
 The Open Information Systems Journal, 2007, 1, 19-31 19

 1874-1339/07 2007 Bentham Science Publishers Ltd.

Establishing Multi-level Security in Mobile Data Access
Muhammad Mukaram Khan

1
 And Constantinos Papadopoulos*

,2

1
School of Computer Science, The University of Manchester, UK

2
General Secretariat for Information Systems, Ministry of Economy and Finance, Greece

Abstract: Transaction processing over mobile networks faces new challenges due to limitations in bandwidth and avail-

able power, as well as due to intermittent connectivity that causes loss of data and transaction aborts. Besides, the possi-

bility of security breach increases substantially due to the frequent motion of clients across cells, which gives rise to novel

forms of covert channels. In this paper, we first investigate to what degree this breach may occur and we also assess the

suitability of existing protocols for avoiding the appearance of covert channels in mobile database access. Based on the

discovery of certain vulnerabilities in these protocols, we propose an optional multi-granularity locking protocol that en-

sures secure access to shared data in mobile environments without compromising their consistency or the atomicity of

transactions.

Keywords: Mobile networks, multi-level database security, covert channels, mobile transactions, locking protocols, multiple
granularity locking.

1. INTRODUCTION

 Database transaction processing conforms for several
years now to the criteria of atomicity, consistency, isolation
and durability (ACID). Techniques like two-phase commit
(2PC) and locking, in turn, are used by almost every transac-
tion to achieve the atomicity and isolation properties and pre-
serve the consistency of shared data. The application of these
techniques to centralized and distributed database systems
has been thoroughly discussed in [1]. 2PC ensures that a trans-
action either commits (if all its update operations have been suc-
cessfully completed) or aborts and its intermediate effects on
all affected sites are obliterated as if that transaction had
never executed. 2PC comprises two phases, i.e., voting and
commit. Even if only one participant votes ‘no’, the whole
transaction is aborted in favour of consistency and atomicity.
In distributed computing, factors like message complexity
due to network delays, log overloading due to I/O delays,
and time complexity of a transaction with regard to reaching
a decision may lead to a substantially long execution time,
causing thereby problems in preserving the atomicity prop-
erty [2]. Two-phase locking (2PL), in turn, is a standard
technique for coordinating concurrent operations that main-
tains the integrity and consistency of data by prohibiting
conflicting updates from occurring simultaneously [1, 3].

 Various types of locks and different levels of lock granu-
larity can be used to ensure the isolation property and pre-
serve data consistency, while improving at the same time
transaction throughput. For example, multiple-granularity
locking [4, 5] allows a single transaction to access different
parts of a database at the same time by setting multiple locks
on these parts simultaneously, with each lock covering ob-
jects of different sizes. This is achieved with the use of both
actual and intentional locks, which cover an object along
with some (or all) of its descendants (i.e., components) in the

*Address correspondence to this author at the General Secretariat for Infor-

mation Systems, Ministry of Economy and Finance, Greece; E-mail:

k.papadopoulos@gsis.gr

object hierarchy. Multiple-granularity locking can dramati-
cally reduce the access time of transactions, as it is shown in
the literature by a number of simulation experiments (more
details on this issue are presented in [5]). Optional locking
[3], on the other hand, allows a transaction to set a tentative
lock on an object and start updating the object without hav-
ing requested a permission for that. If another transaction
wants then to update the same object (while the first transac-
tion is still running), the locking protocol checks its priority
and, if it is higher than the priority of the currently executing
transaction, the latter is suspended and the results it has pro-
duced till then are undone.

1.1. Mobile Transaction Processing

 In mobile computing environments, transaction process-
ing faces new challenges due to typical characteristics of
wireless networks such as low bandwidth, frequent discon-
nections by mobile hosts (MH), very low processing power
as well as limited storage capacity of the mobile devices. A
survey of database operations in mobile environments points
out that disconnections are frequent when clients are roam-
ing, as they disconnect from a cell to connect to another [6].
In this paper, we assume that during the execution of a trans-
action a MH experiences short intermittent disconnections
(like the above) rather than long ones, which occur instead
when a client switches off. Moreover, we adopt the assump-
tion of [7] that handoff delays pose a severe challenge for
database transactions, hence we recognize the need for a
novel transaction model to counter their effects. In addition,
the mobile devices that are used today operate as I/O and
communication devices primarily with low processing capa-
bilities and battery life, while they rely on proxies working
on their behalf and residing at their mobile-support station
(MSS) of the current cell. A novel model for transaction
execution in such environments may not use the traditional
techniques of 2PC and 2PL, as transactions would only get a
small fraction of useful work done due to frequent aborts
which owe to network disconnections. An effort towards this
direction defines such a model (so called Kangaroo Transac-

20 The Open Information Systems Journal, 2007, Volume 1 Khan and Papadopoulos

tions [8]) by building upon the concepts of split and global
transactions, which ensures the successful execution of
transactions despite the occurrence of handoffs. Following
this model, a number of solutions have been proposed by
other authors [9, 10, 11] that address issues related to roam-
ing, disconnections, data availability and transaction
throughput.

1.2. Secure Transaction Processing in Mobile Environ-
ments

 Transaction processing in safety-critical installations
(like military and government agencies) requires support of
multi-level database security (MLDBS) so as to enforce se-
curity at various levels of classification and user clearances,
especially in a real-time environment which is crucial to the
success of such installations. Typically, the security aspect is
looked after by the Bell-LaPadula (BLP) security model [12,
13, 14, 15]. Yet this model is not sufficient to protect from
covert channels, which are indirect means whereby a high-
security transaction may transfer information to a low-
security one. In fact, due to the way that 2PC and 2PL oper-
ate, it is possible to allow a malicious user (or a Trojan horse
[14]) to seamlessly pass on information from a high level of
classification to lower one(s). The chances for establishing
covert channels increase when transactions execute in a mo-
bile environment, due to intermittent disconnections and the
movement of mobile devices across different cells (where
they re-establish connection using seamless handoff meth-
ods), as well as due to the weaknesses of the 2PC and 2PL
techniques in maintaining atomicity and consistency. The
authors of [12] and [14] for example, provide solutions to
ward off covert channels in fixed networks, but these solu-
tions are unsuitable for establishing MLDBS in mobile net-
works. In an effort to address this deficiency, we incorporate
in this paper an optional form of multiple-granularity locking
into an MLDBS protocol so as to eliminate overt and covert
channels from mobile transactions.

1.3. Outline of Paper

 While combining the requirements of security and mobil-
ity, we are also concerned with other relevant issues like

concurrency and performance (of an individual transaction
and an entire system too). Fig. (1) below shows the effect of
these factors on each other within the context of a mobile
transaction. The dotted arrows denote undefined effects for
which different views can be presented (we keep this discus-
sion out of the scope of this paper). Though concerned with
the security of shared data during the execution of mobile
transactions, we are conscious not to do this at the cost of
reduced concurrency and degraded performance; rather, our
solution aims at improving these two factors through the use
of optional locking at multiple data granularities, which can
also eliminate the chances of covert channel establishment.

 In Section 2 we review existing work on mobile transac-
tion processing that is relevant to our own work (a more
elaborate analysis can be found in [16], which presents sev-
eral details that fall beyond the scope of our paper). In that
section we also consider certain aspects of database security
which depend on locking mechanisms and concurrency con-
trol. Based on the conclusions drawn in this review, we con-
sider in Section 3 the possibilities of establishing covert
channels in mobile environments, while in Section 4 we pro-
pose a novel protocol for avoiding them which is based on
locking. Although locking is in general considered inappro-
priate for mobile data management [10], its optional charac-
ter in the proposed protocol does not degrade transaction
throughput but increases security and improves usability in
database access. Section 5 evaluates this protocol and points
out its strengths through a real scenario, while Section 6
summarizes the paper’s results and presents an outlook of
our future objectives.

