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ABSTRACT 
In this paper we develop a performance modeling technique for 
analyzing the time varying performance of mobile ad hoc 
networks. Our approach is a novel hybrid of discrete event 
simulation and numerical method based queueing analysis. 
Network queues are modeled using fluid-flow based differential 
equation models which are solved using numerical methods, while 
node mobility is modeled using an adjacency matrix topology 
representation whose values are determined via discrete event 
simulation techniques.  Numerical results are given illustrating the 
approach.  

Categories and Subject Descriptors 
C. Computer Systems Organization, C.4 Performance of Systems, 
Subjects: Modeling Techniques 

General Terms 
Algorithms, Performance, Reliability 

Keywords 
Ad-hoc networks, performance evaluation and modeling, time 
varying behavior 

1. INTRODUCTION 
Mobile ad-hoc networks using wireless links are expected to 
become an important part of the communication infrastructure. In 
a mobile ad-hoc network, nodes must cooperate to dynamically 
establish routes using multihop wireless links. There is no 
stationary infrastructure, and each node acts as a router. A packet 
may have to be forwarded by a sequence of nodes to reach its 
destination. The mobile network nodes can move arbitrarily, thus 
the topology is expected  to change often and unpredictably. 
Hence, ad hoc networks require highly adaptive routing protocols 
and efficient failure recovery strategies to deal with the frequent 
topology changes. Also, bandwidth and the power of network 
nodes are limited making protocol development  challenging. 
 
 
 
 
 
 
 
 
 

A mobile ad hoc networking  (MANET) working group [1] has 
been formed within the Internet Engineering Task Force (IETF) to 
develop protocols including a routing framework for ad hoc 
networks.  A great deal of research has appeared on the 
development of ad-hoc networks and many routing protocols have 
been proposed to solve the dynamic multihop routing problem [1-
7]. While significant progress has been made towards developing 
mobile ad-hoc networks, relatively little work has appeared 
developing analytical based performance models of mobile ad-hoc 
networks. Traditionally, mobile ad-hoc network performance has 
been evaluated using discrete event simulation.  The basic 
simulation approach adopted in the majority of the literature (e.g., 
[2],[6],[7]) is for a given scenario (i.e., number of nodes, mobility 
model, transmission range, routing scheme, etc.) the network is 
simulated over a  fixed time period (e.g., 600 sec in [2]), multiple 
runs are made with different random number seeds  and the 
collected data is averaged over the runs. In terms of simulation 
methodology this approach is considered a steady-state simulation 
([8], [9]) and it is recommended that the statistics be cleared after 
the initial transient in each runs to avoid initialization bias. 
Analysis of the simulation result takes the form of confidence 
intervals on the performance metrics. Typical performance metrics 
are the mean delay, packet delivery fraction, and mean hop count. 
The simulation program must model the network topology, 
network traffic and protocols, and unique ad-hoc features such as 
node mobility,  wireless link quality, and limited battery life  
should be included. Due to the complexity in the simulation 
modeling of mobile ad-hoc networks, special simulation 
environments have been developed for their study, such as 
GloMoSim, Qualnet and ns-2 with CMU extensions. Even with 
the advent of these specialized simulation tools, the scalability of 
ad-hoc network simulation for performance studies is an issue.  

A weakness of most of the literature on the performance of mobile 
ad-hoc networks is that steady state analysis techniques are used 
even though transient or nonstationary periods will occur in the 
network, especially after a link or node failure.  The importance of 
this transient behavior after failures has been illustrated in several 
wired network technologies including circuit switched [10] 
networks, packet switched data networks [11] and in packet based  
signaling networks [12]. This work taken together shows that the 
dominant factor on network performance after a failure is this 
transient or nonstationary congestion period. Due to the rapidly 
changing topology of mobile ad-hoc networks, one would expect 
that transient/nonstationary conditions to occur often and possibly 
dominant the performance behavior. Hence, routing, QoS and 
congestion techniques designed and evaluated via steady state 
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analysis may not make optimum use of network resources after a 
failure. For example, we have recently studied via simulation the 
transient behavior of the mobile ad-hoc network Dynamic Source  
Routing (DSR)  protocol  in case of path failures and presented an 
improvement scheme called Failure Record [13]. Specifically, we 
observed that in a single frequency channel ad hoc network, path 
failures often cause packets en route to block the interface queue 
at the upstream node of a  failed link. This queue blocking will 
decrease the performance of the network. The Failure Record 
scheme prevents such packets from blocking the queue by making 
every node have a short “memory” of the past and drop the 
packets before they enter the queue. Simulation results showed 
that our scheme can significantly improve the performance mean 
delay and packet delivery fraction of DSR. 

