is as-
signed a random value within this space which represents its
position on the ring. Each data item identified by a key is
assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise
to find the first node with a position larger than the item’s
position. This node is deemed the coordinator for this key.
The application specifies this key and the Cassandra uses it
to route requests. Thus, each node becomes responsible for
the region in the ring between it and its predecessor node
on the ring. The principal advantage of consistent hashing
is that departure or arrival of a node only affects its im-
mediate neighbors and other nodes remain unaffected. The
basic consistent hashing algorithm presents some challenges.
First, the random position assignment of each node on the
ring leads to non-uniform data and load distribution. Sec-
ond, the basic algorithm is oblivious to the heterogeneity in
the performance of nodes. Typically there exist two ways to
address this issue: One is for nodes to get assigned to multi-
ple positions in the circle (like in Dynamo), and the second
is to analyze load information on the ring and have lightly
loaded nodes move on the ring to alleviate heavily loaded
nodes as described in [17]. Cassandra opts for the latter as
it makes the design and implementation very tractable and
helps to make very deterministic choices about load balanc-
ing.

5.2 Replication
Cassandra uses replication to achieve high availability and
durability. Each data item is replicated at N hosts, where N

36



is the replication factor configured “per-instance”. Each key,
k, is assigned to a coordinator node (described in the previ-
ous section). The coordinator is in charge of the replication
of the data items that fall within its range. In addition
to locally storing each key within its range, the coordinator
replicates these keys at the N-1 nodes in the ring. Cassandra
provides the client with various options for how data needs to
be replicated. Cassandra provides various replication poli-
cies such as “Rack Unaware”, “Rack Aware” (within a data-
center) and “Datacenter Aware”. Replicas are chosen based
on the replication policy chosen by the application. If cer-
tain application chooses “Rack Unaware” replication strat-
egy then the non-coordinator replicas are chosen by picking
N-1 successors of the coordinator on the ring. For “Rack
Aware” and “Datacenter Aware” strategies the algorithm is
slightly more involved. Cassandra system elects a leader
amongst its nodes using a system called Zookeeper[13]. All
nodes on joining the cluster contact the leader who tells
them for what ranges they are replicas for and leader makes
a concerted effort to maintain the invariant that no node
is responsible for more than N-1 ranges in the ring. The
metadata about the ranges a node is responsible is cached
locally at each node and in a fault-tolerant manner inside
Zookeeper - this way a node that crashes and comes back up
knows what ranges it was responsible for. We borrow from
Dynamo parlance and deem the nodes that are responsible
for a given range the “preference list” for the range.

As is explained in Section 5.1 every node is aware of every
other node in the system and hence the range they are re-
sponsible for. Cassandra provides durability guarantees in
the presence of node failures and network partitions by re-
laxing the quorum requirements as described in Section5.2.
Data center failures happen due to power outages, cooling
failures, network failures, and natural disasters. Cassandra
is configured such that each row is replicated across multiple
data centers. In essence, the preference list of a key is con-
structed such that the storage nodes are spread across mul-
tiple datacenters. These datacenters are connected through
high speed network links. This scheme of replicating across
multiple datacenters allows us to handle entire data center
failures without any outage.

5.3 Membership
Cluster membership in Cassandra is based on Scuttlebutt[19],
a very efficient anti-entropy Gossip based mechanism. The
salient feature of Scuttlebutt is that it has very efficient CPU
utilization and very efficient utilization of the gossip chan-
nel. Within the Cassandra system Gossip is not only used
for membership but also to disseminate other system related
control state.

5.3.1 Failure Detection
Failure detection is a mechanism by which a node can locally
determine if any other node in the system is up or down. In
Cassandra failure detection is also used to avoid attempts
to communicate with unreachable nodes during various op-
erations. Cassandra uses a modified version of the Φ Ac-
crual Failure Detector[8]. The idea of an Accrual Failure
Detection is that the failure detection module doesn’t emit
a Boolean value stating a node is up or down. Instead the
failure detection module emits a value which represents a
suspicion level for each of monitored nodes. This value is

defined as Φ. The basic idea is to express the value of Φ on
a scale that is dynamically adjusted to reflect network and
load conditions at the monitored nodes.