2. RELATED WORK

2.1. Mobile Transaction Processing

 Dunham et al. [8] introduced in the nineties the afore-
mentioned concept of Kangaroo Trans-actions for multi-hop
mobile environments, which was the first that incorporated
into transaction scheduling both client and data movements.
In that concept, there is a Data Access Agent (DAA) at the
base station which creates a mobile transaction and, as a mo-
bile client hops from one cell to another, the control of the

Fig. (1). Interdependence among various factors in mobile transaction processing.

Concurrency

Security Mobility

Performance

Multilevel Security in Mobile Data Access The Open Information Systems Journal, 2007, Volume 1 21

KT is passed to the DAA at the base station of the new cell,
where it creates a new subtransaction called ‘Joey Transac-
tion’ (JT). This subtransaction is considered as the unit of
transaction execution at each base station. Old JTs commit
independently of new ones in the same station. At any time
though, the failure of a JT may cause the entire KT to be
aborted. A KT can work in compensating mode or in split
mode. In the first one, the failure of any JT causes the cur-
rently executing JT as well as all the preceding and the fol-
lowing JTs to be undone (that is, previously committed JTs
will have to be compensated for). The problems with KT are
that serialization is not always guaranteed, global isolation is
not enforced (hence global consistency cannot be attained),
while disconnection due to failures and interference is not
considered at all.

 The semantics of transaction processing (and the preser-
vation of the above properties too) had been considered in an
earlier work [11], in which Walborn and Chrysanthis had
extended semantic-based models to mobile environments in
order to increase the concurrency among operations and to
leverage transaction performance. Specifically, the exploita-
tion of commutative operations and the maintenance of mul-
tiple database replicas along with the fragmentation of data
objects in mobile environments were shown sufficient to
achieve serialization and preserve isolation. Yet each frag-
mented object must be cached independently and manipu-
lated synchronously. According to Walborn and Chrysanthis
[11], that scheme performs well in situations where data ob-
jects are fragmented into stacks or queues.

 The preservation of data consistency in mobile environ-
ments was dealt with at the same time by Lu and
Satyaranayanan as well, who presented a model based on
Isolation-Only Transactions (IOT) [17]. That model was
influenced by Optimistic Concurrency Control (OCC)
schemes that use client caches for local transaction execu-
tion. IOT include a sequence of access operations to the da-
tabase and they conform to a set of properties that are spe-
cifically tailored to disconnections in mobile environments.
Moreover, they perform automatic detection of read/write
conflicts based on certain serializability constraints. A vari-
ety of conflict-resolution mechanisms are supported, includ-
ing a mechanism employing application semantics as well as
an invocation mechanism that executes transactions by itself
or through an Application Specific Resolver (ASR). Unlike
regular transactions that preserve the ACID properties, IOT
do not guarantee the atomicity of updates and can preserve
durability under certain conditions only. Besides, the rele-
vant model is exclusively tailored to the Unix file system to
access data.

 A radically different approach to mobile transaction
processing was proposed one year later by Gray et al. [18],
which uses 2-tier replication to allow MH to execute transac-
tions in disconnected mode. The database is replicated at
both the MH and the base nodes, and the MH maintains both
a local and a master version. The master version of each ob-
ject may coexist with several replicated versions. Two types
of transactions (i.e., ‘base’ and ‘tentative’) are supported.
During disconnection, the MH may perform tentative up-
dates to objects owned by other nodes in the network, while
on reconnection, the MH forwards these updates to the
owner nodes, where they are re-executed in order to commit

or to be rejected (they may also commute with other transac-
tions to improve the chances of commitment). After this ex-
change, the base transactions execute by accessing master
versions, whereas the tentative ones execute by accessing
tentative versions (i.e., local copies). Moreover, on reconnec-
tion the various base stations (BS) re-execute tentative trans-
actions as base ones in order to achieve global consistency
and make local updates persistent.

 In the model proposed by Chrysanthis [19], in turn, mo-
bile transactions are represented as sets of open nested sub-
transactions using the notions of ‘reporting’ and ‘co-
transaction’. As shown in [19], this model guarantees the
atomicity and non-compensability of mobile transactions.
While in execution, a ‘global’ mobile transaction can share
partial results on MH and partially maintain its state on BS.
Each subtransaction is atomic but does not guarantee the
atomicity of the global one. Reporting transactions and co-
transactions share their partial results, retain their state and
can follow their associated transaction which executes on a
MH (by relocating from one MSS to another along the path
to the MH). This model allows transactions to be executed
even in periods of disconnection and it supports the unilat-
eral commit of subtransactions and compensating transac-
tions. Yet not all the operations of a transaction are compen-
sated, since compensation is costly in mobile environments.

 To increase the availability of data in mobile and station-
ary hosts, Madria and Bhargava [20] introduced at the same
time the concept of pre-write operations that are supposed to
execute before regular write operations. A pre-write opera-
tion makes visible the value of a data object after the commit
of the transaction. Once all the pre-writes have been proc-
essed, the mobile transaction ‘pre-commits’ on a mobile
host. The results of a pre-committed transaction are visible at
mobile and stationary hosts before the final commit. This
minimizes the blocking probability for other transactions and
increases also concurrency. The transaction continues its
execution on the mobile host by announcing pre-write values
and by delegating the resource-consuming part of the execu-
tion (i.e., updates on the disk) to the stationary host (reduc-
ing thereby the computation cost on the former). As shown
in [20], a pre-committed transaction is guaranteed to commit.
This feature avoids operation undo or transaction compensa-
tion, which are quite costly in mobile environments. A ‘pre-
read’ operation returns a ‘pre-write’ value, whereas a read
one returns a write value. Transactions are serialized based
on their pre-commit order, dealing thus efficiently with the
limitation of resources in mobile environments.

 As concerns the Pro-motion technique that was proposed
by Walborn and Chrysanthis in [21], it supports transaction
execution in disconnected mode through the so called ‘com-
pacts’, which enable local executions at MH. The necessary
information to manage a compact is encapsulated in it. Com-
pacts are the basic unit of caching and control. They consider
the entire mobile system as a large long-lived transaction
executing on the server. The management of compacts is
performed by joint collaboration of a ‘compact manager’ at
the database server, a ‘compact agent’ at the MH and a ‘mo-
bility manager’ at the BS. The compact manager constructs
the compacts and it acts as a front-end for the database
server, appearing thereof as an ordinary database client. On

each MH, the compact agent is responsible for cache man-

22 The Open Information Systems Journal, 2007, Volume 1 Khan and Papadopoulos

agement, transaction processing, concurrency control, log-
ging and recovery, while the transactions generated by MH
are executed locally. The mobility manager, instead, is in
charge of the communication among the agents.

 Another technique, i.e., preserialization (PS), aims to
facilitate transaction processing in mobile multi-database
systems (MMDBS) [22]. In this technique, all operations of
a global transaction accessing the same site constitute a sin-
gle-site transaction (analogous to a Joey Transaction) and
they are executed as a single (local) transaction. Site transac-
tions are executed as independent transactions by the local
database system (LDBS), while the global MMDBS cannot
prevent the LDBS from executing local transactions inter-
mediately among site transactions. As all site transactions
are compensable, they are committed at the LDBS prior to
the decision to commit the global transaction (which consists
of all site transactions), releasing thus resources in a timely
fashion. In addition, all site transactions are categorized as
either vital or non-vital. If neither atomicity nor isolation
(A/I) have been violated, the transaction commits else it is
aborted. Serializability of a global transaction can be verified
by constructing a ‘Partial Global Serialization Graph’
(PGSG) from the serialization information of local transac-
tions. In general, this technique places emphasis on explicitly
ensuring the A/I properties of a transaction, while it assumes
that the LDMSs maintain individual consistency and durabil-
ity. However, A/I properties can only be ensured if all site
transactions are declared as vital.