While simulation of the time varying/nonstationary behavior of 
mobile ad-hoc networks is possible, it is computationally difficult. 
Specifically, to capture the dynamic behavior of the network one 
must perform a simulation study according to the nonstationary 
simulation methodology described in [14].  The basic approach is 
to observe the system behavior versus time over an ensemble of 
statistically identical but distinct independent runs.  The quantities 
of interest (e.g. mean queue length at every node) are averaged 
across the ensemble of runs at a particular time instant and 
confidence intervals can be calculated from the ensemble.  Many 
such points may be obtained at different time instants and the 
behavior of the system can be determined as a function of time. 
The principle difficulty in conducting simulation studies of this 
type is the large number of runs (e.g., thousands) that must be 
generated in order to get a representative ensemble from which a 
statistically accurate portrayal of the system behavior can be 
determined.  Hence, very large amounts of CPU time are required 
for even moderate wired networks and this approach is quite 
difficult to scale.  

In this paper we develop a performance modeling technique for 
analyzing the time varying performance of mobile ad-hoc 
networks. Our approach is a novel hybrid of discrete event 
simulation and numerical methods based queueing analysis. 
Network queues are modeled using fluid-flow based differential 
equation models which are solved using numerical methods, while 
node mobility is modeled using discrete event simulation 
techniques. Such an approach is more scalable than a 
nonstationary simulation and allows the modeler insight into the 
interaction of network nodes/protocols. The rest of the paper is 
organized as follows. Section 2 provides the details of our 
modeling approach. Section 3, shows sample numerical results. 
Conclusions and our future work are given in section 4. 

2. Modeling Time Varying Behavior 
Consider an ad-hoc network consisting of  M nodes which move 
in an arbitrary fashion. In order to study the dynamic network 
performance we need to determine the time varying behavior of 
the queueing model of the network.  Note that the main effect of 
node mobility is to dynamically change the topology of the 
queueing network model. Determining closed form expressions 
for the general time varying behavior of such a dynamic topology 
queueing network is extremely difficult if not impossible [15, 16, 
19].  Here we propose a  novel hybrid approach to approximate the 
network performance using two components, namely: (1) an 
adjacency matrix model of the network topology which models 
node movement and (2) a fluid flow model based set of 

differential equations modeling  the time varying queueing 
behavior at each node. We discuss each component in turn below. 

2.1. Mobility Modeling 
Unlike cellular network mobility, both ends of a wireless link in a 
mobile ad hoc network are free to move. We model the impact of 
node mobility and the resulting link failures and additions by 
representing the network topology at any point in time with a  M × 
M adjacency matrix denoted by A(t) . The matrix is as follows: 
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The connectivity between two nodes is determined by their radio 
range which is a function of the antenna pattern, power level, 
geographic terrain, etc., for simplicity we make the common 
assumption that every node has the  same radio range R. To 
determine the adjacency matrix, the distance dij between every two 
nodes, i and j, is calculated and if the distance is less than or equal 
to R then the nodes are connected. Thus, 
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Given an initial placement of the network nodes, the dynamic 
network topology due to node mobility is reflected in the 
adjacency matrix by changes in the aij(t) values with time. The 
topology change is based on a series of events, which are, either a 
link breaking and being removed from the topology or a link being 
added to the topology as two nodes come within radio range. We 
calculate the time of such events based on the mobility model. 
Specifically, every node pair is checked for the possible 
connectivity change based on their current speeds and directions. 
Note, that changes in speed and direction are also considered 
events. The event times are placed in chronological order and as 
time evolves the pair wise connectivity calculation is repeated for 
every event time and the  matrix is changed accordingly. In this 
way, the adjacency matrix can reflect the topology change 
dynamically. It is worth noting, that a computationally simpler 
approach based on direct manipulation of the elements of the 
adjacency matrix is advocated in [21], where the elements of the 
adjacency matrix are changed (0 or 1) according to a probabilistic 
model (specifically a two-state MMPP). This approach was shown 
to be more computationally efficient than detailed simulation of 
node movement, while giving similar results to the random 
waypoint mobility model in terms of the network topology 
changes. Note that either approach can be integrated into the 
model proposed here. 

