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Abstract: Transaction processing over mobile networks faces new challenges due to limitations in bandwidth and avail-

able power, as well as due to intermittent connectivity that causes loss of data and transaction aborts. Besides, the possi-

bility of security breach increases substantially due to the frequent motion of clients across cells, which gives rise to novel 

forms of covert channels. In this paper, we first investigate to what degree this breach may occur and we also assess the 

suitability of existing protocols for avoiding the appearance of covert channels in mobile database access. Based on the 

discovery of certain vulnerabilities in these protocols, we propose an optional multi-granularity locking protocol that en-

sures secure access to shared data in mobile environments without compromising their consistency or the atomicity of 

transactions.  

Keywords: Mobile networks, multi-level database security, covert channels, mobile transactions, locking protocols, multiple 
granularity locking.  

1. INTRODUCTION  

 Database transaction processing conforms for several 
years now to the criteria of atomicity, consistency, isolation 
and durability (ACID). Techniques like two-phase commit 
(2PC) and locking, in turn, are used by almost every transac-
tion to achieve the atomicity and isolation properties and pre-
serve the consistency of shared data. The application of these 
techniques to centralized and distributed database systems 
has been thoroughly discussed in [1].  2PC ensures that a trans-
action either commits (if all its update operations have been suc-
cessfully completed) or aborts and its intermediate effects on 
all affected sites are obliterated as if that transaction had 
never executed. 2PC comprises two phases, i.e., voting and 
commit. Even if only one participant votes ‘no’, the whole 
transaction is aborted in favour of consistency and atomicity. 
In distributed computing, factors like message complexity 
due to network delays, log overloading due to I/O delays, 
and time complexity of a transaction with regard to reaching 
a decision may lead to a substantially long execution time, 
causing thereby problems in preserving the atomicity prop-
erty [2]. Two-phase locking (2PL), in turn, is a standard 
technique for coordinating concurrent operations that main-
tains the integrity and consistency of data by prohibiting 
conflicting updates from occurring simultaneously [1, 3].  

 Various types of locks and different levels of lock granu-
larity can be used to ensure the isolation property and pre-
serve data consistency, while improving at the same time 
transaction throughput. For example, multiple-granularity 
locking [4, 5] allows a single transaction to access different 
parts of a database at the same time by setting multiple locks 
on these parts simultaneously, with each lock covering ob-
jects of different sizes. This is achieved with the use of both 
actual and intentional locks, which cover an object along 
with some (or all) of its descendants (i.e., components) in the  
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object hierarchy. Multiple-granularity locking can dramati-
cally reduce the access time of transactions, as it is shown in 
the literature by a number of simulation experiments (more 
details on this issue are presented in [5]). Optional locking 
[3], on the other hand, allows a transaction to set a tentative 
lock on an object and start updating the object without hav-
ing requested a permission for that. If another transaction 
wants then to update the same object (while the first transac-
tion is still running), the locking protocol checks its priority 
and, if it is higher than the priority of the currently executing 
transaction, the latter is suspended and the results it has pro-
duced till then are undone. 

1.1. Mobile Transaction Processing  

 In mobile computing environments, transaction process-
ing faces new challenges due to typical characteristics of 
wireless networks such as low bandwidth, frequent discon-
nections by mobile hosts (MH), very low processing power 
as well as limited storage capacity of the mobile devices. A 
survey of database operations in mobile environments points 
out that disconnections are frequent when clients are roam-
ing, as they disconnect from a cell to connect to another [6]. 
In this paper, we assume that during the execution of a trans-
action a MH experiences short intermittent disconnections 
(like the above) rather than long ones, which occur instead 
when a client switches off. Moreover, we adopt the assump-
tion of [7] that handoff delays pose a severe challenge for 
database transactions, hence we recognize the need for a 
novel transaction model to counter their effects. In addition, 
the mobile devices that are used today operate as I/O and 
communication devices primarily with low processing capa-
bilities and battery life, while they rely on proxies working 
on their behalf and residing at their mobile-support station 
(MSS) of the current cell. A novel model for transaction 
execution in such environments may not use the traditional 
techniques of 2PC and 2PL, as transactions would only get a 
small fraction of useful work done due to frequent aborts 
which owe to network disconnections. An effort towards this 
direction defines such a model (so called Kangaroo Transac-
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tions [8]) by building upon the concepts of split and global 
transactions, which ensures the successful execution of 
transactions despite the occurrence of handoffs. Following 
this model, a number of solutions have been proposed by 
other authors [9, 10, 11] that address issues related to roam-
ing, disconnections, data availability and transaction 
throughput.  