 Contrary to the above schemes, Gruenwald and Banik
presented in [23] a power-aware scheme for Mobile Ad-hoc
Networks (MANET) which allows real-time transaction
processing. Transactions have deadlines and are classified on
that basis as firm or soft. Firm transactions must be aborted if
they miss their deadlines and their value becomes zero. Soft
transactions have two deadlines; they can still be executed
after the first deadline expires, but their value decreases after
the first deadline and becomes zero after the second dead-
line. The model is based on the concept of Large Mobile
Hosts (LMH), i.e., a MH has sufficient resources while a
Small Mobile Host (SMH) has few ones. A global transac-
tion may consist of a number of subtransactions running on
LMH. A subtransaction can be vital or non vital. All the vital
subtransactions must succeed in order for their global trans-
action to succeed. The model also provides a balance in en-
ergy consumption by executing soft transactions at the LMH
with the highest energy level. To address the real-time re-
quirement, it reduces the number of transactions that miss
deadlines by executing firm ones at the nearest LMH, em-
ploying two deadlines for soft transactions, and scheduling
both the soft and firm ones using a real-time energy-efficient
transaction scheduling algorithm. To address disconnections
and migrations that cause prolonged transaction executions,
the model incorporates the concepts of toggled and sus-
pended transactions which detect the violation of the A/I
properties as soon as the vital subtransactions of a transac-
tion are completed. Moreover, toggled and suspended trans-
actions allow disconnected transactions to remain in the sys-
tem and be re-executed at a later instance, unless they ob-
struct the execution of other transactions.

 Dynamic object clustering, finally, has been proposed in
[10] to facilitate the processing of mobile transactions

through weak-read, weak-write, strict-read and strict-write
operations. Strict-read and strict-write have the same seman-
tics as normal read and write operations that are invoked by
transactions satisfying the ACID properties. A weak-read
returns the value of a locally cached object which is written
by a strict-write or a weak-write. A weak-write operation
only updates a locally cached object and can become perma-
nent upon cluster merging if the weak-write does not conflict
with any strict-read or strict-write operation. The weak trans-
actions use local and global commits. The ‘local commit’ is
the same as ‘pre-commit’ while ‘global commit’ is the same
as the ‘final commit’ proposed in [20]. However, a weak
transaction can abort after local commit and is compensated.
A weak transaction’s updates are visible to other weak trans-
actions, whereas pre-writes are visible to all transactions.

2.2. Secure Transaction Processing

 As we mentioned in the introduction, the BLP model
used for MDBS does not guarantee security against covert
channels. Several approaches have been proposed to ward
off overt channel appearance in such systems. In the follow-
ing, we review some of these approaches.

 Kogan and Jajodia [24], for example, have presented a
concurrency control mechanism for MLSDBMS which is
based on a replicated architecture. This mechanism favors
the use of that architecture for leveraging performance and
employs a technique for controlling concurrency, which en-
sures 1-copy-serializability but hides from the transactions
all aspects of data replication. Moreover, this mechanism
provides security against covert channels (since the informa-
tion only flows from lower levels of security to higher ones)
and incorporates also the techniques of ‘update-projection’
and ‘update-report’ which provide coordination among
DBMS’s at various levels. Specifically, no voting is done by
this mechanism (unlike the 2PC protocol) but the chances of
covert channel establishment are eliminated by having a
transaction committing at its own database and then being
passed as an update-projection onto other databases of dif-
ferent security levels, where it is guaranteed to commit in the
same manner. Yet this mechanism runs the risk that higher-
class transactions might be forced to read arbitrarily old val-
ues [24].

 Ammann and Jajodia [25], on the other hand, proposed a
multiversion algorithm for secure servicing of transaction
read which can maintain (up to) three versions of a modified
data item. Each version corresponds to the state of the data
item at the end of an (externally defined) version period.
Thereby, covert channels and starvations of high security-
level transactions are avoided. The algorithm also allows
Long-Lived Transactions (LLT) of any security level to ac-
cess data by avoiding conflicts. Moreover, the algorithm
ensures 1-copy serializability but it may present outdated
views of several portions of a database. Besides, it has the
drawback that transactions at a higher-access class are forced
to read arbitrarily old values from the database due to the
assignment of timestamps to data versions (this problem can
be especially serious if most of the lower-level transactions
are long-running ones).

 The Secure 2PL (S2PL) technique proposed in [26] pro-

hibits the blocking of low-security transactions by high-

security ones, eliminating thus the chances of covert channel

Multilevel Security in Mobile Data Access The Open Information Systems Journal, 2007, Volume 1 23

establishment. Specifically, the authors of [26] propose the

use of the so-called ‘virtual lock’ by low-security transac-

tions in order to avoid conflicts with high-security ones.
When a conflicting high-security transaction commits and

releases a data item, the virtual lock is upgraded to a real one

and the operation of the low-security transaction is allowed
to execute. Another technique that was proposed in [14] im-

proved S2PL by using its modified model for inter-level

concurrency control in combination with the OPT-WAIT
technique [21] for intra-level security (in fact, could not

eliminate interference in all circumstances). This improve-

ment leverages performance and enhances security, since the
use of a relative slow approach (i.e., S2PL) for intra-level

security is not a good idea when we are not concerned with

covert channels. The problem with this approach, however,
is that it cannot avoid altogether the starvation of high-level

transactions.

 Kim et al., in turn, proposed in [27] a (transaction)

length-sensitive protocol for MLSDBMS which is based on

altruistic locking. This protocol introduces a new primitive
called ‘donate’, which uses lock and unlock to signal an in-

terested transaction that no access to a particular data item is

required any more by the ‘donating’ transaction (making
therefore this item ready for access by others and avoiding

its lazy release). The protocol is meant to ensure serializabil-

ity, eliminate covert channels and reduce the likelihood of
starvation for Short-Lived Transactions (SLT). The work

presented in [28] has extended the above protocol towards

mobile transactions and enjoys a better performance com-
pared to simple 2PL/MLS. Moreover, it improves the degree

of concurrency in mobile environments (where LLT may

coexist with SLT).

 Finally, the nested transaction model for MLSDBMS

proposed in [12] considers concurrent transactions as nested

trees and provides application-level recovery along with no-
tification-based locking protocols that ensure serializability,

avoid starvation, allow concurrent execution and prohibit the

appearance of timing covert channels. The model uses one
more primitive ‘signal lock’ to allow a high-level transaction

to seamlessly read a low-level data item, hence a low-level

transaction can update that item even in the presence of a
signal lock and remove any chances of covert channel estab-

lishment (this concept extends previous work on multilevel

file storage [13]). The nested transaction model is further
supported by notification functions that signal all concerned

high-level transactions of a data-item’s update. Besides the

avoidance of starvation, the model also avoids transaction
abort by reading old data values during re-execution. How-

ever, it is computationally expensive and has slow perform-

ance.

2.3. Conclusions

 Existing work on mobile transaction processing has re-
lied primarily on cached data at MH as well as on local exe-
cution and update (or commit) at these hosts. Moreover, the
various models presented in the previous section deal with
single security-level databases and do not account for the
effects of transaction execution on multiple security levels (if
these are necessary). As we pointed out earlier, these models
are not suitable for all kinds of mobile devices (especially for
those characterized by low computing power, short battery

life and limited storage capacity). Local execution and stor-
age is not only unsuitable for small-sized MH, but is also
detrimental to data security (hence unsuitable for MLSDBS).
For this reason, we advocate in this paper a transaction
model that is independent of the computational power and
storage capacity of MH, provides multilevel security in mo-
bile environments and preserves also the basic properties of
atomicity and consistency. Moreover, this model guarantees
satisfactory performance in the presence of network discon-
nections.

