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1. Introduction  

Automatic Speech Recognition (ASR) systems utilize statistical acoustic and language 
models to find the most probable word sequence when the speech signal is given. Hidden 
Markov Models (HMMs) are used as acoustic models and language model probabilities are 
approximated using n-grams where the probability of a word is conditioned on n-1 previous 
words. The n-gram probabilities are estimated by Maximum Likelihood Estimation. One of 
the problems in n-gram language modeling is the data sparseness that results in non-robust 
probability estimates especially for rare and unseen n-grams. Therefore, smoothing is 
applied to produce better estimates for these n-grams. 
The traditional n-gram word language models are commonly used in state-of-the-art Large 
Vocabulary Continuous Speech Recognition (LVSCR) systems. These systems result in 
reasonable recognition performances for languages such as English and French. For 
instance, broadcast news (BN) in English can now be recognized with about ten percent 
word error rate (WER) (NIST, 2000) which results in mostly quite understandable text. Some 
rare and new words may be missing in the vocabulary but the result has proven to be 
sufficient for many important applications, such as browsing and retrieval of recorded 
speech and information retrieval from the speech (Garofolo et al., 2000). However, LVCSR 
attempts with similar systems in agglutinative languages, such as Finnish, Estonian, 
Hungarian and Turkish so far have not resulted in comparable performance to the English 
systems. The main reason of this performance deterioration in those languages is their rich 
morphological structure. In agglutinative languages, words are formed mainly by 
concatenation of several suffixes to the roots and together with compounding and 
inflections this leads to millions of different, but still frequent word forms. Therefore, it is 
practically impossible to build a word-based vocabulary for speech recognition in 
agglutinative languages that would cover all the relevant words. If words are used as 
language modeling units, there will be many out-of-vocabulary (OOV) words due to using 
limited vocabulary sizes in ASR systems. It was shown that with an optimized 60K lexicon O
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the OOV rate is less than 1% for North American Business news (Rosenfeld, 1995). Highly 
inflectional and agglutinative languages suffer from high number of OOV words with 
similar size vocabularies. In our Turkish BN transcription system, the OOV rate is 9.3% for a 
50K lexicon. For other agglutinative languages like Finnish and Estonian, OOV rates are 
around 15% for a 69K lexicon (Hirsimäki et al., 2006) and 10% for a 60K lexicon respectively 
and 8.27% for Czech, a highly inflectional language, with a 60K lexicon (Podvesky & 
Machek, 2005). As a rule of thumb an OOV word brings up on average 1.5 recognition errors 
(Hetherington, 1995). Therefore solving the OOV problem is crucial for obtaining better 
accuracies in the ASR of agglutinative languages. OOV rate can be decreased to an extent by 
increasing the vocabulary size. However, even doubling the vocabulary is not a sufficient 
solution, because a vocabulary twice as large (120K) would only reduce the OOV rate to 6% 
in Estonian and 4.6% in Turkish. In Finnish even a 500K vocabulary of the most common 
words still gives 5.4% OOV in the language model training material. In addition, huge 
lexicon sizes may result in confusion of acoustically similar words and require a huge 
amount of text data for robust language model estimates. Therefore, sub-words are 
proposed as language modeling units to alleviate the OOV and data sparseness problems 
that plague systems based on word-based recognition units in agglutinative languages.  
In sub-word-based ASR; (i) words are decomposed into meaningful units in terms of speech 
recognition, (ii) these units are used as vocabulary items in n-gram language models, (iii) 
decoding is performed with these n-gram models and sub-word sequences are obtained, (iv) 
word-like units are generated from sub-word sequences as the final ASR output.  
In this chapter, we mainly focus on the decomposition of words into sub-words for LVCSR 
of agglutinative languages. Due to inflections, ambiguity and other phenomena, it is not 
trivial to automatically split the words into meaningful parts. Therefore, this splitting can be 
performed by using rule-based morphological analyzers or by some statistical techniques. 
The sub-words learned with morphological analyzers and statistical techniques are called 
grammatical and statistical sub-words respectively. Morphemes and stem-endings can be 
used as the grammatical sub-words. The statistical sub-word approach presented in this 
chapter relies on a data-driven algorithm called Morfessor Baseline (Creutz & Lagus, 2002; 
Creutz & Lagus, 2005) which is a language independent unsupervised machine learning 
method to find morpheme-like units (called statistical morphs) from a large text corpus.  
After generating the sub-word units, n-gram models are trained with sub-words similarly as 
if the language modeling units were words. In order to facilitate converting sub-word 
sequences into word sequences after decoding, word break symbols can be added as 
additional units or special markers can be attached to non-initial sub-words in language 
modeling. ASR systems that successfully utilize the n-gram language models trained for 
sub-word units are used in the decoding task. Finally, word-like ASR output is obtained 
from sub-word sequences by concatenating the sub-words between consecutive word 
breaks or by gluing marked non-initial sub-words to initial ones. The performance of words 
and sub-words are evaluated for three agglutinative languages, Finnish, Estonian and 
Turkish. 
This chapter is organized as follow: In Section 2, our statistical language modeling 
approaches are explained in detail. Section 3 contains the experimental setup for each 
language. Experimental results are given in Section 4. Finally, this chapter is concluded with 
a detailed comparison of the proposed approaches for agglutinative languages. 
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2. Statistical language modeling approaches 