Φ has the following meaning: Given some threshold Φ, and
assuming that we decide to suspect a node A when Φ = 1,
then the likelihood that we will make a mistake (i.e., the
decision will be contradicted in the future by the reception
of a late heartbeat) is about 10%. The likelihood is about
1% with Φ = 2, 0.1% with Φ = 3, and so on. Every node in
the system maintains a sliding window of inter-arrival times
of gossip messages from other nodes in the cluster. The
distribution of these inter-arrival times is determined and
Φ is calculated. Although the original paper suggests that
the distribution is approximated by the Gaussian distribu-
tion we found the Exponential Distribution to be a better
approximation, because of the nature of the gossip channel
and its impact on latency. To our knowledge our implemen-
tation of the Accrual Failure Detection in a Gossip based
setting is the first of its kind. Accrual Failure Detectors
are very good in both their accuracy and their speed and
they also adjust well to network conditions and server load
conditions.

5.4 Bootstrapping
When a node starts for the first time, it chooses a random
token for its position in the ring. For fault tolerance, the
mapping is persisted to disk locally and also in Zookeeper.
The token information is then gossiped around the cluster.
This is how we know about all nodes and their respective po-
sitions in the ring. This enables any node to route a request
for a key to the correct node in the cluster. In the bootstrap
case, when a node needs to join a cluster, it reads its configu-
ration file which contains a list of a few contact points within
the cluster. We call these initial contact points, seeds of the
cluster. Seeds can also come from a configuration service
like Zookeeper.

In Facebook’s environment node outages (due to failures and
maintenance tasks) are often transient but may last for ex-
tended intervals. Failures can be of various forms such as
disk failures, bad CPU etc. A node outage rarely signifies
a permanent departure and therefore should not result in
re-balancing of the partition assignment or repair of the un-
reachable replicas. Similarly, manual error could result in
the unintentional startup of new Cassandra nodes. To that
effect every message contains the cluster name of each Cas-
sandra instance. If a manual error in configuration led to
a node trying to join a wrong Cassandra instance it can
thwarted based on the cluster name. For these reasons, it
was deemed appropriate to use an explicit mechanism to
initiate the addition and removal of nodes from a Cassan-
dra instance. An administrator uses a command line tool
or a browser to connect to a Cassandra node and issue a
membership change to join or leave the cluster.

5.5 Scaling the Cluster
When a new node is added into the system, it gets assigned
a token such that it can alleviate a heavily loaded node.
This results in the new node splitting a range that some
other node was previously responsible for. The Cassandra
bootstrap algorithm is initiated from any other node in the
system by an operator using either a command line utility

37



or the Cassandra web dashboard. The node giving up the
data streams the data over to the new node using kernel-
kernel copy techniques. Operational experience has shown
that data can be transferred at the rate of 40 MB/sec from
a single node. We are working on improving this by having
multiple replicas take part in the bootstrap transfer thereby
parallelizing the effort, similar to Bittorrent.

5.6 Local Persistence
The Cassandra system relies on the local file system for data
persistence. The data is represented on disk using a format
that lends itself to efficient data retrieval. Typical write
operation involves a write into a commit log for durability
and recoverability and an update into an in-memory data
structure. The write into the in-memory data structure is
performed only after a successful write into the commit log.
We have a dedicated disk on each machine for the commit
log since all writes into the commit log are sequential and
so we can maximize disk throughput. When the in-memory
data structure crosses a certain threshold, calculated based
on data size and number of objects, it dumps itself to disk.
This write is performed on one of many commodity disks
that machines are equipped with. All writes are sequential
to disk and also generate an index for efficient lookup based
on row key. These indices are also persisted along with the
data file. Over time many such files could exist on disk
and a merge process runs in the background to collate the
different files into one file. This process is very similar to the
compaction process that happens in the Bigtable system.

A typical read operation first queries the in-memory data
structure before looking into the files on disk. The files are
looked at in the order of newest to oldest. When a disk
lookup occurs we could be looking up a key in multiple files
on disk. In order to prevent lookups into files that do not
contain the key, a bloom filter, summarizing the keys in
the file, is also stored in each data file and also kept in
memory. This bloom filter is first consulted to check if the
key being looked up does indeed exist in the given file. A key
in a column family could have many columns. Some special
indexing is required to retrieve columns which are further
away from the key. In order to prevent scanning of every
column on disk we maintain column indices which allow us to
jump to the right chunk on disk for column retrieval. As the
columns for a given key are being serialized and written out
to disk we generate indices at every 256K chunk boundary.
This boundary is configurable, but we have found 256K to
work well for us in our production workloads.