 On the other hand, the work on MLSDBMS (except that
presented in [28]) is concerned with the security of data
across static networks and has concentrated primarily on the
elimination of timing covert channels, being thus unsuitable
for mobile transactions. In fact, the latter do not run the risk
of timing covert channels very often, due to the difficulty of
synchronization between MHs during transaction processing.
Other security concerns, however, which owe to the mobility
of MHs (like, for example, motion covert channels that are
defined below), are of prime importance to mobile transac-
tions. For example, the frequent relocations or disconnec-
tions of mobile clients (either intentional or caused by Trojan
horses) may give rise to novel forms of security breach,
since they may cause variable delays in addition to the de-
lays resulted from the intermittent connectivity of the net-
work. Besides, the adoption of replicated architectures and
the related techniques of caching and cache invalidation [6]
may cause a plethora of security breaches since, for example,
a low-security record in a local cache may have a different
classification in the central server and incur thus an informa-
tion leak.

 The likelihood of the above scenarios may be reduced by
the use of optional locking schemes, whereby the update of
database contents can be made provisional and comply with
security policies. Because this may degrade performance,
however, we intend to apply optional locks at multiple levels
of granularity so as to better support multiple security levels
in databases (i.e., different database objects will be locked at
different granules, enabling thus the assignment of a differ-
ent security classification to each granule). This idea is fur-
ther analyzed below.

3. COVERT CHANNELS IN MOBILE TRANSAC-
TIONS

 Security analysis of any system must take into account
any violation of security policies by overt or covert channels
[29]. Overt channels (i.e., those established using buffers,
files or I/O devices) rely on system-protected data to directly
pass on information among users or processes against the
system’s security policy, whereas covert channels imply the
use of other entities (e.g. scheduling locks, disk arm move-
ment, system/memory-created shared clocks or device-busy
flags, etc) to pass on such information. Covert channels can
be classified in two categories based on the technique they
use for this malicious activity, i.e., timing covert channels
and storage covert channels. A potential covert channel is a
storage channel if the scenario of its use "involves the direct
or indirect writing of a storage location by one process and
the direct or indirect reading of that storage location by an-
other process" [15]. A potential covert channel is a timing
channel if the scenario of its use involves a process that "sig-
nals information to another by modulating its own use of

24 The Open Information Systems Journal, 2007, Volume 1 Khan and Papadopoulos

system resources (e.g., CPU time, memory) in such a way
that this modulation affects the real response time observed
by the second process" [15]. Further details on the definition
and the situations that establish these channels can be found
in [15].

 In this paper we identify another type of covert channel
that does not fall in any of the above categories and has its
basis on mobile transactions, due to the peculiar execution of
the latter in wireless networks. We name it “motion covert
channel” as its creation depends on client movements, net-
work disconnections and the execution characteristics of
mobile transactions. A motion covert channel is the type of
covert channel in which some information of higher-security
level (or about a higher-security subject) is passed over to a
lower-security level subject who is not supposed to obtain it
in a mandatory access control (MAC) system (violating thus
the security policy of the whole system). The scenario of its
use involves signaling of higher-security information by ex-
ploiting certain factors that affect transaction execution in a
mobile environment (i.e., handoff, movement pattern of cli-
ents, temporary network disconnection, as well as local
transaction execution).

 Major types of information that can be passed this way
are: the higher security-level data in a database (as in
MLSDBS), passwords to access data with higher-level privi-
leges, the location of a higher-level subject that may reveal
(by inference) critical information about some operation or
intention, the movement pattern of some higher-level subject
(or a group of related subjects) that may reveal critical in-
formation on an ongoing operation, or even the location of
(central or distributed) databases which, in turn, can give out
the location of headquarters or centers of critical activity.
The main causes of the establishment of such channels in
existing mobile transaction models are: the local cache on
MH (used for boosting performance and supporting discon-
nected operations), local execution (for supporting discon-
nected execution and preventing traffic congestion), the ex-
traction of cell information (especially during handoff), as
well as the maintenance of status tables and logs at MH or
BS. To further elucidate the concept, we present below some
scenarios:

a. In the Pre-write mobile transaction model [20] and the
Kangaroo transaction model [8], while a MH moves
from one cell to another, its state (i.e., the values of
data objects and the location information) moves
along with it. This feature can be used for establishing
a motion covert channel in a way that a high-level
subject can pass on information to a low-level subject
by adopting a predefined path and making relevant en-
tries in logs (or status tables) that are shared by all
subjects. A low-level subject can read this information
and “get the signal”. One way that a stream of bits can
be passed by a higher-level subject to a lower-level
one is by adopting a to-and-from movement between
two adjacent cells. To do that, a MH with high-level
subjects can position itself on the boundary between
two cells. We assume that the two subjects of different
security levels have already synchronized on time and
have decided also on fixed time intervals (say 10 to 15
minutes), during which the MH with the high-level
subject (i.e., the one on the boundary of the two cells)

moves to the other cell in order to create a new site
transaction (i.e., JT), signaling thereby bit ‘1’. Other-
wise (i.e., if it doesn’t move) it signals bit ‘0’. This
way, a to-and-from movement of a MH between two
adjacent cells and the ensuing update of its
state/location information can establish a covert chan-
nel which, in turn, can be utilized to pass on secret in-
formation (such as passwords, etc).

b. In the Kangaroo transaction model [8], once a MH
requests a transaction, a KT entry is created by DAA
at the corresponding BS that has a unique KID (made
up of the ID of the BS and some unique number at that
station). As the MH moves through different BS, new
JTs are created at each BS along its route, which (i.e.,
the JTs) have unique IDs consisting of a KID and a
unique sequence number. In this model, the informa-
tion about handoff is passed over to the MH to help
the creation of JTs. The DAA uses a transaction status
table as well as a log record that are shared by all
concurrent transactions in a BS. A malicious process
of higher-security level can use the entries in these ta-
bles and/or logs (or the sequence numbers used in the
creation of the KT and JT) as it moves from pre-
selected cells to pass on secret information to a lower-
level subject.

c. The Kangaroo transaction model [8] and the reporting
mobile transaction model [19] are based on the princi-
ple of ‘open nested transaction’. According to that
principle, the component transactions (i.e., the JTs in
Kangaroo transactions and compensable reporting
transactions) commit independently without waiting
for the global transaction to commit. In the case of
abort, however, a compensating transaction cancels
the effects. These partial results are available to other
mobile transactions in order to increase the availability
of information and upgrade the transactions’ perform-
ance. This behavior can be used by a malicious
higher-level transaction to pass on information cov-
ertly. If, for example, a transaction updates a data item
(e.g., it makes it ‘1’ from ‘0’) and then that data item
is locked for reading by another, higher-level transac-
tion, bit ‘1’ is passed. Else (i.e., if the lower-level
transaction is not locked) bit ‘0’ is passed. Then the
lower-level transaction aborts and forces a compensat-
ing transaction to run. The compensating transaction
will successfully execute within a shorter time period
if no lock has been placed on the updated data by an-
other (lower-level) transaction; this time difference
will be noticed however by the other transaction.

4. PROPOSED PROTOCOL FOR SECURE MOBILE
TRANSACTIONS

4.1. Development Rationale

 As discussed in Section 2, existing models for mobile
transactions are based primarily on local execution at MHs
to increase performance. Moreover, these models have been
designed to support conventional DBMS in mobile environ-
ments. There is a need to develop a technique that supports
MLSDBS-based transaction processing, be independent of
the processing power and storage capability of the MHs,
does not depend on network bandwidth and is robust against

Multilevel Security in Mobile Data Access The Open Information Systems Journal, 2007, Volume 1 25

disconnections (i.e., previous work should not be wasted due
to disconnection and a transaction should continue its execu-
tion despite several short disconnections). The support of
MLSDBS in mobile environments has not been considered
so far seriously (except in [28]). Instead, the solutions pro-
posed so far for MLSDBS are intended for static centralized
systems and thus may not adequately support mobile transac-
tions. On the other hand, existing models for mobile transac-
tions do not fit into MLSDBS models. In fact, previous re-
search on MLSDBS has focused on eliminating covert chan-
nels, while in the case of mobile transactions the major con-
cerns are movement and disconnection management. Moreo-
ver, none of the existing MLSDBS models has considered
the novel challenges arising in mobile networks (like the
establishment of motion covert channels).

