
Web Service Composition Languages: Old Wine in New Bottles?

Wil M.P. van der Aalst∗

Department of Technology Management
Eindhoven University of Technology

P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Marlon Dumas Arthur H.M. ter Hofstede
Centre for Information Technology Innovation

Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia

{m.dumas, a.terhofstede}@qut.edu.au

Abstract

Recently, several languages for web service composition
have emerged (e.g., BPEL4WS and WSCI). The goal of
these languages is to glue web services together in a
process-oriented way. For this purpose, these languages
typically borrow concepts from workflow management sys-
tems and embed these concepts in the so-called “web ser-
vices stack”. Up to now, little or no effort has been dedi-
cated to systematically evaluate the capabilities and limita-
tions of these languages. BPEL4WS for example is said to
combine the best of other standards for web service compo-
sition such as WSFL (IBM) and XLANG (Microsoft), and al-
lows for a mixture of block structured and graph structured
process models. However, aspects such as the expressive-
ness, adequacy, orthogonality, and formal characterization
of BPEL4WS (e.g. reachability) have not yet been system-
atically investigated. Although BPEL4WS is not a bad pro-
posal, it is remarkable how much attention it receives while
more fundamental issues such as semantics, expressiveness,
and adequacy do not get the attention they deserve. There-
fore, we advocate the use of more rigorous approaches to
critically evaluate the so-called standards for web services
composition, and to learn from 25 years of experiences in
the workflow/office automation domain.

1. Introduction

Web Services is an emerging paradigm for architecting
and implementing business collaborations within and across

∗Also affiliated with the Queensland University of Technology.

organizational boundaries. In this paradigm, the functional-
ity provided by business applications is encapsulated within
web services: software components described at a semanti-
cal level, which can be invoked by application programs or
by other services through a stack of Internet standards in-
cluding HTTP, XML, SOAP, WSDL, and UDDI [8]. Once
deployed, web services provided by various organizations
can be inter-connected in order to implement business col-
laborations, leading to composite web services.

Business collaborations require long-running interac-
tions driven by an explicit process model [1]. Accord-
ingly, a current trend is to express the logic of a compos-
ite web service using a business process modeling language
tailored for web services. Recently, many languages have
emerged, including WSCI [5], BPML [6], BPEL4WS [9],
XLANG [21], WSFL [16], and BPSS [17], with little effort
spent on their evaluation with respect to a common bench-
mark. Such a comparative evaluation will contribute to es-
tablishing their overlap and complementarities, to delimit
their capabilities and limitations, and to detect inconsisten-
cies and ambiguities.

As a step in this direction, we have conducted an analysis
of some of these languages [1, 2, 23], namely BPML (Busi-
ness Process Modeling Language) and its “sibling” lan-
guage WSCI (Web Services Choreography Interface) [2],
and BPEL4WS (Business Process Execution Language for
Web Services) and its parent languages XLANG and WSFL
(Web Services Flow Language) [23]. The analysis is based
on a framework composed of a set of patterns: abstracted
forms of recurring situations found at various stages of soft-
ware development. Specifically, the framework brings to-
gether a set of workflow patterns documented in [4, 3], and
a set of communication patterns documented in [19].

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



Office Automation Prototypes Scientific Workflow Systems

1980 1985 1990 1995 2000

SCOOP

Backtalk

DAISY

Officetalk-Zero

METEOR

MOBILE

WIDE

CrossFlow

WASA WASA2

Officetalk-P

MENTOR

WISE

INCA

TRAMs

Panta Rhei

ADOME

WorCOS

Mariflow

APRICOT

Melmac

WorCRAFT

Poise Polymer D-Polymer Polyflow

OVALObjectLens

WAMO

Domino

Officetalk-D

FreeFlow

ProMInanD
(Esprit)

Figure 1. Historic overview of early systems and research prototypes (Taken from [18]).

There have been other comparisons of some of the lan-
guages mentioned in this paper. These comparisons typi-
cally do not use a framework and provide an opinion rather
than a structured analysis. An example is [20] where XPDL,
BPML and BPEL4WS are compared by relating the con-
cepts used in the three languages. Unfortunately, [20] leaves
open many important questions.