The morphological productivity of agglutinative languages makes it difficult to construct 
robust and effective word-based language models. With a dictionary size of a few hundred 
thousand words, we can still have OOV words, which are constructed through legal 
morphological rules. Therefore, in addition to words, sub-word units are utilized in LVCSR 
tasks for Finnish, Estonian and Turkish. Fig. 1 shows a phrase in each language segmented 
into proposed grammatical and statistical sub-word units. The details of these units will be 
explained thoroughly in this section. 
 

Finnish example: Words:  pekingissä vieraileville suomalaisille kansanedustajille 
            Grammatical sub-words:  
            Morphemes:  pekingi ssä # vieraile v i lle # suomalais i lle # kansa n edusta j i lle 
            Statistical sub-words:  
            Morphs:  peking issä # vieraile ville # suomalaisille # kansanedustaj ille 
 
Estonian example: Words:  teede ja sideministeerium on teinud ettepaneku 
               Grammatical sub-words: 
               Morphemes:  tee de # ja # side ministeerium # on # tei nud # ette paneku 
               Statistical sub-words: 
               Morphs:  teede # ja # sideministeerium # on # te i nud # ettepaneku 
 
Turkish example: Words:  tüketici derneklerinin öncülüğünde 
            Grammatical sub-words:  
            Morphemes:  tüketici # dernek leri nin # öncü lüğ ü nde 
            Stem-endings: tüketici # dernek lerinin # öncü lüğünde 
            Statistical sub-words:  
            Morphs:  tüketici # dernek lerinin # öncü lüğü nde 
 

Fig. 1. Finnish, Estonian and Turkish phrases segmented into statistical and grammatical 
sub-words 

2.1 Word-based model 

Using words as recognition units is a classical approach employed in most state-of-the-art 
recognition systems. The word model has the advantage of having longer recognition units 
which results in better acoustic discrimination among vocabulary items. However the 
vocabulary growth for words is almost unlimited for agglutinative languages and this leads 
to high number of OOV words with moderate size vocabularies in ASR systems. It has been 
reported that the same size text corpora (40M words) result in less than 200K word types for 
English and 1.8M and 1.5M word types for Finnish and Estonian respectively (Creutz et al., 
2007a). The number of word types is 735K for the same size Turkish corpus. 

