
Experiences on Integration of Network Management and a Distributed Computing Platform

Sakari Rahkila and Susanne Stenberg
Nokia Research Center

sakari.rahkila@research.nokia.com
susanne.stenberg@research.nokia.com

Abstract

The integration of the two recognized network
management protocol standards, Common Management
Information Protocol (CMIP), and Simple Network
Management Protocol (SNMP), and Common Object
Request Broker Architecture (CORBA) technology,
allows management applications to take advantage of
distributed object computing as well as the standardized
network management protocols.
This paper describes the Distributed Computing Platform
(DCP) prototype developed in Nokia Research Center.
The DCP prototype is a framework, including tools,
compilers and gateways, built to support both Internet
and OSI management through a CORBA infrastructure.

1. Introduction

Telecommunications networks are continuously
growing in scale and complexity, and the number of
equipment and services they provide is increasing.
Usually, with each new technology deployed, a new
Network Management System is installed as well.
Despite that the functionality in each new Network
Management System is nearly the same as in the previous
systems, the lack of a common approach in the
implementation of these systems prevent them from being
integrated. Yet, integrated, distributed management of
heterogeneous networks is increasingly important, since
today a carrier must be able to set up new services in
weeks rather than months, and to deliver integrated
services. There is thus a need for a consistent approach to
integrate management solutions. Additionally it would be
desirable to use off-the-shelf (buy vs. build) components
and to leverage existing investments by integration of
‘legacy’ management applications. Distribution in
management applications is needed for scalability and for
the cost/performance benefits.

The most promising approach to solve the distribution,
interface and integration problems is the Common Object
Request Broker Architecture (CORBA) [1] technology by
the Object Management Group (OMG). However,

CORBA does not provide a network management
architecture; it provides a distributed object computing
architecture.

The use of standardized network management
protocols is important because of cost and time savings
and network management system reuse. During the past
years the telecommunications industry has gained
knowledge and experience establishing telecom network
management on the Telecommunications Management
Network (TMN) [2] paradigm. In the Internet
community, on the other hand, SNMP [3] based network
management has gained widespread acceptance due to its
simplicity of implementation. Thus, TMN and Internet
management will co-exist far in the future. But both of
these approaches have problems when it comes to
scalability and distribution.

Below we present the TMN, SNMP and CORBA
concepts, and describe the effort in the Nokia Distributed
Computing Platform (DCP) prototype project to integrate
the three technologies.

2. Basic Concepts

2.1. Telecommunications Management Network

The goal of TMN is to enhance interoperability of
management software and to provide an architecture for
management systems [4]. TMN is defined in the ITU-T
M.3000 series of recommendations. The base document is
M.3010, Principles for a Telecommunications
Management Network [2].

A TMN is a logically distinct network from the
telecommunications network that it manages. It interfaces
with the telecommunications network at several different
points to send/receive information to/from it and to
control its operations.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

ExchangeTransmission
 systems

ExchangeTransmission
 systems

Exchange

Telecommunication network

Data communication network

Operations
 system

Operations
 system

Operations
 system

Work station

To other
TMNs

TMN

Figure 1. Telecommunications Management Network.

A TMN may use parts of the telecommunications
network to provide its communications. Figure 1.
presents the relationship of a TMN to the
telecommunications network.

The TMN information architecture is based on an
object-oriented approach and the agent/manager concepts
that underlie the Open Systems Interconnection (OSI)
systems management [5].

For a specific management association, the
management processes involved will take on one of two
possible roles:

A Manager is defined as part of a distributed network
management application process, which is responsible for
network management processes.

An Agent performs the management operations on the
managed objects at the request of the manager, and
reports events that have occurred in association with the
managed objects.

A Managed Object is the OSI abstract view of a logical
or physical system resource to be managed. The managed
objects are defined according to the International
Standardization Organization (ISO) Guidelines for the
Definition of Managed Objects (GDMO) [6]. GDMO
attribute values types are described using the Abstract
Syntax Notation One (ASN.1) [7]. ASN.1 describes an
abstract syntax for data types and values.

The set of managed object classes and instances under
the control of an agent is known as its Management
Information Base (MIB), an abstraction of network
resources, properties and states for purpose of
management.

Figure 2. illustrates the interaction between a manager,
an agent, and managed objects.

Management operations

Notifications

Communicating

Manager Agent

Managing
open system Performing management

operations

Notifications emitted

Managed
objectsLocal system environment

Managed open system

Figure 2. Interaction between manager, agent, and
managed objects.