In the remainder of the paper, we first review the history
of workflow management and introduce the set of workflow
patterns. Then, we discuss the topic of web service com-
position and compare BPEL4WS, BPML, XLANG, WSFL,
and WSCI using the workflow patterns and some basic com-
munication patterns.

2. Workflow management: A historical per-
spective

An interesting starting point from a scientific perspec-
tive is the early work on office information systems. In the
seventies, Skip Ellis [10], Anatol Holt [13], and Michael
Zisman [24] already worked on so-called office information
systems, which were driven by explicit process models. It is
interesting to see that the three pioneers in this area indepen-
dently used Petri-net variants to model office procedures.
During the seventies and eighties there was great optimism
about the applicability of office information systems. Un-
fortunately, few applications succeeded. As a result of these
experiences, both the application of this technology and re-

lated research almost stopped for a decade. Hardly any ad-
vances were made in the eighties. In the nineties, there was
a renewed interest in these systems. The number of work-
flow management systems developed in the past decade and
the many papers on workflow technology illustrate the re-
vival of process-aware office information systems. Today
workflow management systems are readily available. How-
ever, their application is still limited to specific industries
such as banking and insurance. As indicated by Skip Ellis
in [11] it is important to learn from these ups and downs.
The failures in the eighties can be explained by both techni-
cal and conceptual problems. In the eighties, networks were
slow or not present at all, there were no suitable graphical
interfaces, and proper development software was missing.
However, there were also more conceptual problems: there
was no unified way of modeling processes and the systems
were too rigid to be used by people in the workplace. Most
of the technical problems have been resolved by now. How-
ever, the more conceptual problems remain. Good standards
for business process modeling are still missing and even to-
day’s workflow management systems enforce unnecessary
constraints on the process logic (e.g., processes are made
more sequential that they need to be).

Figure 1 gives a historic overview of office automation
and workflow prototypes [18]. Figure 2 provides a his-
toric overview of commercial workflow management sys-
tems. These two figures show that: (i) workflow manage-
ment is not something that started in the nineties but already

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



Commercial Workflow Systems

1980 1985 1990 1995 2000

Exotica I - III

FlowMark MQSeries Workflow

jFlow

Staffware

Pavone

Onestone Domino Workflow

BEA PI

CARNOT

ViewStar

Digital Proc.Flo. AltaVista Proc.Flow

ActionWorkflow

SNI WorkParty

AdminFlow ChangengineWorkManager

OpenPM FlowJet

Verve Versata

Action Coordinator

ActionWorks MetroDaVinci

FileNet WorkFlo Visual WorkFlo

FileNet Ensemble

Panagon WorkFlo

Xerox InConcert TIB/InConcert

Plexus FloWare BancTec FloWare

NCR ProcessIT

Netscape PM

MS2 Accelerate

Teamware Flow

Fujitsu iFlow

Beyond BeyondMail

DST AWD

IABG ProMInanD

DEC LinkWorks

COSA BaaN Ley COSA

Fujitsu Regatta

Pegasus

LEU

Banyan BeyondMail

Olivetti X_Workflow

Oracle WorkflowDigital  Objectflow

ImagePlus FMS/FAF

VisualInfo

DST AWD

Continuum

Recognition Int.

WANGSIGMA
Eastman

WANG Workflow
eiStream

Lucent Mosaix

BlueCross
BlueShield

JCALS

iPlanet

Figure 2. Historic overview of commercial
workflow management systems (Taken from
[18]).

in the seventies with the work of Ellis (OfficeTalk) and Zis-
man (Scoop); and (ii) the number of commercial systems
has considerably grown in recent years. When considering
web service composition languages it is important to take
this into account and use experience and knowledge from
the workflow domain, i.e., do not re-invent the wheel.