2.2 Sub-word-based models 

Large number of OOV words and data sparseness are the main drawbacks of the word-
based language modeling units in ASR of agglutinative and highly inflectional languages.   
Therefore, several sub-word units were explored for those languages to handle these 
drawbacks. Naturally, there are many ways to split the words into smaller units to reduce a 
lexicon to a tractable size. However, for a sub-word lexicon suitable for language modeling 
applications such as speech recognition, several properties are desirable: 
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i. The size of the lexicon should be small enough that the n-gram modeling becomes more 
feasible than the conventional word based modeling. 

ii. The coverage of the target language by words that can be built by concatenating the 
units should be high enough to avoid the OOV problem. 

iii. The units should be somehow meaningful, so that the previously observed units can 
help in predicting the next one. 

iv. For speech recognition one should be able to determine the pronunciation for each unit. 
A common approach to find the sub-word units is to program the language-dependent 
grammatical rules into a morphological analyzer and utilize it to split the text corpus into 
morphemes. As an alternative approach, sub-word units that meet the above desirable 
properties can be learned with unsupervised machine learning algorithms. In this section, 
we investigated both of the approaches. 

2.2.1 Grammatical sub-words; morphemes and stem-endings 

Using morphemes and stem-endings as recognition units is becoming a common approach in 
statistical language modeling of morphologically rich languages. Morphemes were utilized as 
language modeling units in agglutinative languages such as Finnish (Hirsimäki et al., 2006), 
Estonian (Alumäe, 2005) and Turkish (Hacioglu et al., 2003) as well as in Czech (Byrne et al., 
2001) which is a highly inflectional language. Merged morphemes were proposed instead of 
word phrases for Korean (Kwon and Park, 2003). In Kanevsky and Roukos (1998) stem-ending 
based modeling was proposed for agglutinative languages and it is used in ASR of Turkish 
with both surface form (Mengüşoğlu & Deroo, 2001; Bayer et al., 2006) and lexical form 
(Arısoy et al., 2007) representations of endings. In addition, a unified model using both words, 
stem-endings and morphemes was proposed for Turkish (Arısoy et al., 2006).  
A morphological analyzer is required to obtain morphemes, stems and endings. However, 
due to the handcrafted rules, morphological analyzers may suffer from an OOV problem, 
since in addition to morphotactic and morphophonemic rules, a limited root vocabulary is 
also compiled in the morphological analyzer. For instance, a Turkish morphological parser 
(Sak et al., 2008) with  54,267 roots can analyze 96.7% of the word tokens and 52.2% of the 
word types in a text corpus of 212M words with 2.2M unique words. An example output 
from this parser for Turkish word alın is given in Fig. 2. The English glosses are given in 
parenthesis for convenience. The inflectional morphemes start with a + sign and the 
derivational morphemes start with a - sign. Part-of-speech tags are attached to roots in 
brackets and lexical morphemes are followed by nominal and verbal morphological features 
in brackets. As was shown in Fig. 2, the morphological parsing of a word may result in 
multiple interpretations of that word due to complex morphology. This ambiguity can be 
resolved using morphological disambiguation tools for Turkish (Sak et al., 2007). 
 

alın[Noun]+[A3sg]+[Pnon]+[Nom] (forehead) 
al[Noun]+[A3sg]+Hn[P2sg]+[Nom] (your red) 
al[Adj]-[Noun]+[A3sg]+Hn[P2sg]+[Nom] (your red) 
al[Noun]+[A3sg]+[Pnon]+NHn[Gen] (of red) 
al[Adj]-[Noun]+[A3sg]+[Pnon]+NHn[Gen] (of red) 
alın[Verb]+[Pos]+[Imp]+[A2sg] ((you) be offended) 
al[Verb]+[Pos]+[Imp]+YHn[A2pl] ((you) take) 
al[Verb]-Hn[Verb+Pass]+[Pos]+[Imp]+[A2sg] ((you) be taken) 