All management exchanges between a manager and an
agent are expressed in terms of a consistent set of
management operations and notifications. These
operations are realized through the use of the Common
Management Information Services (CMIS) [8] and the
Common Management Information Protocol (CMIP) [9].
CMIP is a connection-oriented protocol, i.e. every
message is sent over an association established for that
purpose, and closed when the communication is
completed.

2.2. Internet Management

Simple Network Management Protocol (SNMP) is a
protocol suite developed for the management of the
Internet. SNMP was designed to be an application level
protocol that is a part of TCP/IP (Transmission Control
Protocol/Internet Protocol) protocol suite. SNMP is a
connectionless protocol, i.e. every message is sent
independently.

The SNMP framework is based on the principle of
minimally simple agents and complex managers.

Internet uses the term network element to describe any
object that is managed. The network element consists of
the managed entity and the managed entity's agent [10].
The SNMP structure of information uses simple two-
dimensional tables as it’s basic containment structure for
managed objects. The Internet standards also use ASN.1
constructs in the MIB to describe the syntax of the object
types.

2.3. CORBA

The goal of CORBA is to provide a single architecture,
using object technology, for distributed application
integration.

2.3.1. Object Management Architecture
The Object Management Architecture (OMA) Guide

[11] describes an outline of a distributed application
architecture, an abstract object model, an overview of the
integration model, a reference model of the architecture,
and a glossary of terms.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

The Reference Model of the OMA (Figure 3.)
includes the Object Request Broker (ORB), Application
Interfaces, Common Facilities (CORBAfacilities), Object
Services (CORBAservices), and Domain Interfaces.

Domain
Interfaces

CORBA
facilities

CORBAservices

Object Request Broker

Application
Interfaces

General Service Interfaces

Non-standard
application-specific
interfaces

Vertical
domain-specific
interfaces

Horizontal
facility
interfaces

Figure 3. Proposed Object Management Architecture

In the OMA architecture an object can be a tool, an
application, a document, a component inside a document,
a daemon or a service. Practically any set of services that
can be wrapped inside an interface, and invoked through
an object reference, is an object.

2.3.2. Application Interfaces
Application Interfaces are specific to end-user

applications, they are not defined in the OMA
architecture. Applications only need to provide an OMA
compliant interface, i.e. an interface defined with
CORBA Interface Definition Language (IDL), they need
not be constructed using an object oriented paradigm in
order to be objects within the architecture.

2.3.3. Domain Interfaces
Domain Interfaces are vertical application domain-

specific interfaces, e.g. domain interfaces for
telecommunication applications or financial services.

2.3.4. Common Facilities
Common Facilities [12] are horizontal end-user-

oriented facilities applicable to most application domains
(e.g. Distributed Document Component Facility).

2.3.5. Object Services
Object Services [13] is a collection of services with

object interfaces, which provides basic functions for all
objects to be shared by all applications. Object Services
are used to support construction of applications in a
distributed environment. The Object Services are
intended to be modular so that clients in the distributed
computing environment are free to use as many or as few
as necessary to accomplish a task. Examples include Life

Cycle Service, Event Service, Naming Service, and
Transactions Service.

2.3.6. Object Request Broker
The Object Request Broker provides the basic

mechanism for transparently making requests to - and
receiving responses from - objects located locally or
remotely. The ORB supplies delivery services, activation
and deactivation of remote objects, method invocation,
parameter encoding, synchronization, and exception
handling.

2.3.7. Internet Inter-ORB Protocol
For interoperability between ORBs, the CORBA 2.0

specification defines a mandatory message format, called
General Inter-ORB Protocol (GIOP), which can be hosted
on any network transport in theory, however, TCP/IP is
mandatory. Hosted on TCP/IP the protocol is called
Internet Inter-ORB Protocol (IIOP). CORBA 2.0 products
thus have to offer IIOP either natively, or as a so called
half-bridge, i.e. a gateway to IIOP from the protocol used
natively in the ORB.

2.3.8. Interface Definition Language
The CORBA IDL is used to define the interface to a

CORBA object. IDL uses the same lexical rules as C++,
extended with some new keywords. IDL is programming
language independent. It is mapped to the
implementation language, i.e. the programming language
in which the object implementation code is to be written.
IDL compiler output binds clients and object
implementations to the ORB. Headers are produced for
client and server implementation for the C and C++
mappings. For Smalltalk an implementation template is
produced. The implementations are added to an
Implementation Repository.

2.4. Integration of Technologies

Standards bodies have recognized the need for the
technologies described above to co-exist, and provide
specifications for the integration of SNMP, CMIP and
CORBA.