3. Workflow patterns

For a critical evaluation of web service composition lan-
guages, we use the set of workflow patterns described in
[4, 3]. We have used these patterns to compare the function-
ality of 15 workflow management systems (COSA, Visual
Workflow, Forté Conductor, Lotus Domino Workflow, Me-
teor, Mobile, MQSeries/Workflow, Staffware, Verve Work-
flow, I-Flow, InConcert, Changengine, SAP R/3 Workflow,
Eastman, and FLOWer). The result of this evaluation re-
veals that (1) the expressive power of contemporary sys-
tems leaves much to be desired and (2) the systems sup-
port different patterns. Note that we do not use the term
“expressiveness” in the traditional or formal sense. If one
abstracts from capacity constraints, any workflow language
is Turing complete. Therefore, it makes no sense to com-

pare these languages using formal notions of expressive-
ness. Instead we use a more intuitive notion of expres-
siveness which takes the modeling effort into account. This
more intuitive notion is often referred to as suitability. See
[15] for a discussion on the distinction between formal ex-
pressiveness and suitability.

For a detailed description and discussion of the patterns
we refer to [4, 3]. Just as illustration we describe Workflow
Pattern # 16 (WP16: Deferred Choice).

WP16 Deferred Choice A point in a process where one
among several alternative branches is chosen based on in-
formation which is not necessarily available when this point
is reached. This differs from the normal exclusive choice,
in that the choice is not made immediately when the point
is reached, but instead several alternatives are offered, and
the choice between them is delayed until the occurrence of
some event. Example: When a contract is finalized, it has
to be reviewed and signed either by the director or by the
operations manager, whoever is available first. Both the di-
rector and the operations manager would be notified that the
contract is to be reviewed: the first one who is available will
proceed with the review.

Note that WP16 is different from the “normal choice”
(WP 4: Exclusive Choice): The choice is not based on a de-
cision or data but on a choice resolved by the environment.

Table 1 summarizes the results of the comparison of the
workflow management systems in terms of the selected pat-
terns. For each product-pattern combination, we checked
whether it is possible to realize the workflow pattern with
the tool. If a product directly supports the pattern through
one of its constructs, it is rated +. If the pattern is not di-
rectly supported, it is rated +/-. Any solution that results in
spaghetti diagrams or coding, is considered as giving no di-
rect support and is rated -. These rating should be applied
with care as indicated in [4].

Note that a pattern is only supported directly if there is
a feature provided by the (graphical) interface of the tool
(i.e., not in some scripting language) which supports the
construct without resorting to any of the solutions men-
tioned in the implementation part of the pattern. For ex-
ample, WP6 (Multi-choice) can be realized using a network
of AND/XOR-splits. However, this does not mean that any
workflow system supporting WP2 (Parallel Split) and WP4
(Exclusive Choice) directly supports WP6.

From the comparison it appears that no tool supports all
the selected patterns. In fact, many of these tools only sup-
port a relatively small subset of the more advanced patterns
(i.e., patterns 6 to 20). Specifically the limited support for
the discriminator, the state-based patterns (only COSA), the
synchronization of multiple instances (only FLOWer), and
the cancellation of activities, is worth noting.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



pattern product

St
af

fw
ar

e

C
O

SA

In
C

on
ce

rt

E
as

tm
an

FL
O

W
er

D
om

in
o

M
et

eo
r

M
ob

ile

M
Q

Se
ri

es

Fo
rt

é

V
er

ve

V
is

.
W

F

C
ha

ng
en

g.

I-
Fl

ow

SA
P/

R
3

1 (seq) + + + + + + + + + + + + + + +
2 (par-spl) + + + + + + + + + + + + + + +
3 (synch) + + + + + + + + + + + + + + +
4 (ex-ch) + + +/- + + + + + + + + + + + +

5 (simple-m) + + +/- + + + + + + + + + + + +
6 (m-choice) - + +/- +/- - + + + + + + + + + +
7 (sync-m) - +/- + + - + - - + - - - - - -
8 (multi-m) - - - + +/- +/- + - - + + - - - -

9 (disc) - - - + +/- - +/- + - + + - + - +
10 (arb-c) + + - + - + + - - + + +/- + + -
11 (impl-t) + - + + - + - - + - - - - - -