 

 

 

 



  

2.2.  Node Queueing Model 
As noted above determining the exact time dependent behavior of 
a queueing system under nonstationary conditions is difficult [16, 
17]. Here we adopt a fluid-flow based approximation technique to 
determine the time varying behavior of the queue at each network 
node. Specifically, we use the Pointwise Stationary Fluid Flow 
Approximation (PSFFA) method discussed in [15, 17]. The 
PSFFA method models the average number in the system at a 
queue by one or more differential equations which is solved 
numerically. The use of the PSFFA approach to determine the 
nonstationary behavior of general finite and infinite capacity 
queueing systems is discussed in detail in [15, 17] and is shown to 
be quite accurate when compared to nonstationary simulations for 
a wide variety of  cases. Here we derive the PSFFA model for a 
multi-traffic class M/M/1 queueing model of an ad-hoc network 
node and show how it is linked to the mobility model 

 

2.2.1 Fluid Flow Background  
Consider a single server queueing system with a nonstationary 
arrival process. Let µ denote the average queue service rate and 
λ(t) denote the ensemble average arrival rate at time t We define 
x(t) as the state variable representing the ensemble average 
number in the system at time t. Let x& (t) be the rate of change of 
the state variable with respect to time. From the flow conservation 
principle, the rate of change of the average number in the system 
is equal to the difference between the average arrival and 
departure rates. Let  fin(t) and fout(t) denote the ensemble average 
flow in and out of the system at time t, respectively. Then the rate 
of change of the state variable can be related to the flow in and 
flow out by                                                                                                                                                                                                            

x& (t) = - fout(t)  +  fin(t)                          (1) 

 This type of equation can be found in several places in the 
literature and is commonly referred to as a fluid flow or dynamic 
flow equation [15, 17-19]. The flow out of the system can be 
related to the ensemble average utilization of the server ρ(t) by 
fout(t) = µρ(t). If the queue waiting space is large enough to be 
considered infinite, then the flow into the system is just the arrival 
rate (i.e., fin(t) = λ(t) ) and the fluid flow model of equation (1) 
becomes 

x& (t) =  -µρ(t)   +  λ(t)                   (2) 

The expression for ρ(t) in equation (2) will depend on the 
queueing system under study. In general, determining an exact 
expression for ρ(t) is quite difficult even for the simplest queues. 
Hence, an approximate method is adopted. The general idea is to 
determine the values for ρ(t) at particular instants of time by a 
pointwise mapping from the current value of x(t) into ρ using the 
steady state queueing relationships. Then the value of ρ thus 
obtained is used to numerically solve (2) over a small time interval 
to get a new x(t) and the procedure is repeated for the next time 
step. Considering the infinite queue case of equation (2), we 
assume that at steady state (i.e., x(t) = 0) the following functional 
relationship can be determined: 

                           x = G(ρ)                        (3) 

Additionally, we assume that the functional relationship G(ρ) is 
numerically invertible, that is ρ = G-1(x). This results in the PSFFA 
model 

                  x& (t) =  -µG-1(x(t))   +  λ(t)                  (4) 

Note that equation (4) is quite general in nature, the only 
requirement being that the functional relationship G be determined 
and invertible. For many queueing systems the function G  is well 
known in closed form. Furthermore, for some queueing systems G 
is invertible and one can derive a closed form expression for the 
PSFFA model as given in [17]. This is however not a requirement, 
as the function G can be determined numerically or by curve 
fitting from measurements for an existing system. One advantage 
of determining the approximate expression for ρ(t) in (2) using the 
approach above is that the resulting fluid flow model (4) is exact 
under steady state conditions. Hence, in solution of the PSFFA 
model for the time varying response, the model will always 
converge to the correct steady state value.  

Standard numerical integration techniques such as Runge Kutta 
[20] can be iteratively applied to solve equation (4). The basic 
solution procedure is described here. We identify the initial 
condition for the state variable at time zero as x(0) and assume the 
arrival rate to be a constant over a very small time step [0, ∆t] (i.e., 
λ(t) = λ(∆t/2) for t ∈ [0, ∆t]). Then equation (4) can be 
numerically integrated for the value of the state variable at the end 
of the time interval, x(∆t). Note that in solving the fluid flow 
model over a small time interval one may need to apply a 
numerical procedure to find G-1(x). The state variable value at the 
end of the time interval, x(∆t), then becomes the initial condition 
for the next time step [∆t, 2∆t]. We then adjust the arrival rate for 
the new time step. This procedure is repeated for each time 
interval in the time horizon. 