5.7 Implementation Details
The Cassandra process on a single machine is primarily con-
sists of the following abstractions: partitioning module, the
cluster membership and failure detection module and the
storage engine module. Each of these modules rely on an
event driven substrate where the message processing pipeline
and the task pipeline are split into multiple stages along the
line of the SEDA[20] architecture. Each of these modules
has been implemented from the ground up using Java. The
cluster membership and failure detection module, is built on
top of a network layer which uses non-blocking I/O. All sys-
tem control messages rely on UDP based messaging while
the application related messages for replication and request
routing relies on TCP. The request routing modules are im-

plemented using a certain state machine. When a read/write
request arrives at any node in the cluster the state machine
morphs through the following states (i) identify the node(s)
that own the data for the key (ii) route the requests to the
nodes and wait on the responses to arrive (iii) if the replies
do not arrive within a configured timeout value fail the re-
quest and return to the client (iv) figure out the latest re-
sponse based on timestamp (v) schedule a repair of the data
at any replica if they do not have the latest piece of data.
For sake of exposition we do not talk about failure scenarios
here. The system can be configured to perform either syn-
chronous or asynchronous writes. For certain systems that
require high throughput we rely on asynchronous replica-
tion. Here the writes far exceed the reads that come into
the system. During the synchronous case we wait for a quo-
rum of responses before we return a result to the client.

In any journaled system there needs to exist a mechanism for
purging commit log entries. In Cassandra we use a rolling
a commit log where a new commit log is rolled out after an
older one exceeds a particular, configurable, size. We have
found that rolling commit logs after 128MB size seems to
work very well in our production workloads. Every com-
mit log has a header which is basically a bit vector whose
size is fixed and typically more than the number of column
families that a particular system will ever handle. In our
implementation we have an in-memory data structure and a
data file that is generated per column family. Every time the
in-memory data structure for a particular column family is
dumped to disk we set its bit in the commit log stating that
this column family has been successfully persisted to disk.
This is an indication that this piece of information is already
committed. These bit vectors are per commit log and also
maintained in memory. Every time a commit log is rolled
its bit vector and all the bit vectors of commit logs rolled
prior to it are checked. If it is deemed that all the data
has been successfully persisted to disk then these commit
logs are deleted. The write operation into the commit log
can either be in normal mode or in fast sync mode. In the
fast sync mode the writes to the commit log are buffered.
This implies that there is a potential of data loss on ma-
chine crash. In this mode we also dump the in-memory data
structure to disk in a buffered fashion. Traditional databases
are not designed to handle particularly high write through-
put. Cassandra morphs all writes to disk into sequential
writes thus maximizing disk write throughput. Since the
files dumped to disk are never mutated no locks need to be
taken while reading them. The server instance of Cassandra
is practically lockless for read/write operations. Hence we
do not need to deal with or handle the concurrency issues
that exist in B-Tree based database implementations.

The Cassandra system indexes all data based on primary
key. The data file on disk is broken down into a sequence
of blocks. Each block contains at most 128 keys and is de-
marcated by a block index. The block index captures the
relative offset of a key within the block and the size of its
data. When an in-memory data structure is dumped to disk
a block index is generated and their offsets written out to
disk as indices. This index is also maintained in memory for
fast access. A typical read operation always looks up data
first in the in-memory data structure. If found the data is
returned to the application since the in-memory data struc-

38



ture contains the latest data for any key. If not found then
we perform disk I/O against all the data files on disk in re-
verse time order. Since we are always looking for the latest
data we look into the latest file first and return if we find
the data. Over time the number of data files will increase
on disk. We perform a compaction process, very much like
the Bigtable system, which merges multiple files into one;
essentially merge sort on a bunch of sorted data files. The
system will always compact files that are close to each other
with respect to size i.e there will never be a situation where a
100GB file is compacted with a file which is less than 50GB.
Periodically a major compaction process is run to compact
all related data files into one big file. This compaction pro-
cess is a disk I/O intensive operation. Many optimizations
can be put in place to not affect in coming read requests.