12 (mi-no-s) - +/- - + + +/- + - - + + + - + -
13 (mi-dt) + + + + + + + + + + + + + + +
14 (mi-rt) - - - - + - - - - - - - - - +/-
15 (mi-no) - - - - + - - - - - - - - - -
16 (def-c) - + - - +/- - - - - - - - - - -

17 (int-par) - + - - +/- - - + - - - - - - -
18 (milest) - + - - +/- - - - - - - - - - -
19 (can-a) + + - - +/- - - - - - - - - - +
20 (can-c) - - - - +/- + - - - + + - + - +

Table 1. Main results of evaluation of workflow products using the workflow patterns [4, 3].

4. Web service composition

After putting workflow management into an historical
perspective and introducing workflow patterns as a means to
evaluate languages/systems, we focus on web service com-
position and investigate how we can apply results from the
workflow domain to the web services domain.

The goal of web services is to exploit XML technology
and the Internet to integrate applications than can be pub-
lished, located, and invoked over the Web. A typical ex-
ample of a web services application is the Galileo system
that connects more that 42,000 travel agency locations to
37 car rental companies, 47,000 hotels, and 350 tour op-
erators. To truly integrate business processes across enter-
prise boundaries it is not sufficient to merely support simple
interaction using standard messages and protocols. Busi-
ness interactions require long-running interactions that are
driven by an explicit process model. This raises the need
for web service composition languages such as BPEL4WS,
WSFL, XLANG, WSCI, and BPML.1 Before discussing
BPEL4WS and the likes, we focus on the typical technol-
ogy they build on, i.e., SOAP, WSDL, and UDDI.

SOAP (Simple Object Access Protocol) is a protocol for
exchange of information in a decentralized, distributed en-
vironment using typed message exchange and remote in-

1These languages are also known as web service flow languages, web
service orchestration languages, and web-enabled workflow languages.

vocation. WSDL (Web Services Description Language)
is an XML format for describing network services based
on a standard messaging layer like SOAP. A WSDL docu-
ment defines services as collections of network endpoints,
or ports. In WSDL, the abstract definition of endpoints and
messages is separated from their concrete network deploy-
ment or data format bindings. This allows for the reuse of
abstract definitions: messages, which are abstract descrip-
tions of the data being exchanged, and port types which are
abstract collections of operations. The concrete protocol
and data format specifications for a particular port type con-
stitute a reusable binding. A port is defined by associating a
network address with a reusable binding, and a collection of
ports defines a service. UDDI (Universal Description Dis-
covery and Integration) is the definition of a set of services
supporting the description and discovery of: (1) businesses,
organizations, and other web services providers, (2) the web
services they make available, and (3) the technical inter-
faces which may be used to access those services. Simply
put: UDDI can be used to build “yellow pages” for web ser-
vices. At this point in time, there seems to be consensus on
the use of SOAP, UDDI, and WSDL. Therefore, we assume
these standards to be in place in the remainder.

Web service composition languages build directly on top
of WSDL. A process in BPEL4WS both provides and/or
uses services described in WSDL. Note that a WSDL ser-
vice is composed of ports that provide operations. Each

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



operation either sends a message (one-way), receives and
sends a message (request-response), sends and receives a
message (solicit-response), or receives a message (notifica-
tion). WSDL services and the corresponding operations are
glued together to provide composed services. To glue such
services together a process model is needed to specify the
order in which the operations are executed. A web service
composition language provides the means to specify such
a process model. An important difference between WSDL
and a language like BPEL4WS has to do with state man-
agement. WSDL is in essence stateless because the lan-
guage is not aware of states in-between operations. The
only state notion supported is the state in-between sending
and receiving a message in a request-response or solicit-
response operation. Any technology supporting a web ser-
vice composition language will have to record states for
processes that are more complex than a simple request-
response. Only by recording the state it is possible to de-
termine what should/can be done, thus enabling long-lived
business transactions.