2.4.1. Joint Inter-Domain Management
The Joint Inter-Domain Management (JIDM) working

group sponsored by X/Open and Network Management
Forum (NMF) is seeking to enable inter-operability
between CMIP, SNMP, and CORBA. JIDM concentrates
on CMIP/CORBA and SNMP/CORBA inter-working.
The work is divided into two parts. The first part is
referred to as Specification Translation and is expressed
as a mechanism for translating between GDMO, SNMP

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

MIB Definition language, and IDL. The second part is
called Interaction Translation and covers the mechanisms
to dynamically convert between the protocols in one
domain and the protocols within the other [15].

2.4.2. ISO/CCITT and Internet Management
Coexistence

In NMF, the ISO/CCITT and Internet Management
Coexistence (IIMC) working group has produced
specifications that enable interworking between SNMP
and CMIP environments. The SNMP/CMIP interworking
package consists of five specifications. Three of the
specifications address the relationships among object
definitions in the two models, e.g., the translation of the
Internet MIBs to GDMO [16], [17], and vice versa [18].
In addition, the package includes a specification
describing a CMIP to SNMP proxy agent [19].

2.4.3. OMG Telecom Domain Task Force
As stated in the mission statement of the

Telecommunications Domain Task Force, it provides a
forum for the exploration, specification, and application
of object technology within the telecommunications
industry. It captures specific technology requirements for
the industry and serves as a liaison with appropriate
telecommunications organizations. The Task Force has
outlined an architecture for a CORBA-based
telecommunication network management system, using
ORBs to facilitate the monitoring and control of
telecommunications network elements, networks and
services [20].

3. Nokia DCP Prototype

3.1. Background

The problem with the TMN/OSI model is, apart from
the very rich, complex protocol, that it often is
implemented as two rather large monolithic applications,
the manager and the agent. The SNMP is less complex as
a protocol, but also implements the same manager-agent
approach. In addition the Internet management is not
based on an object-oriented approach. Objects would
provide for better maintenance and future enhancements.

Object-oriented distributed computing will certainly be
essential for the telecommunications business in the
future, and the most promising approach to distributed
object computing is the CORBA technology. Ideally,
future network, and service management should be based
on a common object-oriented approach provided by
CORBA IDL. However, CORBA does not provide a
network management architecture, and also world wide

installations of existing CMIP and SNMP systems, makes
integration of these three technologies important.

3.2. Objectives

Commercially available network management
products, which support CMIP or SNMP management,
do not currently support CORBA based distribution and
scalability. Neither do they offer tools which enable
development of CORBA based management solutions.
The current network management platforms also assume
a homogenous environment from one vendor only, i.e.,
they do not support a multi-vendor component based
approach.

The purpose of the Nokia Distributed Computing
Platform prototype is to provide a framework which
supports the creation, management and invocation of
component based distributed telecom services. CORBA
and the inter-working specifications from JIDM and
IIMC form the basis for the integration framework. In
order to provide a development environment which
allows the software engineer to concentrate on building
management applications, the framework also includes
tools, such as compilers to generate code and browsers to
view generated meta-data, and integrated scripting tools
e.g. TCL/TK.

3.3. Overview

The DCP prototype framework is built on an object-
oriented software bus that facilitates both service
development and service integration. Objects form the
components of all services. All the objects, and thus all
services, provided by the DCP prototype are available
through this software bus and all the new objects can be
plugged into the software bus (Figure 4.). The
technology providing the software bus is CORBA.

CORBA IDL becomes the contract that binds the
framework together. Programmers using the framework
do not need to know where the object they want to use
physically resides. They only need to know its name and
the interface it publishes.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

CMIP / SNMP
Gateway

XMP Gateway

MO IDL
Interfaces

DCP/CORBA

TCL/TK IR
Browser

ODP
Trader X.500Object

Store

Java Netscape

WEB

Web
Browser

Java/HTTP
Daemon

CGI
Gateway

Server
Extens.

Naming

Property

Lifecycle
Event

Service

Java-ORB

Applet Library

Figure 4. Nokia Distributed Computing Platform
Prototype

The following chapters describes the parts of the DCP
prototype, which are related to network management.

3.4. GDMO/ASN.1 to IDL Compiler

The DCP prototype includes implementations of
GDMO/ASN.1 to IDL compilers in accordance with the
JIDM Specification Translation and related class
libraries. The compilers utilize a persistent metadata
repository for storing the knowledge about the GDMO
and IDL definitions. The metadata repository stores the
information about the GDMO objects using the
Management Knowledge Management [21] metadata
object definitions. The metadata repository uses an object
database for persistence. The IDL definitions are stored
corresponding to the CORBA Interface Repository (IR)
interface.