  

2.2.2 Multi-traffic class M/M/1 fluid flow model  
To apply the fluid flow modeling approach to ad-hoc networks, we 
first develop the M/M/1 queue fluid flow model and its extension 
to the multi-traffic class case as in [15]. We make the standard 
product form queueing network assumptions, which allows the 
queue at each network node to be modeled as a M/M/1 type. 
Specifically, we define C as the wireless link capacity, the packets 
are assumed exponentially distributed in length with mean length 
1/µ,  packet transmission times are proportional to the packet 
length and  traffic is assumed to arrive to the queue according to a 
nonstationary Poisson process with time varying mean rate λ(t). 
For the M/M/1 queue at steady state, one gets )/( λµλ −= Cx  
which corresponds to the functional relationship x = G(ρ) of 
equation (3) and in this case it can be inverted in closed form to 
yield the PSFFA model from equation (4) as                                                             
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The accuracy of this model has been studied in [15, 18] and an 
alternative derivation directly from the Chapman-Kolmogorov 
differential equation model of an M/M/1 queue is given in [22].  In 
ad-hoc networks, the traffic in the network is normally divided into 
a number of classes and the control actions (i.e. routing and flow 
control) are based on the class type. Thus the fluid flow model must 



  

be modified to represent the dynamic behavior of each class 
separately. Consider an arbitrary  network node  as shown in Figure 
1.  

µC

λ1 

λ2 

λs  
Figure 1. Model of a node with S classes of traffic 

 

There are S different classes of packets arriving at the node with 
the average arrival rates λ1(t), λ2(t),…, λS(t). Let xl(t) represent the 
average number of packets of class l in the queueing system at time 
t. The fluid flow model (5) describing the average total number of 
packets at the link at time t, xT(t) where ∑= =

S
l lT txx 1 )(  is given by                                                   
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A fluid flow model of the form of equation (4) can be developed for 
each class as 

x& l(t) =  -µCGl
-1(xl,xT)   +  λl(t)  Sl ,...2,1=∀    (7) 

where Gl(xl,xT)  represents the average utilization of the link by the 
class l traffic. Note, that if there are only class l packets in the link 
then Gl(xl,xT), will be a function of the class l packets xl only and 
must have the form of the utilization function in  model (5) (i.e., 
Gl(xl,xT) = xl/(1 + xl)), since it will represent the dynamics of an 
M/M/1 queue with only one class of traffic. However, if additional 
classes of traffic are also present in the link, they will use part of 
the transmission capacity of the link and the portion of link 
capacity seen by the class l packets will depend on the total 
amount of link capacity being used. Thus Gl(xl,xT) will be a 
function of both the average number of class l packets in the link 
queue xl and the total average number of packets in the link xT. We 
determine Gl(xl,xT) using the PSFFA technique of matching the 
steady-state equilibrium point of the fluid flow model and the 
equivalent queueing model. Thus from the M/M/1 queueing model 
of the node with S classes of customers, we require at steady-state. 
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and the  fluid flow model  for the node now becomes                   
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Thus, a node can be described by a set of S nonlinear differential 
equations of the form of equation (9) representing the time varying 
behavior of each traffic class separately. The system of equations 
can be solved using the numerical integration approach discussed 
above and results on the accuracy and computational advantages 
of this type of model in comparison to simulation are given in 
[15]. The multi-traffic class fluid flow model developed above 
represents the dynamics of a single isolated node in a network and 
we now extend the model to represent the ad-hoc network 
environment. 

Thus, a node can be described by a set of S nonlinear differential 
equations of the form of equation (9) representing the time varying 
behavior of each traffic class separately. The system of equations 
can be solved using the numerical integration approach discussed 
above and results on the accuracy and computational advantages 
of this type of model in comparison to simulation are given in 
[15]. The multi-traffic class fluid flow model developed above 
represents the dynamics of a single isolated node in a network and 
we now extend the model to represent the ad-hoc network 
environment. 