The BPEL4WS specification builds on IBM’s WSFL
(Web Services Flow Language) and Microsoft’s XLANG
(Web Services for Business Process Design). XLANG is a
block-structured language with basic control flow structures
such as sequence, switch (for conditional routing), while
(for looping), all (for parallel routing), and pick (for race
conditions based on timing or external triggers). In contrast,
WSFL is graph-oriented, and relies mainly on the concept
of control links. Graphs defined using control-links can be
nested but need to be acyclic. Iteration is only supported
through exit conditions, i.e., an activity/subprocess is iter-
ated until its exit condition is met. The control flow part of
WSFL is almost identical to the workflow language used by
IBM’s MQSeries Workflow. This may be surprising given
the fact that this workflow language is very different from
most others. For example, the semantics of control links
in MQSeries Workflow is defined in terms of the so-called
“dead-path elimination” principle. The idea of dead-path
elimination is that both positive and negative values can be
propagated through control links, determining whether the
activities in a path should be executed or not. Using this
idea, it is possible to capture not only the basic “merging”
patterns, namely Synchronization (WP3) and Simple Merge
(WP5), but also the more advanced Synchronizing Merge
(WP7), which is not supported by many mainstream work-
flow products. Although dead-path elimination is a nice fea-
ture, it is quite exotic and not supported by most systems.

The correspondence between WSFL and MQSeries
Workflow can easily be explained by the fact that both lan-
guages are defined by the same people. Similar comments
can be made for XLANG and Microsoft’s BizTalk Orches-
trator. XLANG is based on the current middleware solution
of Microsoft and therefore hardly qualifies as a “standard”.

Moreover, the merger of these two languages (WSFL and
XLANG) which are based on different paradigms, leads to
a language (BPEL4WS) with clearly overlapping constructs
(i.e. lacking orthogonality). For example, the simple pat-
terns (WP1–WP5) can be specified using either structured
activities (switch, sequence, etc.), or control links, or even
combinations of both as discussed in [23]. Hence, pro-
cess designers using BPEL4WS require guidance regarding
when to use which style (XLANG-style or WSFL-style).

BPEL4WS is not the only standard in the area of web
service composition that has been proposed in recent years.
Sun, BEA, SAP, and Intalio have introduced another can-
didate for web services composition: WSCI (Web Ser-
vice Choreography Interface), which has been taken as one
of its inputs by the recently created W3C Web Services
Choreography Group (www.w3.org/2002/ws/chor). Intalio
has also initiated the Business Process Management Ini-
tiative (BPMI.org) which developed the BPML (Business
Process Markup Language). OASIS and UN/CEFACT sup-
port ebXML (Electronic Business using eXtensible Markup
Language). Part of ebXML is BPSS (Business Process
Schema Specification), yet another standard having a sim-
ilar scope as BPEL4WS, WSFL XLANG, WSCI, and
BPML, but with subtle differences that deserve further in-
vestigation. The abundance of overlapping standards for
web services composition is overwhelming. In fact, the col-
lection of competing web services standards without clear
added value has been termed the Web Services Acronym
Hell (WSAH) [1].

Outside the web services domain there have been other
initiatives to standardize the specification of executable
business processes. Most notable is the initiative of the
Workflow Management Coalition (WfMC). Since 1993, the
WfMC has been active to standardize both a workflow pro-
cess definition language and the interfaces between vari-
ous workflow components. In August 2002 the WfMC re-
leased XPDL (XML Process Definition Language, Version
1.0 Beta) to support the exchange of workflow specifica-
tions between different workflow products. According to
Jon Pyke, WfMC Chair and CTO Staffware, XPDL is con-
sistent with BPEL4WS, but goes far beyond the standards
for web service composition. Clearly, many people work-
ing on standards for web service composition have not ben-
efit enough from the experiences in the workflow domain.
However, it is also clear that the standards of the WfMC
have not been adopted by the workflow vendors. Some of
the systems can export to XPDL, but none of them can im-
port XPDL from another system and still produce mean-
ingful results. One of the reasons is that after working on
workflow standards for more than a decade, there is still no
consensus on the workflow constructs that need to be sup-
ported and their semantics. It is remarkable how many dif-
ferent interpretations of a join construct exist in contempo-

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



rary workflow languages: “Wait for all (AND-join)”, “Wait
for first and reset (XOR-join)”, “Wait for first and ignore
remaining ones”, “Wait for all to come”, etc.