1.2. Secure Transaction Processing in Mobile Environ-
ments  

 Transaction processing in safety-critical installations 
(like military and government agencies) requires support of 
multi-level database security (MLDBS) so as to enforce se-
curity at various levels of classification and user clearances, 
especially in a real-time environment which is crucial to the 
success of such installations. Typically, the security aspect is 
looked after by the Bell-LaPadula (BLP) security model [12, 
13, 14, 15]. Yet this model is not sufficient to protect from 
covert channels, which are indirect means whereby a high-
security transaction may transfer information to a low-
security one. In fact, due to the way that 2PC and 2PL oper-
ate, it is possible to allow a malicious user (or a Trojan horse 
[14]) to seamlessly pass on information from a high level of 
classification to lower one(s). The chances for establishing 
covert channels increase when transactions execute in a mo-
bile environment, due to intermittent disconnections and the 
movement of mobile devices across different cells (where 
they re-establish connection using seamless handoff meth-
ods), as well as due to the weaknesses of the 2PC and 2PL 
techniques in maintaining atomicity and consistency. The 
authors of [12] and [14] for example, provide solutions to 
ward off covert channels in fixed networks, but these solu-
tions are unsuitable for establishing MLDBS in mobile net-
works. In an effort to address this deficiency, we incorporate 
in this paper an optional form of multiple-granularity locking 
into an MLDBS protocol so as to eliminate overt and covert 
channels from mobile transactions.  

1.3. Outline of Paper  

 While combining the requirements of security and mobil-
ity, we are also concerned with other relevant issues like 

concurrency and performance (of an individual transaction 
and an entire system too). Fig. (1) below shows the effect of 
these factors on each other within the context of a mobile 
transaction. The dotted arrows denote undefined effects for 
which different views can be presented (we keep this discus-
sion out of the scope of this paper). Though concerned with 
the security of shared data during the execution of mobile 
transactions, we are conscious not to do this at the cost of 
reduced concurrency and degraded performance; rather, our 
solution aims at improving these two factors through the use 
of optional locking at multiple data granularities, which can 
also eliminate the chances of covert channel establishment.  

 In Section 2 we review existing work on mobile transac-
tion processing that is relevant to our own work (a more 
elaborate analysis can be found in [16], which presents sev-
eral details that fall beyond the scope of our paper). In that 
section we also consider certain aspects of database security 
which depend on locking mechanisms and concurrency con-
trol. Based on the conclusions drawn in this review, we con-
sider in Section 3 the possibilities of establishing covert 
channels in mobile environments, while in Section 4 we pro-
pose a novel protocol for avoiding them which is based on 
locking. Although locking is in general considered inappro-
priate for mobile data management [10], its optional charac-
ter in the proposed protocol does not degrade transaction 
throughput but increases security and improves usability in 
database access. Section 5 evaluates this protocol and points 
out its strengths through a real scenario, while Section 6 
summarizes the paper’s results and presents an outlook of 
our future objectives.  

2. RELATED WORK  

2.1. Mobile Transaction Processing  

 Dunham et al. [8] introduced in the nineties the afore-
mentioned concept of Kangaroo Trans-actions for multi-hop 
mobile environments, which was the first that incorporated 
into transaction scheduling both client and data movements. 
In that concept, there is a Data Access Agent (DAA) at the 
base station which creates a mobile transaction and, as a mo-
bile client hops from one cell to another, the control of the 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Interdependence among various factors in mobile transaction processing. 
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KT is passed to the DAA at the base station of the new cell, 
where it creates a new subtransaction called ‘Joey Transac-
tion’ (JT). This subtransaction is considered as the unit of 
transaction execution at each base station. Old JTs commit 
independently of new ones in the same station. At any time 
though, the failure of a JT may cause the entire KT to be 
aborted. A KT can work in compensating mode or in split 
mode. In the first one, the failure of any JT causes the cur-
rently executing JT as well as all the preceding and the fol-
lowing JTs to be undone (that is, previously committed JTs 
will have to be compensated for). The problems with KT are 
that serialization is not always guaranteed, global isolation is 
not enforced (hence global consistency cannot be attained), 
while disconnection due to failures and interference is not 
considered at all.  