The code generated (C++) inherits from a set of base
classes in the DCP framework, so that it integrates with
the DCP prototype with minimal repeated manual coding
effort.

3.5. Browsing Tools

The framework includes tools for browsing the
persistent metadata generated by both the GDMO and the
ASN.1 compilers. These tools include facilities to browse
the GDMO metadata using a Web browser such as
Netscape and UNIX shell invocation using Tcl/Tk [22]
windows. Tcl (tool command language) is a scripting
language for controlling and extending applications. It
consists of a library that can easily be incorporated into
applications. Tk extends the core Tcl facilities with
commands for building Motif-like user interfaces by
writing Tcl scripts.

Both Java [23] applet (Figure 5.) and HTML forms
interface are provided. Alternatively, the user can browse
GDMO metadata using UNIX command line invocation
with Tcl/Tk. The browsers have proved invaluable for
testing purposes, and extensions to view ‘live’ objects
alongside the definitions are under development.

Figure 5. Java Applet for GDMO Metadata Browsing

3.6. String PDUs

It is possible to represent all the structures (syntax)
used to build CMIS(P) messages using a string
representation. This allows the building of management
entities, which send and receive string messages. The
approach used in the DCP prototype follows the one
outlined in [24].

The string API is based on ASN.1 and hence allows
any syntax defined in ASN.1 to be passed. The string
messages can be passed as part of commands issued using
a scripting language e.g. Tcl/Tk. The disadvantages are
that integer and real values must be converted into/from
the string format, and that messages can get large.

Each message is built as a string which includes three
basic pieces of information. These are the ASN.1 module
name, the ASN.1 type name, and a string containing the
value. The value strings are built as label-value pairs, i.e.
each primitive element of the ASN.1 data structure is
input as a <label> <value> pair. The <label> portion
of the pair is only required when it is necessary to
indicate the resolution of a CHOICE, the omission of

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

OPTIONAL fields in a SEQUENCE, or the identity of
fields in a SET (since they may occur in any order).

The string PDU package in the DCP prototype is used
for building, parsing and passing CMIP string PDUs
using CORBA as transport mechanism.

The architecture of the package can be divided into
three separate areas: ASN.1 data type classes, CMIP data
type classes and builder classes.

The ASN.1 classes are used to represent the basic
ASN.1 data types such as Integer, Real etc. The CMIP
classes represent the CMIP datatypes. These classes use
the ASN.1 classes to compose a more complex data types.
The builder classes are used to create CMIP String PDUs.

String PDU Package

String PDU
builder

String PDU
parser/lexer

CMIP
datatypes

ASN.1
datatypes User

Figure 6. String PDU Package.

Figure 6. illustrates how the separate subcomponents
are associated (an arrow represents use/create type
relation).

3.7. CMIP/SNMP Gateway

The CMIP/SNMP gateway enables management of
SNMP devices by using CMIS services.

The gateway supports sending and receiving of CMIP
and SNMP protocol events and timer events, and
dispatches methods to managed objects also residing in
the gateway.

The managed objects of the OSI/Internet management
gateway communicate with Internet agents by using the
SNMP protocol to carry out the operations invoked
through their IDL interfaces.

The managed objects derived from base classes in the
DCP prototype represent the NMF translation of Internet
MIBs to ISO/CCITT GDMO MIBs. Only the managed
objects realizing a part of the translation of Internet MIB-
II to GDMO MIB will be implemented in the first phase
of the project.

The CMIP/SNMP gateway conforms to CMIS service
emulation requirements of a basic proxy as specified by
NMF. A basic proxy emulates CMIS kernel services, and
supports scoping and filtering for CMIS M-GET with a
single attribute value assertion involving the
objectClass attribute.

The naming service of the DCP prototype, providing a
X.500 [25] names library interface based on Common
Object Services Specification (COSS) [13] Naming
Service, is used by the gateway to register managed
objects and to enable scoping. The X.500 names-library
allows conversion of X.500 names to the CORBA names.

The gateway also uses the CORBA Life Cycle Service
of the DCP prototype to create a managed object
corresponding to the managed-object class (object
identifier) received as a parameter of CMIS M-CREATE
request.

The managed objects of the CMIP/SNMP gateway
take care of the actual translation of CMIP requests to
SNMP requests and SNMP responses to CMIP responses.
The gateway supports a forest of object instance trees,
each contained by the root object, with one system object
instance for each supported SNMP agent, and one system
object instance for the gateway itself.

The system object instance corresponding to the
gateway itself contains all object instances representing
resources of the gateway, e.g. the cmipsnmpProxy and
cmipsnmpProxyAgent object instances.