5. Web service composition languages

A comparison of BPEL4WS, XLANG, WSFL, BPML
and WSCI is given in Table 5. The ratings for BPEL4WS,
XLANG, WSFL, BPML and WSCI in the table are taken
from [2, 23]. As indicated before, a + in a cell of the ta-
ble refers to direct support (i.e. there is a construct in the
language which directly supports the pattern). A - indicates
that there is no direct support. This does not mean though
that it is not possible to realize the pattern through some
work-around solution. In fact, any of the patterns can be
realized using a standard programming language but this is
meaningless.2 Sometimes there is a feature that only par-
tially supports a pattern, e.g. a construct that directly sup-
ports the pattern but imposes some restrictions on the struc-
ture of the process.

In [2, 23] we show constructs for each of the patterns
mentioned. For example, BPML realizes the Deferred
Choice (WP16) through the choice construct. The seman-
tics of choice, i.e. awaiting for the arrival of an event and
depending on the event selecting a pre-specified route, cap-
tures the key idea of this pattern, namely a choice is not
made immediately when a certain point (i.e. the choice ac-
tivity) is reached, but delayed until receipt of some kind of
external trigger. BPEL4WS offers a construct similar to the
choice in BPML. In BPEL4WS this construct is named the
pick. In this paper, we do not show explicit solutions for the
patterns and focus on the “big picture” shown in Table 5.

The following observations can be made from the table:

• As the first 5 patterns correspond to basic routing con-
structs, they are directly supported by all languages.

• BPEL4WS as a language integrating the features of the
block structured language XLANG and the directed
graphs of WSFL, indeed supports the union of patterns
supported by XLANG and WSFL.

• BPEL4WS, in contrast to BPML, does offer direct sup-
port for the Multi Choice and Synchronizing Merge.
This is a consequence of the “dead-path elimination”
principle inherited from WSFL.

• BPEL4WS does not support the Multi-Merge pattern,
while BPML directly supports it with some restric-

2Languages such as BPEL4WS, XLANG, WSFL, and BPML are Tur-
ing complete. They can be used to emulate a Turing machine, and thus can
theoretically do any calculation. However, this observation is not relevant
in the context at hand: Any programming language is Turing-complete,
but this does not imply suitability for web services composition. Hence,
we consider “direct support” rather than Turing-completeness.

tions. This is due to the fact that BPML, unlike
BPEL4WS, supports invocation of sub-processes.

• Unlike many mainstream workflow languages, all the
compared languages support the Deferred Choice.

• BPEL4WS, through the concept of serializable scopes,
is the only one of the above languages to support
the Interleaved Parallel Routing pattern, although with
some restrictions.

• None of the compared languages supports arbitrary
cycles.

When comparing BPEL4WS, XLANG, WSFL, BPML and
WSCI to contemporary workflow systems [4] on the basis
of the patterns discussed in this paper, they are remarkably
strong. Note that only few workflow management systems
support Cancel Activity, Cancel Case, Implicit Termination,
and Deferred Choice. In addition, workflow management
systems typically do not directly support message sending.

The trade-off between block-structured languages and
graph-based languages is only partly reflected by Ta-
ble 5. XLANG, BPML, and WSCI are block-structured
languages. WSFL is graph-based. BPEL4WS is a hybrid
language in the sense that it combines features from both
the block-structured language XLANG and the graph-based
language WSFL. Nearly all workflow languages are graph-
based and emphasize the need of end-users to understand
and communicate process models. Therefore, it is remark-
able that of the five languages evaluated in Table 5, only
WSFL is graph based. Moreover, in [16] no attention is paid
to the graphical representation of WSFL. All the five lan-
guages are textual (XML-based) without any graphical rep-
resentation. This seems to indicate that communication of
the models is not considered as a requirement. In this con-
text, we refer to the BPMI initiative toward a Business Pro-
cess Modeling Notation (BPMN). BPMN is intended as a
graphical language that can be mapped onto languages such
as BPML and BPEL4WS [22]. Although not reflected by
Table 5, the expressiveness of block-structured languages is
limited to “well-structured” processes [15] where there is a
one-to-one correspondence between splits and joins. In the
case of BPML, this forces designers to rely on signals and
related constructs (namely raise and synch) which appear
to be workarounds to emulate a graph-based language.