2.2.3 A Fluid Flow Model  of  an Ad-hoc Network 
Consider an ad hoc network consisting of M nodes, an arbitrary 
node i is shown in Figure 2 below. At each node the packets are 
typed into classes based on their destination node, thus there are 
M-1 possible traffic classes at each node. We assume that packets 
are generated at the network node i destined for node j according 
to a Poisson process (which can be nonstationary), with mean rate 
γi

j(t).  We define  γi(t) as the vector of all mean traffic rates 
generated at node i, γi(t) = [γi

j(t), ijj ≠∀ ,  ]. Similarly, we 
define xi

j(t) as the mean number of packets in the queueing system 
at  node i destined for node j at time t and  xi(t)  as a row vector of  
state variables at node i where, xi(t)  = [xi

j(t), ijj ≠∀ ,  ].  We 
assume  exponentially distributed packet lengths with mean packet 
length µ  and let Ci denote the transmission capacity of node i. 
Given these assumptions the multi-class fluid flow model of (9) 
would apply if there the node was not being used as a relay for 
other traffic, had only one out going link and was not moving. In 
order to include mobility, the possibility of serving as a relay node 
and multiple outgoing links, we must incorporate routing variables 
and the dynamic nature of the topology.  We define rik

j(t) as a 
routing variable  from node i to node k for traffic destined for node 
j. The value of the routing variable at any point in time depends on 
the specific routing scheme used (e.g., flooding, DSR, etc.) and 
the current network topology. As described in section 2.1, aik(t) 
denotes a zero/one indicator variable that is equal to one if node i 
and k are within the radio range of each other,.  
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Figure 2.  Arbitrary node i queueing model  



  

Note that the flow out of node i to node k of a particular traffic 
class j  will depend upon the existence of a direct link between i 
and k and the routing variables for traffic class j. Hence one must 
modify the flow out  term in (9) to incorporate  aik(t) and  rik

j(t). 
Specifically the flow out of node i of class j traffic to node k is 
given by 
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The flow of class j traffic into the node i queue will consist of 
traffic generated at node i with rate γi

j(t) and the flow of class j 
traffic to node i from other network nodes.  Specifically, the flow 
of class j traffic into node i from node l is given by. 
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 The resulting ad-hoc network fluid-flow model is determined by 
summing the flow in and out over all possible nodes and is given 
by  
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In (10) the first term to the right of the equal sign represents the 
flow out of  node i of traffic class j, the second term represents the 
type j traffic generated at node i , and the last term denotes the 
flow of type j traffic into node i from other network  nodes.  Note 
the two rightmost terms in (10) represent the total class j traffic 
flow into the queue at node i, namely λi

j(t). From (10), one can see 
that a node i is represented by a set of M-1 differential equations 
and the network as a whole by M x M-1 equations. Numerical 
solution of the model follows a hybrid approach, where the node 
mobility and adjacency matrix are determined via discrete event 
simulation  and the fluid flow model is solved via numerical 
integration as discussed above for the PSFFA approach.    

3. NUMERICAL RESULTS 
Here we present preliminary numerical results illustrating the 
application of the model presented in Section 2.  For the sake of 
simplicity we model a three node network as shown in Figure 3. 
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Figure 3. Three node ad-hoc network queueing model 

 

For the network shown in Figure 3, the fluid flow model of (10) 
results in six differential equations.  In the following, we first 
report baseline results where node movement occurs in a pre-
determined fashion. Then we examine the results when the link 
utilization is increased, the node mobility is increased, and the 
load is changing. In our numerical results we assume C1 = C2 = C3 
= 20, and µ = 0.05, which corresponds to a normalized server 
capacity of one packet per second. For all numerical solutions to 
the differential equations, the fifth order Runge-Kutta routine 
provided in MATLAB was utilized. In the numerical solution 
various values for the time step ∆t (e.g., ∆t = 1, ∆t = 0.1, etc.) 
over which each integration is conducted were tried, until 
decreasing the time step resulted in no change in the numerical 
values.  