 The semantics of transaction processing (and the preser-
vation of the above properties too) had been considered in an 
earlier work [11], in which Walborn and Chrysanthis had 
extended semantic-based models to mobile environments in 
order to increase the concurrency among operations and to 
leverage transaction performance. Specifically, the exploita-
tion of commutative operations and the maintenance of mul-
tiple database replicas along with the fragmentation of data 
objects in mobile environments were shown sufficient to 
achieve serialization and preserve isolation. Yet each frag-
mented object must be cached independently and manipu-
lated synchronously. According to Walborn and Chrysanthis 
[11], that scheme performs well in situations where data ob-
jects are fragmented into stacks or queues.  

 The preservation of data consistency in mobile environ-
ments was dealt with at the same time by Lu and 
Satyaranayanan as well, who presented a model based on 
Isolation-Only Transactions (IOT) [17]. That model was 
influenced by Optimistic Concurrency Control (OCC) 
schemes that use client caches for local transaction execu-
tion. IOT include a sequence of access operations to the da-
tabase and they conform to a set of properties that are spe-
cifically tailored to disconnections in mobile environments. 
Moreover, they perform automatic detection of read/write 
conflicts based on certain serializability constraints. A vari-
ety of conflict-resolution mechanisms are supported, includ-
ing a mechanism employing application semantics as well as 
an invocation mechanism that executes transactions by itself 
or through an Application Specific Resolver (ASR). Unlike 
regular transactions that preserve the ACID properties, IOT 
do not guarantee the atomicity of updates and can preserve 
durability under certain conditions only. Besides, the rele-
vant model is exclusively tailored to the Unix file system to 
access data.  

 A radically different approach to mobile transaction 
processing was proposed one year later by Gray et al. [18], 
which uses 2-tier replication to allow MH to execute transac-
tions in disconnected mode. The database is replicated at 
both the MH and the base nodes, and the MH maintains both 
a local and a master version. The master version of each ob-
ject may coexist with several replicated versions. Two types 
of transactions (i.e., ‘base’ and ‘tentative’) are supported. 
During disconnection, the MH may perform tentative up-
dates to objects owned by other nodes in the network, while 
on reconnection, the MH forwards these updates to the 
owner nodes, where they are re-executed in order to commit 

or to be rejected (they may also commute with other transac-
tions to improve the chances of commitment). After this ex-
change, the base transactions execute by accessing master 
versions, whereas the tentative ones execute by accessing 
tentative versions (i.e., local copies). Moreover, on reconnec-
tion the various base stations (BS) re-execute tentative trans-
actions as base ones in order to achieve global consistency 
and make local updates persistent.  

 In the model proposed by Chrysanthis [19], in turn, mo-
bile transactions are represented as sets of open nested sub-
transactions using the notions of ‘reporting’ and ‘co-
transaction’. As shown in [19], this model guarantees the 
atomicity and non-compensability of mobile transactions. 
While in execution, a ‘global’ mobile transaction can share 
partial results on MH and partially maintain its state on BS. 
Each subtransaction is atomic but does not guarantee the 
atomicity of the global one. Reporting transactions and co-
transactions share their partial results, retain their state and 
can follow their associated transaction which executes on a 
MH (by relocating from one MSS to another along the path 
to the MH). This model allows transactions to be executed 
even in periods of disconnection and it supports the unilat-
eral commit of subtransactions and compensating transac-
tions. Yet not all the operations of a transaction are compen-
sated, since compensation is costly in mobile environments.  