Fig. 2. Output of the Turkish morphological parser (Sak et al., 2008) with English glosses.  
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To obtain a morpheme-based language model, all the words in the training text corpus are 
decomposed into their morphemes using a morphological analyzer. Then a morphological 
disambiguation tool is required to choose the correct analysis among all the possible 
candidates using the given context. In Arısoy et al. (2007) the parse with the minimum 
number of morphemes is chosen as the correct parse since the output of the morphological 
parser used in the experiments was not compatible with the available  disambiguation tools. 
Also, a morphophonemic transducer is required to obtain the surface form representations 
of the morphemes if the morphological parser output is in the lexical form as in Fig. 2.  
In statistical language modeling, there is a trade-off between using short and long units. 
When grammatical morphemes are used for language modeling, there can be some 
problems related to the pronunciations of very short inflection-type units. Stem-endings are 
a compromise between words and morphemes. They provide better OOV rate than words, 
and they lead to more robust language models than morphemes which require longer n-
grams. The stems and endings are also obtained from the morphological analyzer. Endings 
are generated by concatenating the consecutive morphemes.  
Even though morphemes and stem-endings are logical sub-word choices in ASR, they require 
some language dependent tools such as morphological analyzers and disambiguators. The 
lack of successful morphological disambiguation tools may result in ambiguous splits and the 
limited root vocabulary compiled in the morphological parsers may result in poor coverage, 
especially for many names and foreign words which mostly occur in news texts. 
One way to extend the rule-based grammatical morpheme analysis to new words that 
inevitably occur in large corpora, is to split the words using a similar maximum likelihood 
word segmentation by Viterbi search as in the unsupervised word segmentation (statistical 
morphs in section 2.2.2), but here using the lexicon of grammatical morphs. This drops the 
OOV rate significantly and helps to choose the segmentation using the most common units 
where alternative morphological segmentations are available. 

2.2.2 Statistical sub-words; morphs 
Statistical morphs are morpheme-like units obtained by a data driven approach based on the 
Minimum Description Length (MDL) principle which learns a sub-word lexicon in an 
unsupervised manner from a training lexicon of words (Creutz & Lagus, 2005). The main 
idea is to find an optimal encoding of the data with a concise lexicon and a concise 
representation of the corpus.  
In this chapter, we have adopted a similar approach as Hirsimäki et al. (2006). The 
Morfessor Baseline algorithm (Creutz & Lagus, 2005) is used to automatically segment the 
word types seen in the training text corpus. In the Morfessor Baseline algorithm the 
minimized cost is the coding length of the lexicon and the words in the corpus represented 
by the units of the lexicon. This MDL based cost function is especially appealing, because it 
tends to give units that are both as frequent and as long as possible to suit well for both 
training the language models and also decoding of the speech. Full coverage of the language 
is also guaranteed by splitting the rare words into very short units, even to single phonemes 
if necessary. For language models utilized in speech recognition, the lexicon of the statistical 
morphs can be further reduced by omitting the rare words from the input of the Morfessor 
Baseline algorithm. This operation does not reduce the coverage of the lexicon, because it 
just splits the rare words then into smaller units, but the smaller lexicon may offer a 
remarkable speed up of the recognition. The pronunciation of, especially, the short units 
may be ambiguous and may cause severe problems in languages like English, in which the 
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pronunciations can not be adequately determined from the orthography. In most 
agglutinative languages, such as Finnish, Estonian and Turkish, rather simple letter-to-
phoneme rules are, however, sufficient for most cases. 
The steps in the process of estimating a language model based on statistical morphs from a 
text corpus is shown in Fig. 3. First word types are extracted from a text corpus. Rare words 
are removed from the word types by setting a frequency cut-off. Elimination of the rare 
words is required to reduce the morph lexicon size. Then the remaining word types are 
passed through a word splitting transformation. Based on the learned morph lexicon, the 
best split for each word is determined by performing a Viterbi search using within-word n-
gram probabilities of the units. At this point the word break symbols, # (See Fig. 1), are 
added between each word in order to incorporate that information in the statistical language 
models, as well. We prefer to use additional word break symbols in morph-based language 
modeling since unlike stems, a statistical morph can occur at any position in a word and 
marking the non-initial morphs increases the vocabulary size.  
 

 
Fig. 3. The steps in the process of estimating a language model based on statistical morphs 
from a text corpus (Hirsimäki et al., 2006). 

The statistical morph model has several advantages over the rule-based grammatical 
morphemes, e.g. that no hand-crafted rules are needed and all words can be processed, even 
the foreign ones. Even if good grammatical morphemes are available for Finnish, it has been 
shown that the language modeling results by the statistical morphs seem to be at least as 
good, if not better (Hirsimäki et al., 2006; Creutz et al., 2007b).  