The topologies illustrated in Figure 4 model a set of the 
connectivity changes between the three nodes in terms of time that 
corresponds to a set of node movements.  
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Figure 4. A mobility and connectivity scenario  

 

The topologies of Figure 4 (a-f)  determine the  adjacency matrix 
values at the corresponding time points. Given a mobility scenario 
such as above, one can calculate the routing variables rik

j(t) using a 
specific routing algorithm. For example, here we use minimum 
hop routing.  We assume that rerouting of traffic after a topology 
change (link addition or deletion) occurs instantly, which is a best 
case scenario. Figure 5 shows the queueing behavior for the two 
traffic classes at each of the three nodes when the load  is γ1

2(t) = 
0.18, γ1

3(t) = 0.22, γ2
1(t) = 0.18, γ2

3(t) = 0.22, γ3
1(t) = 0.18, and 

γ3
2(t) = 0.22.  From Figure 5, one can see the effect of the 

topology changes on the mean number of packets of each traffic 
class at each node. For time t < 100, all three nodes have gone 
through an initial transient and reached steady state. At  time  t = 
100,   the link between 1 and 3 breaks and the traffic over it is 
rerouted through node 2 causing a large transient spike in the 



  

number in the system until the link between 1 and 3 is restored at 
time t = 200. At time t =300, the link between 3 and 2 breaks 
resulting in traffic being rerouted through node 1 and large 
transients there until the link is restored at time t = 400, Similarly, 
a large increase in the number in the system occurs at node 3 when 
the link between 1 and 2 breaks at time t =500. Notice, that 
transient increase is larger  at nodes with  greater  traffic load.  

           
Figure 5 (a). Node 1, Buffers x1
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Next we consider the effect of increasing the load, specifically, the 
link utilization is increased to 0.6, whereas the results of Figure 5 
have a link utilization of 0.4. Figure 6 shows the  behavior for 
each of the two traffic classes at each node when the load  is γ1

2(t) 
= 0.25, γ1

3(t) = 0.35, γ2
1(t) = 0.35, γ2

3(t) = 0.25, γ3
1(t) = 0.30, and 

γ3
2(t) = 0.30.  We assume the same mobility and connectivity 

model as described by Figure 4. As one can see from Figure 6, the 
behavior is similar to those of Figure 5, except that, the number in 
system  has increased  by about 7 times.  
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When the node mobility is increased, topology changes occur 
more frequently. Here we consider the topology changes as shown 
in Figure 7. Figure 8 shows the behavior for the two traffic classes 
at each of the  nodes when the load  is the same as that used for the 
baseline case of  Figure 5. Figure 9 shows the buffer behavior for 
the two traffic classes at each of the three nodes when the load is 
increased to the same as that used for generating Figure  6. 
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Figure 7. Rapid  mobility  and connectivity scenario  

 
 

As one can be seen from Figure 8, when the topology changes 
more rapidly, significant transient/nonstationary periods occur 
even in a lightly loaded network. From Figure 9, it is observed that 
when the network is more heavily loaded  the transient effects are 
even more  pronounced. 
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Figure 9 (a). Node 1, Buffers x1
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Next  with the same topology changes as described in Figure 4 we 
randomly vary the load at each node. Specifically, the load at each 
node  γi

j is composed of group of  ten small flows. The small flows 
have an exponentially distributed  on duration with mean of 10 
seconds and  a exponentially distributed off time with a mean of 2 
seconds. The mean rate of each flow is drawn from a uniform 
distribution (e.g., u [0.03, 0.05]) and the average link utilization is 
0.5.  Figure 10, shows the results for each node. One can see the 
effect of the load changes and the topology changes on the mean 
number of packets of each traffic class at each node. Note at  time  
t = 100,   the link between 1 and 3 breaks and the traffic over it is 
rerouted through node 2 causing a large transient spike in the 
number in the system until  the link between 1 and 3 is restored at 
time t = 200. Similar behavior is seen at the other nodes.  
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4. CONCLUSIONS   
In this paper we develop a performance modeling technique for 
analyzing the time varying behavior  of mobile ad hoc networks. 
Our approach is a novel hybrid of discrete event simulation and 
numerical method based queueing analysis. Network queues are 
modeled using fluid-flow based differential equation models 
which are solved using numerical methods, while node mobility is 
modeled using an adjacency matrix topology representation whose 
values are determined via discrete event simulation techniques.  
Preliminary numerical results were given illustrating the approach 
for a sample network. Our future work includes determining the 
accuracy of the approach in comparison with simulation results 
from ns-2,  generating numerical results  for a wide variety of 
parameter values (e.g., different mobility models, different routing 
schemes) as well as larger networks and examining the scalability 
of the approach.  
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