 In this section we propose a protocol that is based on a
nested transaction model for mobile transactions and utilizes
an optional multiple-granularity locking scheme, which as-
sist in leveraging the performance and ensure the security of
mobile transactions by eliminating any chances of timing
and motion covert channels. Within the frames of this proto-
col we assume the existence of a distributed database system
with a central repository managed by a MLSDBS, as well as
a local MLSDBS at each BS that can handle cached data,
manage the local execution of mobile transactions and main-
tain logs and status tables about each transaction. We pro-
pose moreover the use of a data cache at the BS that starts a
mobile transaction; this cache holds the data acquired from
the multi-granularity locking protocol on the central data-
base. The MLSDBS at the BS maintains the cached data
throughout the execution of a mobile transaction, preserving
thus the security level of each one of the different transac-
tions that execute concurrently on the same BS. Upon com-
pletion of a transaction’s execution, the data is updated in the
central repository and removed from the local MLSDBS.

4.2. Nested Transaction Model for Mobile Transactions
that Supports MLSDBS

 Since mobile transactions are characterized by frequent
transitory disconnections which, in turn, may lead to aborts,
we propose the use of a nested transaction model that has
been used also in the Kangaroo Transaction model [8], the
Reporting Transaction model [19], as well as in the OPT-
WAIT technique [21] for partial redoing (i.e., redoing a
transaction’s portion that has been lost due to a catastrophic
disconnection). By utilizing nested transactions we assume a
transaction model for MLSDBS in mobile environments that
is similar to the model proposed in [12]. The beauty of this
model is that each subtransaction can commit independently
from the others and its results can be shared among other
subtransactions of the same global transaction (if those sub-
transactions are of the same security level). The local
MLSDBS performs the local commit (as part of the DAA)
for each subtransaction and the results can be shared by the
subtransaction’s siblings.

 Contrary to the ‘pre-write’ approach [20], however, all
the processing on the BS is done at the MLSDBS while the
MH only contains a query processor and a browser (like a
thin client) with no sensitive data onboard. This is done be-
cause, if a MH is captured or stolen, a minimum amount of
secure information will be passed on to the enemy. In both
the Kangaroo Transaction [8] and the Reporting Transaction

[19] models, instead, the processing is done at the BS with
subtransactions committing independently. However, there
are obvious problems with these models as we mentioned
earlier.

 In the following we propose a locking for the nested
transactions of our protocol, which makes them more robust
than Kangaroo Transactions against catastrophic failures.
Specifically, with this technique the global transaction does
not need to abort in case of a subtransaction’s (JT) failure
and, moreover, while no extra traffic is incurred on the net-
work (as it is done with Reporting Transactions).

4.3. Optional Multiple Granularity Locking

 As explained in the previous section, we want to make
subtransactions as independent as possible so as to minimize
effort duplication (through the repetition of cancelled work)
in the phase of disconnections. For this reason, subtransac-
tions should be executing with minimum amounts of data in
order to complete portions of a global transaction. Fine
granularity is the best option to achieve this purpose and
increase concurrency among multiple users, but it may de-
grade performance when a transaction requires large portions
of data. To achieve both goals, we propose the use of multi-
ple granularities at which data may be locked. Moreover, we
propose the use of optional locking, as many performance
and security-related issues (especially covert channels) de-
pend on the way that locking is performed.

 Specifically, we extend the multiple-granularity locking
protocol presented in [5] which achieves syntactic and se-
mantic consistency (i.e., interface and data consistency) in
synchronous CSCW. This protocol can be used in mobile
transactions too, as it improves their performance and guar-
antees the consistency of data without incurring extra net-
work overhead (this is because MHs do not need to wait for
decisions on their locking requests). Hence instead of lock-
ing with intention locks all the instances of an object class in
a database or all the components of an object (or even the
whole hierarchy of data objects), we may assign a scope to
each intention lock in order to extend it to a specific compo-
nent only. Multiple-granularity locking also reduces the
chances of establishing covert channels, as the size of the
object granule that is being read by a higher-level transaction
and the granule that is being updated by a lower-level trans-
action may not be the same all the time. With optional lock-
ing we can further reduce the chances of establishing timing
covert channels, as a request for a tentative lock by a higher-
level transaction (in order to read a lower-level data item)
can be granted immediately. Similarly, a tentative lock may
be granted to a lower-level transaction in order to update a
data item that is locked for reading by a higher-level transac-
tion. The lower-level transaction can update of course that
item, but the resulting inconsistency will be notified to all
the other transactions concerned (i.e., the higher-level trans-
actions which read that item).

 However, instead of leaving the locking option at the
discretion of users (as suggested in [3]), we propose a
mechanism based on the ‘Raise_Signal’ and ‘Get_Signal’
primitives (which are like those presented in [12]). The only
difference between the signal locking technique in [12] and
the optional locking technique we propose here is that, in the
former, notifications are only made to higher-level transac-

26 The Open Information Systems Journal, 2007, Volume 1 Khan and Papadopoulos

tions that set a signal lock, whereas in our own technique
notifications are sent to all the affected subjects, irrespective
of their security classification. However, since only the sub-
jects of the same security level can update a data item of a
particular classification (but, on the other hand, this item can
be read by any higher-level security subject), notifications
will be sent to the subjects of the same security level that
were updating that item as well as to all higher-level subjects
that are reading it. Hence since no notifications will be sent
from higher-level to lower-level subjects, there are no
chances to establish covert channels.

Fig. (2). Example scenario of multi-granularity locking.

 Fig. (2) below presents a simple scenario of multi-
granularity locking. A read lock of scope 2 is first applied to
object A in the hierarchy. This locking operation has the im-
mediate effects of locking descendant objects B and C with
read locks of scope 1 and objects D, E and F with read locks
of scope 0, respectively (phase 2 of locking). According to
our mobile transaction protocol, the locking operation upon
object A entails a ‘Raise_Signal’ notification. At about the
same time, a write lock of scope 1 is applied to object E at
the bottom of the hierarchy (entailing therefore another
‘Raise_Signal’ notification). Following the rules of multi-
granularity locking [5], appropriate intention locks should be
placed then to all the “parents” above that object. However,
only object G acquires an intention write lock of scope 3,
because all other parent-objects bear read locks from the
previous locking operation and disallow thus the simultane-
ous placement of write locks on them (since read locks are
incompatible with write ones).

 We deem it important to point out here that the use of
optional locking in mobile transactions was necessitated by
the frequent interference and disconnections in wireless mo-
bile networks, since more than one lock may be applied con-
currently to the same data item (as in Fig. 2, for example)
and the acknowledgement of these locking operations may

not reach all the interested users. Another argument that jus-
tifies the use of optional locking is that, when a data object is
already locked by some user, other (concurrently executing)
transactions will not need to abort nor will they be restarted
again (and degrade thereby performance). Besides, we pro-
pose the caching of locked data in the BS that initiates the
Kangaroo transaction. While this will increase performance
(as the data is readily available there), it will also reduce the
chances of establishing covert channels because all the exe-
cution will take place on the cached data. In fact, since a
mobile transaction can only be initiated by one user and util-
izes only one cache, there is no chance for two users to es-
tablish a storage or timing covert channel (since the users
work on different caches).