 To increase the availability of data in mobile and station-
ary hosts, Madria and Bhargava [20] introduced at the same 
time the concept of pre-write operations that are supposed to 
execute before regular write operations. A pre-write opera-
tion makes visible the value of a data object after the commit 
of the transaction. Once all the pre-writes have been proc-
essed, the mobile transaction ‘pre-commits’ on a mobile 
host. The results of a pre-committed transaction are visible at 
mobile and stationary hosts before the final commit. This 
minimizes the blocking probability for other transactions and 
increases also concurrency. The transaction continues its 
execution on the mobile host by announcing pre-write values 
and by delegating the resource-consuming part of the execu-
tion (i.e., updates on the disk) to the stationary host (reduc-
ing thereby the computation cost on the former). As shown 
in [20], a pre-committed transaction is guaranteed to commit. 
This feature avoids operation undo or transaction compensa-
tion, which are quite costly in mobile environments. A ‘pre-
read’ operation returns a ‘pre-write’ value, whereas a read 
one returns a write value. Transactions are serialized based 
on their pre-commit order, dealing thus efficiently with the 
limitation of resources in mobile environments. 

 As concerns the Pro-motion technique that was proposed 
by Walborn and Chrysanthis in [21], it supports transaction 
execution in disconnected mode through the so called ‘com-
pacts’, which enable local executions at MH. The necessary 
information to manage a compact is encapsulated in it. Com-
pacts are the basic unit of caching and control. They consider 
the entire mobile system as a large long-lived transaction 
executing on the server. The management of compacts is 
performed by joint collaboration of a ‘compact manager’ at 
the database server, a ‘compact agent’ at the MH and a ‘mo-
bility manager’ at the BS. The compact manager constructs 
the compacts and it acts as a front-end for the database 
server, appearing thereof as an ordinary database client. On 

each MH, the compact agent is responsible for cache man-
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agement, transaction processing, concurrency control, log-
ging and recovery, while the transactions generated by MH 
are executed locally. The mobility manager, instead, is in 
charge of the communication among the agents.  

 Another technique, i.e., preserialization (PS), aims to 
facilitate transaction processing in mobile multi-database 
systems (MMDBS) [22]. In this technique, all operations of 
a global transaction accessing the same site constitute a sin-
gle-site transaction (analogous to a Joey Transaction) and 
they are executed as a single (local) transaction. Site transac-
tions are executed as independent transactions by the local 
database system (LDBS), while the global MMDBS cannot 
prevent the LDBS from executing local transactions inter-
mediately among site transactions. As all site transactions 
are compensable, they are committed at the LDBS prior to 
the decision to commit the global transaction (which consists 
of all site transactions), releasing thus resources in a timely 
fashion. In addition, all site transactions are categorized as 
either vital or non-vital. If neither atomicity nor isolation 
(A/I) have been violated, the transaction commits else it is 
aborted. Serializability of a global transaction can be verified 
by constructing a ‘Partial Global Serialization Graph’ 
(PGSG) from the serialization information of local transac-
tions. In general, this technique places emphasis on explicitly 
ensuring the A/I properties of a transaction, while it assumes 
that the LDMSs maintain individual consistency and durabil-
ity. However, A/I properties can only be ensured if all site 
transactions are declared as vital. 

 Contrary to the above schemes, Gruenwald and Banik 
presented in [23] a power-aware scheme for Mobile Ad-hoc 
Networks (MANET) which allows real-time transaction 
processing. Transactions have deadlines and are classified on 
that basis as firm or soft. Firm transactions must be aborted if 
they miss their deadlines and their value becomes zero. Soft 
transactions have two deadlines; they can still be executed 
after the first deadline expires, but their value decreases after 
the first deadline and becomes zero after the second dead-
line. The model is based on the concept of Large Mobile 
Hosts (LMH), i.e., a MH has sufficient resources while a 
Small Mobile Host (SMH) has few ones. A global transac-
tion may consist of a number of subtransactions running on 
LMH. A subtransaction can be vital or non vital. All the vital 
subtransactions must succeed in order for their global trans-
action to succeed. The model also provides a balance in en-
ergy consumption by executing soft transactions at the LMH 
with the highest energy level. To address the real-time re-
quirement, it reduces the number of transactions that miss 
deadlines by executing firm ones at the nearest LMH, em-
ploying two deadlines for soft transactions, and scheduling 
both the soft and firm ones using a real-time energy-efficient 
transaction scheduling algorithm. To address disconnections 
and migrations that cause prolonged transaction executions, 
the model incorporates the concepts of toggled and sus-
pended transactions which detect the violation of the A/I 
properties as soon as the vital subtransactions of a transac-
tion are completed. Moreover, toggled and suspended trans-
actions allow disconnected transactions to remain in the sys-
tem and be re-executed at a later instance, unless they ob-
struct the execution of other transactions.  