3. Experimental setups 

Statistical and grammatical units are used as the sub-word approaches in the Finnish, 
Estonian and Turkish LVCSR experiments. For language model training in Finnish and 
Estonian experiments we used the growing n-gram training algorithm (Siivola & Pellom, 
2005). In this algorithm, the n-grams that increase the training set likelihood enough with 
respect to the corresponding increase in the model size are accepted into the model (as in the 
MDL principle). After the growing process the model is further pruned with entropy based 
pruning. The method allows us to train compact and properly smoothed models using high 
order n-grams, since only the necessary high-order statistics are collected and stored (Siivola 
et al., 2007). Using the variable order n-grams we can also effectively control the size of the 
models to make all compared language models equally large. In this way the n-grams using 
shorter units do not suffer from a restricted span length which is the case when only 3-
grams or 4-grams are available. For language model training in Turkish, n-gram language 
models were built with SRILM toolkit (Stolcke, 2002). To be able to handle computational 
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limitations, entropy-based pruning (Stolcke, 1998) is applied. In this pruning, the n-grams 
that change the model entropy less than a given threshold are discarded from the model. 
The recognition tasks are speaker independent fluent dictation of sentences taken from 
newspapers and books for Finnish and Estonian. BN transcription system is used for 
Turkish experiments. 

3.1 Finnish 

Finnish is a highly inflected language, in which words are formed mainly by agglutination 
and compounding. Finnish is also the language for which the algorithm for the 
unsupervised morpheme discovery (Creutz & Lagus, 2002) was originally developed. The 
units of the morph lexicon for the experiments in this paper were learned from a joint 
corpus containing newspapers, books and newswire stories of totally about 150 million 
words (CSC, 2001). We obtained a lexicon of 50K statistical morphs by feeding the learning 
algorithm with the word list containing the 390K most common words. The average length 
of a morph was 3.4 letters including a word break symbol whereas the average word length 
was 7.9 letters. For comparison we also created a lexicon of 69K grammatical morphs based 
on rule-based morphological analysis of the words. For language model training we used 
the same text corpus and the growing n-gram training algorithm (Siivola & Pellom, 2005) 
and limited the language model size to approximately 40M n-grams for both statistical and 
grammatical morphs and words. 
The speech recognition task was speaker independent reading of full sentences recorded 
over fixed telephone line. Cross-word triphone models were trained using 39 hours from 
3838 speakers. The development set was 46 minutes from 79 new speakers and the 
evaluation set was another corresponding set. The models included tied state hidden HMMs 
of totally 1918 different states and 76046 Gaussian mixture (GMM) components, short-time 
mel-cepstral features (MFCCs), maximum likelihood linear transformation (MLLT) and 
explicit phone duration models (Pylkkönen & Kurimo, 2004). No speaker or telephone call 
specific adaptation was performed. Real-time factor of recognition speed was about 10 xRT.  

3.2 Estonian 

Estonian is closely related to Finnish and a similar language modeling approach was 
directly applied to the Estonian recognition task. The text corpus used to learn the morph 
units and train the statistical language model consisted of newspapers and books, altogether 
about 127 million words (Segakorpus, 2005). As in the Finnish experiments, a lexicon of 50K 
statistical morphs was created using the Morfessor Baseline algorithm as well as a word 
lexicon with a vocabulary of 500K most common words in the corpus. The average length of 
a morph was 2.9 letters including a word break symbol whereas the average word length 
was 6.6 letters. The available grammatical morphs in Estonian were, in fact, closer to the 
stem-ending models, for which a vocabulary of 500K most common units was chosen. 
Corresponding growing n-gram language models (approximately 40M n-grams) as in 
Finnish were trained from the Estonian corpus.  
The speech recognition task in Estonian consisted of long sentences read by 50 randomly 
picked held-out test speakers, 8 sentences each (a part of (Meister et al., 2002)). The training 
data consisted of 110 hours from 1266 speakers recorded over fixed telephone line as well as 
cellular network. This task was more difficult than the Finnish one, one reason being the 
more diverse noise and recording conditions. The acoustic models were rather similar cross-
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word triphone GMM-HMMs with MFCC features, MLLT transformation and the explicit 
phone duration modeling than the Finnish one, except larger: 3101 different states and 49648 
GMMs (fixed 16 Gaussians per state). Thus, the recognition speed is also slower than in 
Finnish, about 30 xRT. No speaker or telephone call specific adaptation was performed. 