A system object instance corresponding to an SNMP
agent contains all object instances representing objects
that are implemented in the Internet MIB.

Each internetSystem managed object
representing the GDMO translation of the Internet MIB’s
system group also maps all traps from an SNMP agent to
internetAlarm notifications defined by NMF.

CMIP protocol messages are received and sent as
string PDUs over CORBA, as described in the previous
chapter.

The CMIP/SNMP gateway can handle several
simultaneous managers and SNMP agents (Figure 7.).

CMIP/SNMP
Gateway

Manager SNMP
Agent

CMIP Messages

over CORBA
SNMP Messages

 Figure 7. The CMIP/SNMP gateway.

Internet MIB objects are translated to managed objects
of the CMIP/SNMP gateway in accordance with [17]. For
example, groups and row objects of Internet MIB are
managed objects in the gateway. Scalar objects of a group
or table entry object are attributes of the managed object
corresponding the group or table entry object,
respectively. Conceptual table objects (i.e. those that do
not have any MIB variables, such as ipRouteTable),
are not mapped to managed objects. This means that, e.g.
ipRouteEntry managed objects are contained directly
by the ip managed object.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

The CMIP/SNMP gateway is responsible for emulating
CMIS services by mapping to SNMP messages. The
stateless approach is used in which the gateway does not
maintain the Internet MIB’s data. Instead, for each
received OSI management service request, the gateway
generates one or more Internet management service
requests (i.e. SNMP requests) to the Internet agent in
order to achieve the function of the OSI management
service request. A problem with this approach is that
certain OSI management notifications which result from
a change of state in the MIB cannot be emulated, since
many such changes don’t cause the Internet agent to send
a trap, and a comparison of states in the gateway is
impossible because the Internet MIB data is not
replicated.

The stateful approach would require the gateway to
replicate the Internet MIB locally, and to send periodic
requests to SNMP agents to keep the replicated MIB
current. The gateway would then try to fulfill each
incoming CMIS request by using locally-replicated MIB
data, instead of sending appropriate requests to the
SNMP agent. The stateful approach could usually provide
better response time, but has the drawback that the data
retrieved might not be current. The poll frequency used to
update the locally-replicated MIB has a significant effect
on the accuracy of the response.

The stateless approach was selected because it is far
less complex and it is also the approach used in the
ISO/CCITT and Internet Management Coexistence
(IIMC) documents of NMF.

3.8. Nokia XMP++

The Nokia XMP++ [26], [27] classes enable building
of C++ based applications on top of the X/Open XMP
API [28].

The XMP provides an industry-standard API to CMIP
and SNMP management protocols. Using the XMP API
also involves X/Open’s XOM API [29], through which
OM objects are created, manipulated and destroyed. OM
object instances, which in practice are complex C
structures, implement protocol messages.

The integration of XMP++ with the DCP prototype
allows building of OSI/CORBA gateway applications.

The XMP++ supports application development as
specified by OSI systems management [5]. The XMP++
interface-library includes both the features supporting a
managing process (manager) and an agent process
(agent).

In the role of an agent, the XMP++ supports the
propagation of operation requests. A scoped service
operation request can involve several managed objects,
that are managed by different agents located in different

nodes of the network. This means that the request must
be propagated to other agents from the agent, which
originally received the request.

In the managing process XMP++ facilitates several
simultaneous managers. The manager process can thus
connect to different network solutions, i.e., the manager
acts as Mediation Device, which can be useful especially
in telecommunications network management.

The XMP++ supports the XMP API Draft-3 [30], the
XMP API Preliminary Specification [31], and user
managed Association Control Service Element (ACSE)
[32] control functionality of the final XMP API [28]
version. The XMP API library implementation, which
has been used, is the one provided by the HP OpenView
Distributed Management (OVDM) platform [33]. Figure
8. presents the integration of the DCP prototype and the
HP OVDM platform.

CMOT
Stack

CMIP
Stack

PMDEvent
Stack

CMIP In/Out
Routing

XMP API
Stack

Internet
sockets

CMIP / SNMP
Gateway

XMP++ Gateway

MO IDL
Interfaces

DCP/CORBA

TCL/TK IR
Browser

ODP
Trader X.500Object

Store

Java Netscape

WEB

Web
Browser

Java/HTTP
Daemon

CGI
Gateway

Server
Extens.

Naming
Property

Lifecycle
Event

Service

Java-ORB

Applet Library

HP OVDM

OS I

Figure 8. Integration of the DCP prototype and HP
OpenView DM platform.

3.8.1. XMP++ Class Hierarchy
There are three interface layers in XMP++,

represented by three groups of classes: netHandle,
xmpPlatform, and xmpWkSpace and xmpSession.