6. Discussion

To conclude, we return to the title of the paper “Web Ser-
vice Composition Languages: Old Wine in New Bottles?”.
To answer this question we compared workflow manage-
ment systems and web service composition languages us-
ing a set of patterns. The comparison reveals that web ser-

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



pattern product/standard
BPEL XLANG WSFL BPML WSCI

Sequence (WP1) + + + + +
Parallel Split (WP2) + + + + +
Synchronization (WP3) + + + + +
Exclusive Choice (WP4) + + + + +
Simple Merge (WP5) + + + + +
Multi Choice (WP6) + – + – –
Synchronizing Merge (WP7) + – + – –
Multi-Merge (WP8) – – – +/– +/–
Discriminator (WP9) – – – – –
Arbitrary Cycles (WP10) – – – – –
Implicit Termination (WP11) + – + + +
MI without Synchronization (WP12) + + + + +
MI with a Priori Design Time Knowledge (WP13) + + + + +
MI with a Priori Runtime Knowledge (WP14) – – – – –
MI without a Priori Runtime Knowledge (WP15) – – – – –
Deferred Choice (WP16) + + – + +
Interleaved Parallel Routing (WP17) +/– – – – –
Milestone (WP18) – – – – –
Cancel Activity (WP19) + + + + +
Cancel Case (WP20) + + + + +
Request/Reply + + + – –
One-Way + + + – –
Synchronous Polling + + + – –
Message Passing + + + – –
Publish/Subscribe – – – – –
Broadcast – – – – –

Table 2. Comparison of BPEL4WS, XLANG, WSFL, BPML and WSCI using both workflow and com-
munication patterns.

vice composition languages adopt most of the functional-
ity present in workflow systems. Therefore, the statement
“Old Wine in New Bottles” is justified. At the same time,
it is remarkable that web service composition languages
are more expressive than the traditional workflow products.
This indicates that people developing these languages may
have learned from experiences in the workflow domain.
Moreover, web service composition languages also provide
more explicit support for the basic communication patterns.
In fact, these languages can be termed “communication-
oriented process definition languages”, since most of the
atomic activities that they support are for sending or re-
ceiving messages. The communication patterns used in our
analysis are directly borrowed from a previous proposal in
the area of Enterprise Application Integration [19]. An anal-
ysis based on a more refined set of communication patterns
which explicitly take into account aspects such as process
creation, process correlation, retries, etc. is a possible di-
rection for future work. The patterns documented in [12]
may provide a starting point.

We hope that this paper will encourage researchers and

developers to look into the history of workflow management
and use frameworks such as the workflow patterns to anal-
yse and compare competing languages. Also, as suggested
by [14], researchers should mobilize in order to provide for-
mal semantics and characterizations of emerging languages,
using well-established process modeling formalisms such
as communicating finite state automata, Petri nets, and pro-
cess algebras. For example, it would be interesting to have
formal proofs that languages such as BPEL4WS map to safe
and non-deadlocking Petri nets, to have decision procedures
for determining whether there are unreachable activities in a
BPEL4WS process definition, as well as completeness the-
orems regarding emerging languages or subsets thereof. An
early example of an effort aimed at providing a formal foun-
dation for Web service composition (in the broad sense)
is [7]. We believe that more work along this direction is
needed before the field attains the level of maturity required
for moving into durable standardization efforts.

Acknowledgment. We would like to thank Petia Wohed for
contributing to the results referred to in this paper.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE



References

[1] W.M.P. van der Aalst. Don’t go with the flow: Web services
composition standards exposed. IEEE Intelligent Systems,
18(1):72–76, 2003.