3.3 Turkish 

Turkish is another agglutinative language with relatively free word order. The same 
Morfessor Baseline algorithm (Creutz & Lagus, 2005) as in Finnish and Estonian was 
applied to Turkish texts as well. Using the 394K most common words from the training 
corpus, 34.7K morph units were obtained. The training corpus consists of 96.4M words 
taken from various sources: online books, newspapers, journals, magazines, etc. In average, 
there were 2.38 morphs per word including the word break symbol. Therefore, n-gram 
orders higher than words are required to track the n-gram word statistics and this results in 
more complicated language models. The average length of a morph was 3.1 letters including 
a word break symbol whereas the average word length was 6.4 letters.  As a reference model 
for grammatical sub-words, we also performed experiments with stem-endings. The reason 
for not using grammatical morphemes is that they introduced several very short recognition 
units. In the stem-ending model, we selected the most frequent 50K units from the corpus. 
This corresponds to the most frequent 40.4K roots and 9.6K endings. The word OOV rate 
with this lexicon was 2.5% for the test data. The advantage of these units compared to the 
other sub-words is that we have longer recognition units with an acceptable OOV rate. In 
the stem-ending model, the root of each word was marked instead of using word break 
symbols to locate the word boundaries easily after recognition. In addition, a simple 
restriction was applied to enforce the decoder not to generate consecutive ending sequences.  
For the acoustic data, we used the Turkish Broadcast News database collected at Boğaziçi 
University (Arısoy et et al., 2007). This data was partitioned into training (68.6 hours) and 
test (2.5 hours) sets. The training and test data were disjoint in terms of the selected dates.  
N-gram language models for different orders with interpolated Kneser-Ney smoothing were 
built for the sub-word lexicons using the SRILM toolkit (Stolcke, 2002) with entropy-based 
pruning.  In order to eliminate the  effect of language model pruning in sub-words, lattice 
output of the recognizer was re-scored with the same order n-gram language model pruned 
with a smaller pruning constant. The transcriptions of acoustic training data were used in 
addition to the text corpus in order to reduce the effect of out-of-domain data in language 
modeling. A simple linear interpolation approach was applied for domain adaptation. 
The recognition tasks were performed using the AT&T Decoder (Mohri & Riley, 2002).  We 
used decision-tree state clustered cross-word triphone models with approximately 7500 
HMM states. Instead of using letter to phoneme rules, the acoustic models were based 
directly on letters. Each state of the speaker independent HMMs had a GMM with 11 
mixture components. The HTK front-end (Young et al., 2002) was used to get the MFCC 
based acoustic features. The baseline acoustic models were adapted to each TV/Radio 
channel using supervised MAP adaptation on the training data, giving us the channel 
adapted acoustic models. 

4. Experimental results 

The recognition results for the three different tasks: Finnish, Estonian and Turkish, are 
provided in Tables 1-3. In addition to sub-word language models, large vocabulary word-
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based language models were built as the reference systems with similar OOV rates for each 
language. The word-based reference language models were trained as much as possible in 
the same way as the corresponding morph language models. For Finnish and Estonian the 
growing n-grams (Siivola & Pellom, 2005) were used. For Turkish a conventional n-gram 
with entropy-based pruning was built  by using SRILM toolkit similarly as for the morphs. 
For Finnish, Estonian and Turkish experiments, the LVCSR systems described in Section 3 
are utilized. In each task the word error rate (WER) and letter error rate (LER) statistics for 
the morph-based system is compared to corresponding grammatical sub-word-based and 
word-based systems. The resulting sub-word strings are glued to form the word-like units 
according to the word break symbols included in the language model (see Fig. 1) and the 
markers attached to the units. The WER is computed as the sum of substituted, inserted and 
deleted words divided by the correct number of words. In agglutinative languages the 
words are long and contain a variable amount of morphemes. Thus, any incorrect prefix or 
suffix would make the whole word incorrect. Therefore, in addition to WER, LER is 
included here as well. 
 