The xmpWkSpace and xmpSession classes
interface directly with the XMP API; respectively they
correspond to the XMP API Workspace and Session
concepts. The xmpPlatform class replaces the XMP
API Workspace and Session concepts with a single
management connection concept. It is intended that the
netHandle and its derived classes are the interface
classes for the network management applications to
access the network. The netHandle class uses the

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

xmpPlatform class. It also uses the event handle class
(Reactor class) from the ADAPTIVE Communication
Environment (ACE) library V3.3 [34] for receiving
messages from the network and for catching signals from
the system. ACE is a collection of reusable C++ libraries
and object oriented framework components. The ACE
components are freely available.

The OM and message classes are the C++ wrapper
classes of the XOM data structures for the parameters of
the functions defined by the XMP API, e.g. for the
parameters of the mp_release_req() function. For
each OM data structure defined in the XOM API, there is
an OM class. All the OM classes are derived from the
same base class, omDescriptor. Depending on the
contents of the OM data structures, each class provides a
number of set and get operations.

There are xmpReceive and xmpSend base classes
for receiving and sending messages over the network.
The application uses the xmpSend class in conjunction
with OM classes to pass a message to the peer via
XMP++. Similarly, the user uses the xmpReceive
class in conjunction with the OM classes to receive a
message.

XMP++ provides both Automated Connection
Management (ACM) enabled mode, i.e. ACSE related
primitives or operations cannot be sent or received, and
ACM disabled mode, when the ACSE is managed
explicitly by the user.

3.8.2. XMP++ Integration to the DCP Prototype
The XMP++ gateway provides a conversion between

the CMIP protocol messages which are received and sent
as string PDUs over CORBA, and the information of the
XMP++ interface. This conversion performs the mapping
of operations of the CORBA interface to operations of
the XMP++ interface and protocol interworking. This
also includes connection establishment, connection
negotiation and communication operations with the
remote OSI stack, and data concentration/buffering and
formatting of information.

The class model of the gateway is based on a MIT
actor-dispatcher design [35]. The dispatcher provides for
demultiplexing of timer events, signal events and I/O
events received through communication channels. It
defines an interface for registering actors for certain
events, and dispatches the incoming messages to the pre-
registered actors.

The actors are derived from CORBA objects. The actor
(base) class declares virtual methods for handling
different events that it can register for. The derived actor
classes implement the event handling in a specific

manner. The proxy actors represent managed objects and
take care of the mapping of operations.

The DCP_Gdmo_Disp accepts incoming messages,
and forwards them to the appropriate XMP_Proxy_Act
(Figure 9.).

DCP_Gdmo_ActorDCP_Gdmo_Disp

Event

Timer

TimerEvent

XMP_Proxy_ Act

XMP_EventX

XMP_EventY

XMP_ netHandle

CORBA_ObjDCP_Actor
DCP_Dispatcher

Figure 9. Actor class framework.

The XMP_Proxy_Act performs the conversion and
calls the DCP_Gdmo_Disp which sends the message to
the network using the XMP_netHandle class.

The DCP_Gdmo_Disp keeps track of pending
operations and supports e.g. retries.

The Name Service finds the desired CORBA object
reference to the XMP_Proxy_Act based on OSI
distinguished names.

3.9. Web User Interface

Web based user interfaces offer some benefits for
network management applications. Web browsers provide
for cost-benefits, the user interfaces are easy to use, and
enables mobile management in that remote access only
requires access to the Internet and a Web browser [36].

The Java [23] programming language provides an
environment which allows dynamic loading of program
segments to the client machine. Applets are Java
programs that follow a set a conventions that allow them
to run within a Java compatible Web browser. This
allows new versions of the user interface to be deployed
faster, as they are downloaded from the server.

The DCP prototype provides a Java applet library for
accessing the distributed services provided by the
platform. This includes a set of applets, which provide a
user interface to the network management operations.
The set contains applets for manipulating tree structures,
e.g. MIBs, naming trees etc. The same functionality is
also provided as a HTML forms [37] based interface.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

3.10. Development Environment

The DCP prototype development and demonstration
environment spans Pentium PCs (Win/NT), HP
9000/735/J200 (HP-UX 9.x/10.x), and SUN UltraSparc
(Solaris 2.5) workstations.

The DCP prototype development team has experience
of several ORB products including HP Distributed
Smalltalk, HP ORB Plus, Digital ObjectBroker, IBM
DSOM, SunSoft NEO, and IONA Orbix. These products
were evaluated and compared during 1995. In the DCP
prototype project, the development has mostly been done
using IONA Orbix, but also using HP ORB Plus and
SunSoft NEO.