4.4. Protocol Rules

 As mentioned earlier, our protocol relies on a nested
model to support mobile transactions and assumes the exis-
tence of a distributed MLSDBS consisting of a central re-
pository and a local MLSDBS (which, in turn, reside on BS
and handle cached data via multiple logs and status tables,
each one corresponding to a different security level). Moreo-
ver, our protocol takes advantage of an optional multi-
granularity locking technique to reduce the chances of covert
channel establishment. That technique improves moreover
transaction performance. Finally, we assume a nested
MLSDBS to handle the central repository.

 In general, the development of our protocol has been
influenced by the nested transaction model for MLSDBS
[12], the Kangaroo Transaction model [8], the Pro-Motion
transaction model [21], the pre-serialization technique [22],
as well as the multi-granularity locking protocol proposed in
[5]. The execution phases of our protocol are as follows:

4.4.1. Transaction Initiation

a. A mobile transaction works in a thin-client mode
without a data cache or any kind of local execution at
the MH; instead, all the execution takes place at the
MLSDBS (central or at the BS). A mobile user gets
involved in this process using a specific application at
her/his device or by selecting in her/his browser a link
to a particular server.

b. Upon connecting to that server, the user at the MH
initiates the mobile transaction by issuing a combina-
tion of read/write operations on his/her authorized data
(according to his/her security clearance).

c. The transaction manager (TM) at the BS will make an
entry into its particular status table (based on the secu-
rity clearance of the mobile user) in order to form a
mobile transaction as well as the first site-transaction
at that BS (which will be part of the mobile transac-
tion). The TM then enters corresponding records in its
particular status table, as it is done in the BTKT (Begin
Transaction of Kangaroo Transaction) and the BTJT
(Begin Transaction of Joey Transaction) [8].

d. The local TM issues a lock request to the central lock
manager (LM), which grants or denies it (i.e., the re-
quest) based on the availability of the relevant data.
The central LM tries to grant to this mobile transaction
a lock with as coarser a granularity as possible (in or-

��������	
��

���

���

��� ��� ���

���

���

��������	
��

��

���

���

���

��� ���

���

����� �

� �

���

Multilevel Security in Mobile Data Access The Open Information Systems Journal, 2007, Volume 1 27

der to increase its performance) by issuing intention-
lock requests of a suitable granularity level.

e. If the requested lock is granted, the data is cached onto
the DBMS of the BS where the mobile transaction was
initiated from, while all the subtransactions (ST) of
that mobile transaction are executed on the cached
data of this BS.

f. All subtransactions (ST) generated at one BS become
part of one site-transaction. Site-transactions are cre-
ated as a result of a split operation which is meant to
split the ongoing mobile transaction while the MH
moves towards another BS. The data is cached only at
the first BS where the mobile transaction started from
and, if the required data is not already in that cache, an
“expansion” request is forwarded to the central data-
base. All the site-transactions under a mobile transac-
tion are sent to the DBMS of the BS that holds the
cache. All STs below a particular site-transaction are
local transactions (LT), since transaction execution
only takes place upon cached data.

g. Based on the request made by the MH, the local TM
creates some STs to complement the current site-
transaction and adds their entries to the respective
status table of the current JT.

h. The TM makes also appropriate entries in the status
tables and logs of each subtransaction (ST) that is
saved on the stable storage, so as to support Long-
Lived-Transaction execution in the phase of discon-
nections and be able to run compensating transactions
for recovery. The creation of nested STs under each
site-transaction (as well as under one mobile transac-
tion) conforms to the nested transaction model pro-
posed by Bertino et al. [12].

4.4.2. Transaction Execution

a. The execution of ST also conforms to the nested
transaction model for MLSDBS ([12]), according to
which execution only takes place on the leaves of the
transaction hierarchy and the child transactions hand
over all acquired locks to their parents. Siblings can
share the updated records of each other, since a ST
can deal with data of the same security level. However
the transaction hierarchy (tree) will have one site-
transaction below the tree’s root, while all the other
STs will be hung from it. We propose sequential exe-
cution at the site-transaction level only (hence transac-
tion blocking will be done according to the nested
transaction model in [12]) in order to achieve better
serializability (as discussed by Bertino et al.). In that
case, the next site-transaction cannot start before the
previous one has completed.

 However, the STs under one site-transaction can be
executed either in blocking or in non-blocking mode
(i.e., the children can be executed in parallel with their
parents in the case of non-blocking to avoid perform-
ance degradation), without affecting serializability
that is anyway maintained by the split operation [30]).
The results of a ST will become available to its parent
after commit, as well as to the outside world after
commit of the root transaction. The abort of a transac-

tion’s parent will hold the transaction in order to re-
start it later from the same place or to let the user re-
initiate, change or abort it. Similarly, abort of a child
transaction will leave to the transaction’s parent the
options of restarting or aborting that child (depending
on the prevailing situation).

b. STs can view the partial results of their parents. Yet
when two siblings are executing concurrently, they
cannot share the results of each other.

c. Instead of using a ‘signal lock’ (as suggested by Ber-
tino et al. [12]), we propose the use of optional lock-
ing (as suggested by Sun [3]) to eliminate the chances
of timing covert channel appearance and also to in-
crease transaction performance. Based on this, lower-
level transaction(s) can update a data item that is al-
ready locked for reading by a higher-level transaction.
However, this update will be notified to all the trans-
actions concerned, which will take then appropriate
actions to preserve consistency. Instead of leaving this
to the users (as proposed by Sun), we propose a
mechanism based on notification and action primi-
tives, namely a ‘Raise_Signal’ and a ‘Get_Signal’.
The lower-security level data that is locked for read-
ing by the higher-level transaction is also brought to
the local cache and is stored on the local MLSDBS,
based on its security classification.

d. Unlike the KT model [8], every mobile transaction in
our protocol runs in compensating mode in order to
maintain data consistency and guarantee recovery.

4.4.3. Handoff Procedure

a. During handoff, split-transactions operate as in the KT
model [8], requiring first some entries in respective
transaction-status tables. In our protocol, these tables
are maintained in stable storage under the MLSDBS
and conform to the security clearance of mobile users.
A new site-transaction is created at the destination cell
with its own ID, while its various operations are gen-
erated by the MH as STs under this site-transaction.
An expansion in the cache may be done at this stage if
the requested data is not already there. As concerns
the previous BS, if the STs of the previous site-
transaction continue their execution, the log record is
flushed to the stable storage so as to facilitate the exe-
cution of the compensating transaction.

b. The TM at the destination BS runs its portion of the
split-transaction and makes appropriate entries (like
the Continue Transaction KT in [8]) into relevant
status tables, which (i.e., the entries) hold the state of
the mobile transaction. In addition, the TM creates
another site-transaction (as before) so as to manage
the new STs requested by the MH in the destination
cell.

4.4.4. Ending Transaction

Commit

a. Each site-transaction is handled independently and its
commit is notified to all the TMs involved in the mo-
bile transaction. These TMs make transaction-ending
entries into respective status tables (like End-

28 The Open Information Systems Journal, 2007, Volume 1 Khan and Papadopoulos

Transaction ST and End-Transaction JT [8]). The STs
will commit locally at the MLSDBS holding the
cached data (i.e., at the first BS where the KT started
from). On successful termination, each ST notifies to
its parent(s) and to the site-transaction and, at the end,
to the mobile transaction too.

b. Upon commit, each ST makes its results available to
its parent and to other sibling transactions (if these are
of the same security level in one mobile transaction).
The locks held by that ST are retained by its parent.

c. The results become available to the outside world only
if the mobile transaction has committed and the data-
base has resynchronized with the central repository.

d. As every transaction is running in compensating
mode, all logs are kept on stable storage until the mo-
bile transaction commits (or aborts), in which case
these logs are removed.

e. The mobile transaction’s status table at the last BS
will keep the current state of the transaction. If there is
no live site-transaction and the MH sends eventually
an end-transaction request, the mobile transaction
commits. The end-mobile-transaction entry (like the
ETKT in [8]) is written into the respective log and all
the records in the BS status tables are freed, so the
mobile transaction ends. Following through this, the
cached data is updated into the central repository and,
upon successful update, this data and all the entries re-
lated to the mobile transaction are removed from all
the BS’s to preserve security.