Finnish Lexicon OOV (%) WER (%) LER (%) 
Words 500 K 5.4 26.8 7.7 

Statistical morphs 50 K 0 21.7 6.8 
Grammatical morphemes 69 K 0* 21.6 6.9 

Table 1. The LVCSR performance for the Finnish telephone speech task (see Section 3.1). The 
words in (*) were segmented into grammatical morphs using a maximum likelihood 
segmentation by Viterbi search. 

 
Estonian Lexicon OOV (%) WER (%) LER (%) 
Words 500 K 5.6 34.0 12.3 

Statistical morphs 50 K 0 33.9 12.2 
Grammatical morphemes 500 K 0.5* 33.5 12.4 

Table 2. The LVCSR performance for the Estonian telephone speech (see Section 3.2). The 
words in (*) were segmented into grammatical morphs using a maximum likelihood 
segmentation by Viterbi search. 

 
Turkish Lexicon OOV (%) WER (%) LER (%) 
Words 100K 5.3 37.0 19.3 

Statistical morphs 37.4K 0 35.4 18.5 
Grammatical stem-endings 50K 2.5 36.5 18.3 

Table 3. Turkish BN transcription performance with channel adapted acoustic models (see 
Section 3.3). Best results are obtained with 3-gram word, 5-gram morph and 4-gram stem-
ending language models. Note that roots are marked in stem-endings instead of using word 
break symbols. 

In all three languages statistical morphs perform almost the same or better than the large 
vocabulary word reference models with smaller vocabulary sizes. The performance of the 
morph model is more pronounced in the Finnish system where the Morfessor algorithm was 
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originally proposed. In addition, grammatical morphemes achieve similar performances 
with their statistical counterparts. Even though grammatical stem-endings in the Turkish 
system attain almost the same LER with the statistical morphs, statistical morphs perform 
better than stem-endings in terms of the WER. 

5. Conclusion 

This work presents statistical language models trained on different agglutinative languages 
utilizing a lexicon based on the recently proposed unsupervised statistical morphs. The 
significance of this work is that similarly generated sub-word unit lexica are developed and 
successfully evaluated in three different LVCSR systems in different languages. In each case 
the morph-based approach is at least as good or better than a very large vocabulary word-
based LVCSR language model. Even though using sub-words alleviates the OOV problem 
and performs better than  word language models, concatenation of sub-words may result in 
over-generated items. It has been shown that with sub-words recognition accuracy can be 
further improved with post processing of the decoder output (Erdoğan et al., 2005; Arısoy  
& Saraçlar, 2006). 
The key result of this chapter is that we can successfully apply the unsupervised statistical 
morphs in large vocabulary language models in all the three experimented agglutinative 
languages. Furthermore, the results show that in all the different LVCSR tasks, the morph-
based language models perform very well compared to the reference language model based 
on very large vocabulary of words. The way that the lexicon is built from the word 
fragments allows the construction of statistical language models, in practice, for almost an 
unlimited vocabulary by a lexicon that still has a convenient size. The recognition was here 
restricted to agglutinative languages and tasks in which the language used is both rather 
general and matches fairly well with the available training texts. Significant performance 
variation in different languages can be observed here, because of the different tasks and the 
fact that comparable recognition conditions and training resources have not been possible to 
arrange. However, we believe that the tasks are still both difficult and realistic enough to 
illustrate the difference of performance when using language models based on a lexicon of 
morphs vs. words in each task. There are no directly comparable previous LVCSR results on 
the same tasks and data, but the closest ones which can be found are around 15% WER for a 
Finnish microphone speech task (Siivola et al., 2007), around 40% WER for the same 
Estonian task (Alumäe, 2005; Puurula & Kurimo, 2007) and slightly over 30% WER for a 
Turkish task (Erdoğan et al., 2005).   
Future work will be the mixing of the grammatical and statistical sub-word-based language 
models, as well as extending this evaluation work to new languages. 
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