To enable Java and CORBA integration, we have used
the OrbixWeb product by IONA, and to enable Web
based user interfaces for network management
applications, the DCP prototype uses Netscape Enterprise
Server.

The HP OVDM platform combined with the HP OTS
9000 OSI stack, has been used to provide full OSI
communication.

All of the DCP prototype classes support persistence
using the ODBMS ObjectStore by Object Design Inc.

4. Conclusions and Future Enhancements

As networks become larger and more complex, the
problem of network management arises. This will
necessitate a paradigm shift from centralised
management to distributed management.

The DCP prototype has provided us with ‘proof-of-
concept for CORBA and Java based distributed network
management. We have found CORBA very successful in
the integration of different technologies as well as in the
distribution of management functionality for load-
balancing purposes. The use of Java/HTML has provided
remote access to network management functionality from
wherever a Web browser is available. The combined use
of CORBA and Java enables development of three-tier
network management solutions in weeks rather than
months.

We will continue to enhance the DCP prototype. The
platform will be extended by adding new services to
support e.g. security [38]. In the next phase of the project
performance will be addressed. Instead of transferring
CMIP string PDUs over CORBA, CMIP messages could
be moved in binary format. Also, such issues as fault-
tolerance, multi-threading, and support of real-time
processing will be considered. We also intend to rewrite
some of the C++ libraries in Java to support dynamic
downloading of network management functionality.

Although, we demonstrated CORBA based network
management through the XMP++ gateway, it is obviously
not the most efficient way to accomplish CORBA/OSI
management integration. Several papers [39], [40], [41],
[42], [43], [44], [45], [46] have treated this integration
issue with encouraging conclusions, but also bringing
forth the drawbacks involved.

Notwithstanding, it seems that the next generation
commercial network management platforms will support
native CORBA communication [47]. In our case it means
that the DCP prototype objects can communicate directly
with services included into e.g. such systems as HP’s
future Synergy technology [48] based platform.

During the project it has become evident, that even
though current commercial ORBs are not optimized [49],
the CORBA technology is mature enough to be used as a
base for the telecom software platform development.
However, CORBA per se is not enough, also a lot of work
is needed in the area of the surrounding class libraries,
i.e. the application development enabling framework.

Experience is needed in order to create an
understanding of the different architecture of open
distributed telecom systems, as opposed to monolithic
systems. We have found the learning curve of CORBA
usage bearable when the developer has previous
experience of C++ programming and the use of different
commercial class libraries.

Acknowledgments

The authors wish to thank the Nokia DCP prototype
project team and especially the main architect Petri
Nuuttila for his valuable contributions.

References

[1] Object Management Group, The Common Object
Request Broker: Architecture and Specification,
Revision 2.0, July 1995.

[2] ITU-T M.3010, Principles for a Telecommunications
Management Network, Draft June 1995.

[3] A Simple Network Management Protocol, RFC 1157,
May 1990.

[4] Shrewsbury, J. K.,An introduction to TMN, Journal of
Network and Systems Management, pp. 13-38, Vol. 3,
no. 1, 1995.

[5] ISO 10040, Information technology - Open Systems
Interconnection - Systems management overview,
November 1992.

[6] ISO 10165, Information technology - Open Systems
Interconnection - Structure of management information -
Part 4: Guidelines for the Definition of Managed
Objects.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

[7] ISO 8824, Information technology - Open Systems
Interconnection - Abstract Syntax Notation One
(ASN.1).

[8] ISO 9595, Information technology - Open Systems
Interconnection - Common management information
service definition.

[9] ISO 9596, Information technology - Open Systems
Interconnection - Common Management Information
Protocol.

[10] Black, U., Network Management Standards, The OSI,
SNMP and CMOL Protocols, McGraw-Hill, 1992.

[11] Object Management Group, Object Management
Architecture Guide, Revision 2.0, Second Edition,
September 1992.

[12] Object Management Group, Common Facilities
Architecture, Revision 4.0, November 1995.

[13] Object Management Group, CORBAServices: Common
Object Services Specification, March 1996.

[14] Schmidt. D. C., Vinoski, S., Object Interconnections,
Comparing Alternative Server Programming Techniques
(Column 4), 1995.
http://www.cs.wustl.edu/~schmidt/report-doc.html

[15] X/Open, Specification Translation, X/Open Preliminary
Specification, Draft August 9, 1995.

[16] Network Management Forum: Forum 026, Translation
of Internet MIBs to ISO/CCITT GDMO MIBs, Issue
1.0, October 1993.