[2] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and
P. Wohed. Pattern-Based Analysis of BPML (and WSCI).
QUT Technical report, FIT-TR-2002-05, Queensland Uni-
versity of Technology, Brisbane, Australia, 2002.

[3] W.M.P. van der Aalst et al. Workflow Patterns Home Page.
http://www.tm.tue.nl/it/research/patterns/.

[4] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A.P. Barros. Workflow Patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.

[5] A. Arkin, S. Askary, S. Fordin, W. Jekel et al. Web Service
Choreography Interface (WSCI) 1.0. Standards proposal by
BEA Systems, Intalio, SAP, and Sun Microsystems, 2002.

[6] A. Arkin et al. Business Process Modeling Language
(BPML), Version 1.0, 2002.

[7] L. Cardelli and R. Davies Service Combinators for Web
Computing IEEE Transactions on Software Engineering
25(3):309–316, 1999.

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2):86–93, March 2002.

[9] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. Business Process Execution
Language for Web Services, Version 1.0. Standards propsal
by BEA Systems, International Business Machines Corpo-
ration, and Microsoft Corporation, 2002.

[10] C.A. Ellis. Information Control Nets: A Mathematical
Model of Office Information Flow. In Proceedings of
the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225–240, Boulder, Colorado,
1979. ACM Press.

[11] C.A. Ellis and G. Nutt. Workflow: The Process Spectrum.
In A. Sheth, editor, Proceedings of the NSF Workshop on
Workflow and Process Automation in Information Systems,
pages 140–145, Athens, GA, USA, May 1996.

[12] G. Hohpe (editor). Enterprise Integration Patterns
http://www.enterpriseintegrationpatterns.com, 2002.

[13] A.W. Holt. Coordination Technology and Petri Nets. In
G. Rozenberg, editor, Advances in Petri Nets 1985, volume
222 of Lecture Notes in Computer Science, pages 278–296.
Springer-Verlag, Berlin, Germany, 1985.

[14] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-
services: A look behind the curtain (Invited Paper). In Pro-
ceedings of the International Symposium on Principles of
Database Systems (PODS), San Diego CA, USA, June 2003.
ACM Press.

[15] B. Kiepuszewski. Expressiveness and Suitability of
Languages for Control Flow Modelling in Work-
flows. PhD thesis, Queensland University of Tech-
nology, Brisbane, Australia, 2003. Available via
http://www.tm.tue.nl/it/research/patterns.

[16] F. Leymann. Web Services Flow Language, Version 1.0,
2001.

[17] P. Malu, J.J. Dubray, A. Lonjon et al. ebXML Business Pro-
cess Specification Schema (BPSS), Version 1.05, 2002.

[18] M. zur Mühlen. Workflow-Based Process Controlling:
Foundation, Design and Application of Workflow-Based
Process Information Systems. Logos, Berlin, 2003.

[19] W.A. Ruh, F.X. Maginnis, and W.J. Brown. Enterprise Ap-
plication Integration: A Wiley Tech Brief. John Wiley and
Sons, New York NY, USA, 2001.

[20] R. Shapiro. A Comparison of XPDL, BPML and BPEL4WS
(version 1.4). http://xml.coverpages.org/Shapiro-XPDL.pdf,
2002.

[21] S. Thatte. XLANG Web Services for Business Process De-
sign, 2001.

[22] S.A. White et al. Business Process Modeling Notation
(BPML), Working draft, Version 0.9, 2002.

[23] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M.
ter Hofstede. Analysis of Web Services Composition Lan-
guages: The Case of BPEL4WS. In Proceedings of the 22nd
International Conference on Conceptual Modeling (ER),
Chicago IL, USA, October 2003. Springer Verlag.

[24] M.D. Zisman. Representation, Specification and Automa-
tion of Office Procedures. PhD thesis, University of Penn-
sylvania, Warton School of Business, 1977.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03) 
1089-6503/03 $17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