6. PRACTICAL EXPERIENCES
In the process of designing, implementing and maintaining
Cassandra we gained a lot of useful experience and learned
numerous lessons. One very fundamental lesson learned was
not to add any new feature without understanding the effects
of its usage by applications. Most problematic scenarios do
not stem from just node crashes and network partitions. We
share just a few interesting scenarios here.

• Before launching the Inbox Search application we had
to index 7TB of inbox data for over 100M users, then
stored in our MySQL[1] infrastructure, and load it into
the Cassandra system. The whole process involved
running Map/Reduce[7] jobs against the MySQL data
files, indexing them and then storing the reverse-index
in Cassandra. The M/R process actually behaves as
the client of Cassandra. We exposed some background
channels for the M/R process to aggregate the re-
verse index per user and send over the serialized data
over to the Cassandra instance, to avoid the serializa-
tion/deserialization overhead. This way the Cassandra
instance is only bottlenecked by network bandwidth.

• Most applications only require atomic operation per
key per replica. However there have been some appli-
cations that have asked for transactional mainly for the
purpose of maintaining secondary indices. Most devel-
opers with years of development experience working
with RDBMS’s find this a very useful feature to have.
We are working on a mechanism to expose such atomic
operations.

• We experimented with various implementations of Fail-
ure Detectors such as the ones described in [15] and [5].
Our experience had been that the time to detect fail-
ures increased beyond an acceptable limit as the size
of the cluster grew. In one particular experiment in a
cluster of 100 nodes time to taken to detect a failed
node was in the order of two minutes. This is prac-
tically unworkable in our environments. With the ac-
crual failure detector with a slightly conservative value
of PHI, set to 5, the average time to detect failures in
the above experiment was about 15 seconds.

• Monitoring is not to be taken for granted. The Cas-
sandra system is well integrated with Ganglia[12], a
distributed performance monitoring tool. We expose

various system level metrics to Ganglia and this has
helped us understand the behavior of the system when
subject to our production workload. Disks fail for no
apparent reasons. The bootstrap algorithm has some
hooks to repair nodes when disk fail. This is however
an administrative operation.

• Although Cassandra is a completely decentralized sys-
tem we have learned that having some amount of co-
ordination is essential to making the implementation
of some distributed features tractable. For example
Cassandra is integrated with Zookeeper, which can be
used for various coordination tasks in large scale dis-
tributed systems. We intend to use the Zookeeper ab-
straction for some key features which actually do not
come in the way of applications that use Cassandra as
the storage engine.

6.1 Facebook Inbox Search
For Inbox Search we maintain a per user index of all mes-
sages that have been exchanged between the sender and the
recipients of the message. There are two kinds of search fea-
tures that are enabled today (a) term search (b) interactions
- given the name of a person return all messages that the
user might have ever sent or received from that person. The
schema consists of two column families. For query (a) the
user id is the key and the words that make up the message
become the super column. Individual message identifiers
of the messages that contain the word become the columns
within the super column. For query (b) again the user id is
the key and the recipients id’s are the super columns. For
each of these super columns the individual message identi-
fiers are the columns. In order to make the searches fast
Cassandra provides certain hooks for intelligent caching of
data. For instance when a user clicks into the search bar
an asynchronous message is sent to the Cassandra cluster
to prime the buffer cache with that user’s index. This way
when the actual search query is executed the search results
are likely to already be in memory. The system currently
stores about 50+TB of data on a 150 node cluster, which
is spread out between east and west coast data centers. We
show some production measured numbers for read perfor-
mance.

Latency Stat Search Interactions Term Search
Min 7.69ms 7.78ms
Median 15.69ms 18.27ms
Max 26.13ms 44.41ms

7. CONCLUSION
We have built, implemented, and operated a storage system
providing scalability, high performance, and wide applica-
bility. We have empirically demonstrated that Cassandra
can support a very high update throughput while deliver-
ing low latency. Future works involves adding compression,
ability to support atomicity across keys and secondary index
support.