Abort

a. If a subtransaction aborts, the MH is notified of this
effect and can decide to abort the whole (or part of
that) transaction, retry some portion of the ST, or re-
initiate the whole transaction according to the prevail-
ing situation at that time (contrary to the KT model).

b. If some ST aborts due to a fault, the MH can still carry
on with the remaining site-transactions and the mobile
transaction. This matter will be reported however to
the client who can continue without this ST, or send
another ST, or re-initiate automatically the same ST
using entries in the log (according to the nested-
transaction model).

c. When a ST aborts the mobile transaction itself does
not abort (thanks to the employed models of nested
and split-transaction). Instead, the client is notified of
the ST’s abort and can possibly re-initiate that ST by
himself or can request its restart (the restart can be
done using the log entries of the last operations of the
transaction). Alternatively, the client may ask for
abort if the site-transaction is not required any more.
In that case the site-transaction will not be removed
but it will be an empty site-transaction without any ST
under it, while the entries in the BS status table and
the log will be used for running a compensating trans-
action (bring thus the database to a consistent state).

d. Upon receiving an abort request from a client, an end-
mobile-transaction entry (like the ETKT in [8]) is
written onto the log, while all entries in all BS status

tables are freed. Then a compensating transaction runs
in order to cancel the effects of the failed transaction.

e. A transaction-level or root-level rollback/abort will
result in the global transaction’s rollback with the help
of a compensating transaction, regardless of the re-
sults produced in the meantime.

4.4.5. Locking

a. Locking follows the multi-granularity locking proto-
col in [5], the optional locking scheme in [3] and the
nested transaction model in [12], except that multiver-
sion locking (that is supported in [5]) is not supported
here so as to ensure 1-copy serializability.

b. The granularity of locking operations is decided by
the LM at the central DBMS, so as to facilitate the op-
erations of the mobile transaction which have been re-
quested as part of the first site-transaction. The deci-
sion is essentially a compromise between coarse
granularity (i.e., maximum-size cache that yields high
efficiency by keeping local executions at the BS) and
fine granularity (i.e., minimum-size cache that pro-
vides maximum concurrency with other mobile trans-
actions executing at the MHs). Intention locks are as-
signed implicitly to the parents of explicitly locked
items (as well as to the parents above them) and the
depth of each intention lock is set by the LM.

c. In addition to multi-granularity levels in locking we
also propose the use of optional (tentative) locks (like
the ones proposed in [3]), which enable low-level
transactions to perform updates even if the targeted
data items have been locked for reading by other,
higher-level transactions. As we explained in Section
4.3, tentative locks prevent the appearance of covert
channels and increase also transaction throughput.

5. SECURITY AGAINST COVERT CHANNELS IN
THE PROPOSED PROTOCOL

 In this section we discuss how the proposed protocol
provides security against covert channels (especially motion
covert channels). In fact, our protocol allows for:

a. No Data Cache in MH. This feature prevents on one
hand the compromising of secure data when a MH is
or stolen and, on the other hand, it prevents a mali-
cious high-level subject (or a Trojan Horse) on the
mobile device from sending secret pieces of informa-
tion to low-level subjects (and establish thus covert
channels).

b. No Local Execution at MH. This feature prevents the
establishment of covert channels that would allow the
pass of secret information to lower-level subjects,
since local execution requires the manipulation of data
to be done at the local host. If local execution were al-
lowed at the MH, this could be exploited by a mali-
cious user for establishing covert channels.

c. Use of MLSDBS at BS. The data cached at the BS is
handled via a MLSDBS so as to prevent the sharing of
the same data (or resources) by subjects of different
levels. As mobile transactions consist of update opera-
tions related to only one security classification, the
cached information consists of data of one classifica-

Multilevel Security in Mobile Data Access The Open Information Systems Journal, 2007, Volume 1 29

tion only (except the data items belonging to lower
classifications, which are brought in by the MLSDBS
and stored in read-only mode on respective data files,
based on their security level).

d. Use of different Logs and Status Tables based on the
Security Clearance of Subjects. One major cause of
the establishment of motion covert channels is the
way that the movement behavior of clients is captured
at base stations by status tables and logs. As these ta-
bles and logs are shared by all transactions that exe-
cute on a BS, they offer a good chance to establish
covert channels. In our model, the status tables and
logs are maintained within the MLSDBS based on
their security level. Thereby the establishment of mo-
tion covert channels is prevented, since mobile trans-
actions of the same security level utilize one status ta-
ble and log.

e. Multiple Granularity Locking. In this technique, the
granule size is never fixed, hindering thus the syn-
chronization between two subjects of different secu-
rity clearances. Therefore covert channels are hard to

be created, because a storage or timing channel re-
quires two subjects of different security clearances to
synchronize on a common data item or system re-
source (e.g., time).

f. Optional Locking. The use of optional locks allows a
high-level subject to read lower-level data without de-
laying a lower-level subject from updating that data.
This prevents the establishment of timing covert
channels (as we explained in Section 4.3).

g. Use of Data Caches at BS. This eliminates the
chances of coordination between two subjects and
prevents thus the establishment of timing or motion
covert channels. As we mentioned earlier, one cache
belongs to only one mobile transaction or to the mo-
bile transactions of only one security level and also it
is resident at the first BS where the mobile transaction
was initiated from. This implies that no sharing of
data or resources can be done by two subjects of dif-
ferent levels.

 Table 1 below summarizes these features along with the
kind(s) of covert channel (or other security breach) that each

Table 1. Operational Features of our Protocol and Security Services it Provides

No Data Cache in Mobile Hosts Prevents timing covert channels This service is also supported by the protocols de-

scribed in Ref. [12], [14], [24], [25], [26], [27] and

[28].

 Prohibits data compromising in the case of

disaster or theft

Not guaranteed by any other protocol in the research

literature.

No Local Execution at Mobile Hosts Prevents motion covert channels Not supported by any other protocol in the research

literature.

Use of MLSDBS at Base Stations Prevents unauthorized access to classified data This service is also supported by the protocols de-

scribed in Ref. [12], [14], [25], [26] and [27].

Use of Different Logs and Status Tables based

on the Security Clearance of each Subject

Prevents motion covert channels Not supported by any other protocol in the research

literature.

Multiple Granularity Locking Prevents timing and storage covert channels This service is also supported by the protocols de-

scribed in Ref. [12], [14], [24], [25], [26], [27] and

[28].

Optional Locking Prevents timing covert channels This service is also supported by the protocols de-

scribed in Ref. [12], [14], [24], [25], [26], [27] and

[28].

 Increases transaction performance This service is also supported by the protocols de-

scribed in Ref. [14], [21] and [28].

Use of Data Cache at Base Stations Prevents timing and motion covert channels Not supported by any other protocol in the research

literature.

 Prevents unauthorized access to classified data This service is also supported by the protocols de-

scribed in Ref. [12], [14], [25], [26] and [27].

Support of Nested Transactions Allows for multiple levels of security in mo-

bile databases

This service is also supported by the protocols de-

scribed in Ref. [12], [26], [27] and [28].

Support of Compensating Transaction Mode Guarantees transaction recovery This service is also supported by the protocols de-

scribed in Ref. [12] and [27].

30 The Open Information Systems Journal, 2007, Volume 1 Khan and Papadopoulos

feature is meant to eliminate. Based on this information, it
compares our protocol against earlier ones in the research
literature and shows its superiority with regard to the secu-
rity it affords in mobile data access.