 Dynamic object clustering, finally, has been proposed in 
[10] to facilitate the processing of mobile transactions 

through weak-read, weak-write, strict-read and strict-write 
operations. Strict-read and strict-write have the same seman-
tics as normal read and write operations that are invoked by 
transactions satisfying the ACID properties. A weak-read 
returns the value of a locally cached object which is written 
by a strict-write or a weak-write. A weak-write operation 
only updates a locally cached object and can become perma-
nent upon cluster merging if the weak-write does not conflict 
with any strict-read or strict-write operation. The weak trans-
actions use local and global commits. The ‘local commit’ is 
the same as ‘pre-commit’ while ‘global commit’ is the same 
as the ‘final commit’ proposed in [20]. However, a weak 
transaction can abort after local commit and is compensated. 
A weak transaction’s updates are visible to other weak trans-
actions, whereas pre-writes are visible to all transactions.  

2.2. Secure Transaction Processing  

 As we mentioned in the introduction, the BLP model 
used for MDBS does not guarantee security against covert 
channels. Several approaches have been proposed to ward 
off overt channel appearance in such systems. In the follow-
ing, we review some of these approaches. 

 Kogan and Jajodia [24], for example, have presented a 
concurrency control mechanism for MLSDBMS which is 
based on a replicated architecture. This mechanism favors 
the use of that architecture for leveraging performance and 
employs a technique for controlling concurrency, which en-
sures 1-copy-serializability but hides from the transactions 
all aspects of data replication. Moreover, this mechanism 
provides security against covert channels (since the informa-
tion only flows from lower levels of security to higher ones) 
and incorporates also the techniques of ‘update-projection’ 
and ‘update-report’ which provide coordination among 
DBMS’s at various levels. Specifically, no voting is done by 
this mechanism (unlike the 2PC protocol) but the chances of 
covert channel establishment are eliminated by having a 
transaction committing at its own database and then being 
passed as an update-projection onto other databases of dif-
ferent security levels, where it is guaranteed to commit in the 
same manner. Yet this mechanism runs the risk that higher-
class transactions might be forced to read arbitrarily old val-
ues [24].  

 Ammann and Jajodia [25], on the other hand, proposed a 
multiversion algorithm for secure servicing of transaction 
read which can maintain (up to) three versions of a modified 
data item. Each version corresponds to the state of the data 
item at the end of an (externally defined) version period. 
Thereby, covert channels and starvations of high security-
level transactions are avoided. The algorithm also allows 
Long-Lived Transactions (LLT) of any security level to ac-
cess data by avoiding conflicts. Moreover, the algorithm 
ensures 1-copy serializability but it may present outdated 
views of several portions of a database. Besides, it has the 
drawback that transactions at a higher-access class are forced 
to read arbitrarily old values from the database due to the 
assignment of timestamps to data versions (this problem can 
be especially serious if most of the lower-level transactions 
are long-running ones).  

 The Secure 2PL (S2PL) technique proposed in [26] pro-

hibits the blocking of low-security transactions by high-

security ones, eliminating thus the chances of covert channel 
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establishment. Specifically, the authors of [26] propose the 

use of the so-called ‘virtual lock’ by low-security transac-

tions in order to avoid conflicts with high-security ones. 
When a conflicting high-security transaction commits and 

releases a data item, the virtual lock is upgraded to a real one 

and the operation of the low-security transaction is allowed 
to execute. Another technique that was proposed in [14] im-

proved S2PL by using its modified model for inter-level 

concurrency control in combination with the OPT-WAIT 
technique [21] for intra-level security (in fact, could not 

eliminate interference in all circumstances). This improve-

ment leverages performance and enhances security, since the 
use of a relative slow approach (i.e., S2PL) for intra-level 

security is not a good idea when we are not concerned with 

covert channels. The problem with this approach, however, 
is that it cannot avoid altogether the starvation of high-level 

transactions.  