[17] Network Management Forum: Forum 029, Translation
of Internet MIB-II (RFC 1213) to ISO/CCITT GDMO
MIB, Issue 1.0, October 1993.

[18] Network Management Forum: Forum 030, Translation
of ISO/CCITT GDMO MIBs to Internet MIBs, Issue
1.0, October 1993.

[19] Network Management Forum: Forum 028, ISO/CCITT
to Internet Management Proxy, Issue 1.0, October 1993.

[20] Object Management Group, CORBA-Based
Telecommunications Network Management System,
OMG White Paper, Draft 2, January 1996.

[21] ISO/IEC 10164-16, Information Technology - Open
Systems Interconnections - Systems Management -
Management Knowledge Management Function.

[22] Ousterhout, J., Tcl and the Tk Toolkit, Addison-Wesley,
1994.

[23] Sun Microsystems, The Java Language: A White Paper,
1995. http://java.sun.com/

[24] IBM Corp., CMIP Run!, Vol. 2 No. 4, 94.
[25] ISO 9594-1, The Directory - Overview of Concepts,

Models, and Services.
[26] S. Rahkila, S. Stenberg, XMP++: An Object-Oriented

Solution For Hiding The Complexity Of Network
Management Protocols, Proceedings PODC ‘94, ACM
Press, Los Angeles August 1994.

[27] S. Rahkila, S. Stenberg, Nokia XMP++: An Object-
Oriented Approach to TMN Application Development,
Proceedings TINA ‘95, Volume 1, Melbourne February
1995.

[28] X/Open, Management Protocols API (XMP), CAE
Specification, Mar 1994.

[29] X/Open, OSI-Abstract-Data Manipulation API (XOM),
CAE Specification, Nov. 1991.

[30] X/Open, Management Protocols API (XMP),
Preliminary Specification (Draft-3), Jan 3 1992.

[31] X/Open, Management Protocols API (XMP),
Preliminary Specification, Jul. 1992.

[32] ISO 8650, Information Processing Systems - Open
Systems Interconnection - Protocol specification for the
Association Control Service Element, 1988.

[33] Hewlett-Packard, HP Open View Distributed
Management Developer’s Reference, J1064-90008,
September 1994.

[34] The ADAPTIVE Communication Environment (ACE),
http://www.cs.wustl.edu/~schmidt/ACE.html

[35] ABCL : an object-oriented concurrent system, ed. by
Akinori Yonezawa , MIT Press, 1990

[36] J. Reilly, The World-wide Web and Programming
Future Broadband Network and Service Management
Applications, Presented at the NWPER'96, Aalborg May
1996.
http://misa.zurich.ibm.com/Consortium/doc/papers

[37] Hypertext Markup Language (HTML): Working and
Background Material,
http://www.w3.org/pub/WWW/MarkUp/MarkUp.html

[38] Object Management Group, CORBA Security,
December 1995.

[39] Luca Deri, Network Management for the 90s,
Submitted to ECOOP'96, Linz July 1996.
http://misa.zurich.ibm.com/Consortium/doc/papers

[40] Della Torre, C., A Generic Distributed Service
Management Test Bed Integrating CORBA and the
XMP API, Proceedings ECOOP ‘94, July 1994.

[41] O’Sullivan, D., CORBA and Telecoms Management -
can they live in perfect harmony?, Proceedings DOOC
‘95, October 1995.

[42] Davis, J., Du, W., Kirshenbaum, E., Moore, K.,
Robinson, M., Shan, M-C., Shen, F., CORBA
Management of Telecommunications Network,
Proceedings DOOC ‘95, October 1995.

[43] Park, J-T., Ha, S-H., Hong, J.W., Song, J-G., Design
and Implementation of a CORBA-Based TMN SMK
System, Proceedings NOMS ‘96, April 1996.

[44] Dittrich, A., Höft, M., Integration of a TMN-based
Management Platform into a CORBA-based
Environment, Proceedings NOMS ‘96, April 1996.

[45] Kong, Q., Chen, G., Integrating CORBA and TMN
Environments, Proceedings NOMS ‘96, April 1996.

[46] Usländer, T., Brunne, H., Management View upon
CORBA Clients and Servers, Proceedings ICDP ‘96,
February 1996.

[47] Hewlett-Packard, Press Release,
http://hpcc998.external.hp.com:80/nsmd/ov/whatisov/tel
ecom.txt

[48] Herman, J., The Sorry State of Enterprise Management,
Distributed Computing Monitor, March 1996.

[49] Gokhale, A., Schmidt, D., Measuring the Performance
of Communication Middleware on High-Speed
Networks, Submitted to SIGCOMM Conference, ACM,
August 1996.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