8. ACKNOWLEDGEMENTS
Cassandra system has benefitted greatly from feedback from
many individuals within Facebook. In addition we thank
Karthik Ranganathan who indexed all the existing data in

39



MySQL and moved it into Cassandra for our first production
deployment. We would also like to thank Dan Dumitriu from
EPFL for his valuable suggestions about [19] and [8].

9. REFERENCES
[1] MySQL AB. Mysql.

[2] Atul Adya, William J. Bolosky, Miguel Castro, Gerald
Cermak, Ronnie Chaiken, John R. Douceur, Jon
Howell, Jacob R. Lorch, Marvin Theimer, and
Roger P. Wattenhofer. Farsite: Federated, available,
and reliable storage for an incompletely trusted
environment. In In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation
(OSDI, pages 1–14, 2002.

[3] Mike Burrows. The chubby lock service for
loosely-coupled distributed systems. In OSDI ’06:
Proceedings of the 7th symposium on Operating
systems design and implementation, pages 335–350,
Berkeley, CA, USA, 2006. USENIX Association.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for
structured data. In In Proceedings of the 7th
Conference on USENIX Symposium on Operating
Systems Design and Implementation - Volume 7,
pages 205–218, 2006.

[5] Abhinandan Das, Indranil Gupta, and Ashish
Motivala. Swim: Scalable weakly-consistent
infection-style process group membership protocol. In
DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks,
pages 303–312, Washington, DC, USA, 2002. IEEE
Computer Society.

[6] Giuseppe de Candia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazonÕs highly available
key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles,
pages 205–220. ACM, 2007.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[8] Xavier Défago, Péter Urbán, Naohiro Hayashibara,
and Takuya Katayama. The φ accrual failure detector.
In RR IS-RR-2004-010, Japan Advanced Institute of
Science and Technology, pages 66–78, 2004.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The google file system. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 29–43, New York,
NY, USA, 2003. ACM.

[10] Jim Gray and Pat Helland. The dangers of replication
and a solution. In In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of
Data, pages 173–182, 1996.

[11] David Karger, Eric Lehman, Tom Leighton, Matthew
Levine, Daniel Lewin, and Rina Panigrahy. Consistent
hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide
web. In In ACM Symposium on Theory of Computing,

pages 654–663, 1997.

[12] Matthew L. Massie, Brent N. Chun, and David E.
Culler. The ganglia distributed monitoring system:
Design, implementation, and experience. Parallel
Computing, 30:2004, 2004.

[13] Benjamin Reed and Flavio Junquieira. Zookeeper.

[14] Peter Reiher, John Heidemann, David Ratner, Greg
Skinner, and Gerald Popek. Resolving file conflicts in
the ficus file system. In USTC’94: Proceedings of the
USENIX Summer 1994 Technical Conference on
USENIX Summer 1994 Technical Conference, pages
12–12, Berkeley, CA, USA, 1994. USENIX
Association.

[15] Robbert Van Renesse, Yaron Minsky, and Mark
Hayden. A gossip-style failure detection service. In
Service,Ť Proc. Conf. Middleware, pages 55–70, 1996.

[16] Mahadev Satyanarayanan, James J. Kistler, Puneet
Kumar, Maria E. Okasaki, Ellen H. Siegel, and
David C. Steere. Coda: A highly available file system
for a distributed workstation environment. IEEE
Trans. Comput., 39(4):447–459, 1990.

[17] Ion Stoica, Robert Morris, David Liben-nowell,
David R. Karger, M. Frans Kaashoek, Frank Dabek,
and Hari Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM
Transactions on Networking, 11:17–32, 2003.

[18] D. B. Terry, M. M. Theimer, Karin Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in bayou, a weakly connected
replicated storage system. In SOSP ’95: Proceedings
of the fifteenth ACM symposium on Operating systems
principles, pages 172–182, New York, NY, USA, 1995.
ACM.

[19] Robbert van Renesse, Dan Mihai Dumitriu, Valient
Gough, and Chris Thomas. Efficient reconciliation and
flow control for anti-entropy protocols. In Proceedings
of the 2nd Large Scale Distributed Systems and
Middleware Workshop (LADIS ’08), New York, NY,
USA, 2008. ACM.

[20] Matt Welsh, David Culler, and Eric Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles,
pages 230–243, New York, NY, USA, 2001. ACM.

40