 Kim et al., in turn, proposed in [27] a (transaction) 

length-sensitive protocol for MLSDBMS which is based on 

altruistic locking. This protocol introduces a new primitive 
called ‘donate’, which uses lock and unlock to signal an in-

terested transaction that no access to a particular data item is 

required any more by the ‘donating’ transaction (making 
therefore this item ready for access by others and avoiding 

its lazy release). The protocol is meant to ensure serializabil-

ity, eliminate covert channels and reduce the likelihood of 
starvation for Short-Lived Transactions (SLT). The work 

presented in [28] has extended the above protocol towards 

mobile transactions and enjoys a better performance com-
pared to simple 2PL/MLS. Moreover, it improves the degree 

of concurrency in mobile environments (where LLT may 

coexist with SLT).  

 Finally, the nested transaction model for MLSDBMS 

proposed in [12] considers concurrent transactions as nested 

trees and provides application-level recovery along with no-
tification-based locking protocols that ensure serializability, 

avoid starvation, allow concurrent execution and prohibit the 

appearance of timing covert channels. The model uses one 
more primitive ‘signal lock’ to allow a high-level transaction 

to seamlessly read a low-level data item, hence a low-level 

transaction can update that item even in the presence of a 
signal lock and remove any chances of covert channel estab-

lishment (this concept extends previous work on multilevel 

file storage [13]). The nested transaction model is further 
supported by notification functions that signal all concerned 

high-level transactions of a data-item’s update. Besides the 

avoidance of starvation, the model also avoids transaction 
abort by reading old data values during re-execution. How-

ever, it is computationally expensive and has slow perform-

ance. 

2.3. Conclusions  

 Existing work on mobile transaction processing has re-
lied primarily on cached data at MH as well as on local exe-
cution and update (or commit) at these hosts. Moreover, the 
various models presented in the previous section deal with 
single security-level databases and do not account for the 
effects of transaction execution on multiple security levels (if 
these are necessary). As we pointed out earlier, these models 
are not suitable for all kinds of mobile devices (especially for 
those characterized by low computing power, short battery 

life and limited storage capacity). Local execution and stor-
age is not only unsuitable for small-sized MH, but is also 
detrimental to data security (hence unsuitable for MLSDBS). 
For this reason, we advocate in this paper a transaction 
model that is independent of the computational power and 
storage capacity of MH, provides multilevel security in mo-
bile environments and preserves also the basic properties of 
atomicity and consistency. Moreover, this model guarantees 
satisfactory performance in the presence of network discon-
nections. 

 On the other hand, the work on MLSDBMS (except that 
presented in [28]) is concerned with the security of data 
across static networks and has concentrated primarily on the 
elimination of timing covert channels, being thus unsuitable 
for mobile transactions. In fact, the latter do not run the risk 
of timing covert channels very often, due to the difficulty of 
synchronization between MHs during transaction processing. 
Other security concerns, however, which owe to the mobility 
of MHs (like, for example, motion covert channels that are 
defined below), are of prime importance to mobile transac-
tions. For example, the frequent relocations or disconnec-
tions of mobile clients (either intentional or caused by Trojan 
horses) may give rise to novel forms of security breach, 
since they may cause variable delays in addition to the de-
lays resulted from the intermittent connectivity of the net-
work. Besides, the adoption of replicated architectures and 
the related techniques of caching and cache invalidation [6] 
may cause a plethora of security breaches since, for example, 
a low-security record in a local cache may have a different 
classification in the central server and incur thus an informa-
tion leak.  

 The likelihood of the above scenarios may be reduced by 
the use of optional locking schemes, whereby the update of 
database contents can be made provisional and comply with 
security policies. Because this may degrade performance, 
however, we intend to apply optional locks at multiple levels 
of granularity so as to better support multiple security levels 
in databases (i.e., different database objects will be locked at 
different granules, enabling thus the assignment of a differ-
ent security classification to each granule). This idea is fur-
ther analyzed below.  