6. SUMMARY AND FUTURE RESEARCH

 In this paper we have examined the possibility of estab-
lishing multiple levels of data security over mobile networks,
and we have discovered a number of drawbacks in existing
protocols for fixed networks as well as in protocols for mo-
bile transactions. Based on this discovery, we proposed a
novel transaction model that supports multilevel database
security in mobile environments by eliminating the chances
of covert channel appearance, especially the appearance of
motion covert channels that we have identified as a new kind
of security threat in mobile environments. Specifically, our
model incorporates nested transaction techniques along with
multi-granularity and optional locking protocols to ward off
any type of covert channels and make transaction execution
faster. In addition, it assumes the existence of distributed
data caches at base stations in order to leverage the perform-
ance of mobile transactions and prevent the synchronization
of malicious processes with different security classifications.
On the other hand, local caches have been removed from
mobile hosts to ensure the absence of security breaches.
Overall, our protocol prevails over similar ones regarding the
security it provides in mobile data access (as shown in Table
1 above). In fact, no other protocol allows for multiple levels
of security in mobile environments and prevents simultane-
ously the establishment of all kinds of covert channels (i.e.,
timing, storage and motion).

 We intend henceforth to extend our research towards
verifying the above protocol with model checking tools.
Upon completing the verification process, we intend to per-
form simulation experiments in order to evaluate the proto-
col’s performance in mobile environments. To this end, we
are about to develop prototype components (such as MTM
and LM) based on the ideas proposed in this paper. Moreo-
ver, we want to explore meticulously the security effects of
optional locking, because this technique was initially pro-
posed for collaborative editing rather than for database secu-
rity. For example, utilizing optional locking to overwrite a
transaction’s effects may cause losses of multimillion dollars
or result in the leakage of sensitive information (related for
instance to national security). The aforementioned use of
model checking will be extremely useful in that case, as op-
tional locking can cause numerous event interleavings [3]
(and generate thus many different states in the operation of a
system).

REFERENCES

[1] J. Gray, and A. Reuter. Transction Processing: Concepts and

Techniques. San Mateo, CA: Morgan Kaufmann, 1993.

[2] G. Samaras, G.K. Kyrou, and P.K. Chrysanthis. "Two-phase com-

mit processing with restructured commit tree," in Proc. Nat'l.

Greek Conf. on Inform., pp. 82-99, LNCS 2563, 2003.

[3] C. Sun. "Optional and responsive fine-grain locking in internet-

based collaborative systems." IEEE Trans. Parallel Distrib. Syst.,

vol. 13, pp. 994-1008, Sept. 2002.

[4] J.N. Gray, R.A. Lorie, G.R. Putzolu, and I.L. Traiger. "Granularity

of locks and degree of con-sistency in a shared database." San Jose,

CA: IBM Research Lab, 1975.

[5] C. Papadopoulos. "A multiple granularity locking protocol for

CSCW." Int. J. Cooper. Inf. Syst., vol. 11, pp. 21-50, June 2002.

[6] D. Barbará. "Mobile computing and databases - a survey." IEEE

Trans. Knowl. Data Eng., vol. 11, pp. 108-117, Jan./Febr. 1999.

[7] T. Imielinski, and B.R. Badrinath. "Mobile wireless computing."

Commun. ACM, vol. 37, pp. 18-28, Oct. 1994.

[8] M.H. Dunham, A. Helal, and S. Balakrishnan. "A mobile transac-

tion model that captures both the data and movement behaviour."

Mobile Netw. Appl., vol. 2, pp. 149-162, June 1997.

[9] S.A. Patricia, C.L. Roncancio, and M. Adiba. "Analyzing mobile

transactions support for DBMS," in Proc. DEXA, pp. 595-600.

LNCS 2113, 2001.

[10] E. Pitoura, and B. Bhargava. "Data consistency in intermittently

connected distributed systems." IEEE Trans. Knowl. Data Eng.,

vol. 11, pp. 896-915, Nov. 1999.

[11] G.D. Walborn, and P.K. Chrysanthis. "Supporting semantics-based

transaction processing in mobile database applications," in Proc.

IEEE SRDS, pp. 31-40, 1995.

[12] E. Bertino, B. Catania, and E. Ferrari. "A nested transaction model

for multi-level secure database management systems." ACM Trans.

Inform. Syst. Security, vol. 4, pp. 321-370, Nov. 2001.

[13] E. Bertino, S. Jajodia, L. Mancini, and I. Ray. "Advanced transac-

tion processing in multilevel secure file stores." IEEE Trans.

Knowl. Data Eng., vol. 10, pp. 120-135, Jan./Febr. 1998.

[14] B. George, and J.R. Haritsa. "Secure concurrency control in firm

real-time database systems." Distrib. Parallel Dat., vol. 8, pp. 41-

83, Jan. 2000.

[15] National Computer Security Center. "A guide to understanding

covert channel analysis of trusted systems." NCSC-TG-030 (Li-

brary no. 5-240-572), 1993.

[16] P. Serrano-Alvarado, C.L. Roncancio, and M. Adiba. "A survey of

mobile transactions." Distrib. Parallel Dat., vol. 16, pp. 193-230,

Sept. 2004.

[17] Q. Lu, and M. Satyanaraynan. "Improving data consistency in

mobile computing using isolation-only transactions," in Proc. IEEE

HotOS-V, 1995, pp. 124-128.

[18] J.N. Gray, P. Helland, P. O'Neil, and D. Shasha. "The dangers of

replication and a solution." ACM SIGMOD Record, vol. 25, pp.

173-182, June 1996.

[19] P.K. Chrysanthis. "Transaction processing in a mobile computing

environment," in Proc. IEEE APADS, pp. 77-82, 1998.

[20] S.K. Madria, and B. Bhargava. "A transaction model for mobile

computing," in Proc. IEEE IDEAS, pp. 92-102, 1998.

[21] G.D. Walborn, and P.K. Chrysanthis. "Transaction processing in

pro-motion," in Proc. 14th ACM SAC, pp. 389-398, 1999.

[22] R.A. Dirckze, and L. Gruenwald. "A pre-serialization transaction

management technique for mobile multidatabases." Mobile Netw.

Appl., vol. 5, pp. 311-321, Dec. 2000.

[23] L. Gruenwald, and S.M. Banik. "A power-aware technique to man-

age real-time database transactions in mobile Ad-Hoc networks," in

Proc. DEXA, pp. 570-574. LNCS 2113, 2001.

[24] B. Kogan, and S. Jajodia. "Concurrency control in multilevel se-

cure databases based on a replicated architecture," in Proc. ACM

SIGMOD, pp. 153-162, 1990.

[25] P. Ammann, and S. Jajodia. "An efficient multiversion algorithm

for secure servicing of transaction reads," in Proc. ACM CCS, pp.

118-125, 1994.

[26] S.H. Son, and R. David. "Design and analysis of a secure two-

phase locking protocol," in Proc. ACM COMPSAC, pp. 374-379,

1994.

[27] H.-W. Kim, H.-K. Rhee, T.M. Chung, Y.I. Eom, and U.-M. Kim.

"A transaction length-sensitive protocol based on altruistic locking

for multilevel secure database systems," in Proc. ICICT, pp. 107-

118, 2005.

[28] H.-W. Kim, D.-S. Park, H.-K. Rhee, and U.-M. Kim. "Advanced

transaction scheduling protocol for multilevel secure databases in

wireless mobile network environments," in Proc. IEEE ICATM, pp.

240-244, 2001.

Multilevel Security in Mobile Data Access The Open Information Systems Journal, 2007, Volume 1 31

[29] R.A. Kemmerer. "Shared resource matrix methodology: an ap-

proach to identifying storage and timing channels." ACM Trans.

Comput. Syst., vol. 1, pp. 256-277, Aug. 1983.

[30] C. Pu, G.E. Kaiser, and N.C. Hutchinson. "Split-transactions for

open-ended activities," in Proc. 14th VLDB, pp. 26-37, 1998.

Received: July 13, 2007 Revised: September 03, 2007 Accepted: September 03, 2007