3. COVERT CHANNELS IN MOBILE TRANSAC-
TIONS  

 Security analysis of any system must take into account 
any violation of security policies by overt or covert channels 
[29]. Overt channels (i.e., those established using buffers, 
files or I/O devices) rely on system-protected data to directly 
pass on information among users or processes against the 
system’s security policy, whereas covert channels imply the 
use of other entities (e.g. scheduling locks, disk arm move-
ment, system/memory-created shared clocks or device-busy 
flags, etc) to pass on such information. Covert channels can 
be classified in two categories based on the technique they 
use for this malicious activity, i.e., timing covert channels 
and storage covert channels. A potential covert channel is a 
storage channel if the scenario of its use "involves the direct 
or indirect writing of a storage location by one process and 
the direct or indirect reading of that storage location by an-
other process" [15]. A potential covert channel is a timing 
channel if the scenario of its use involves a process that "sig-
nals information to another by modulating its own use of 
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system resources (e.g., CPU time, memory) in such a way 
that this modulation affects the real response time observed 
by the second process" [15]. Further details on the definition 
and the situations that establish these channels can be found 
in [15].  

 In this paper we identify another type of covert channel 
that does not fall in any of the above categories and has its 
basis on mobile transactions, due to the peculiar execution of 
the latter in wireless networks. We name it “motion covert 
channel” as its creation depends on client movements, net-
work disconnections and the execution characteristics of 
mobile transactions. A motion covert channel is the type of 
covert channel in which some information of higher-security 
level (or about a higher-security subject) is passed over to a 
lower-security level subject who is not supposed to obtain it 
in a mandatory access control (MAC) system (violating thus 
the security policy of the whole system). The scenario of its 
use involves signaling of higher-security information by ex-
ploiting certain factors that affect transaction execution in a 
mobile environment (i.e., handoff, movement pattern of cli-
ents, temporary network disconnection, as well as local 
transaction execution).  

 Major types of information that can be passed this way 
are: the higher security-level data in a database (as in 
MLSDBS), passwords to access data with higher-level privi-
leges, the location of a higher-level subject that may reveal 
(by inference) critical information about some operation or 
intention, the movement pattern of some higher-level subject 
(or a group of related subjects) that may reveal critical in-
formation on an ongoing operation, or even the location of 
(central or distributed) databases which, in turn, can give out 
the location of headquarters or centers of critical activity. 
The main causes of the establishment of such channels in 
existing mobile transaction models are: the local cache on 
MH (used for boosting performance and supporting discon-
nected operations), local execution (for supporting discon-
nected execution and preventing traffic congestion), the ex-
traction of cell information (especially during handoff), as 
well as the maintenance of status tables and logs at MH or 
BS. To further elucidate the concept, we present below some 
scenarios:  

a. In the Pre-write mobile transaction model [20] and the 
Kangaroo transaction model [8], while a MH moves 
from one cell to another, its state (i.e., the values of 
data objects and the location information) moves 
along with it. This feature can be used for establishing 
a motion covert channel in a way that a high-level 
subject can pass on information to a low-level subject 
by adopting a predefined path and making relevant en-
tries in logs (or status tables) that are shared by all 
subjects. A low-level subject can read this information 
and “get the signal”. One way that a stream of bits can 
be passed by a higher-level subject to a lower-level 
one is by adopting a to-and-from movement between 
two adjacent cells. To do that, a MH with high-level 
subjects can position itself on the boundary between 
two cells. We assume that the two subjects of different 
security levels have already synchronized on time and 
have decided also on fixed time intervals (say 10 to 15 
minutes), during which the MH with the high-level 
subject (i.e., the one on the boundary of the two cells) 

moves to the other cell in order to create a new site 
transaction (i.e., JT), signaling thereby bit ‘1’. Other-
wise (i.e., if it doesn’t move) it signals bit ‘0’. This 
way, a to-and-from movement of a MH between two 
adjacent cells and the ensuing update of its 
state/location information can establish a covert chan-
nel which, in turn, can be utilized to pass on secret in-
formation (such as passwords, etc).  

b. In the Kangaroo transaction model [8], once a MH 
requests a transaction, a KT entry is created by DAA 
at the corresponding BS that has a unique KID (made 
up of the ID of the BS and some unique number at that 
station). As the MH moves through different BS, new 
JTs are created at each BS along its route, which (i.e., 
the JTs) have unique IDs consisting of a KID and a 
unique sequence number. In this model, the informa-
tion about handoff is passed over to the MH to help 
the creation of JTs. The DAA uses a transaction status 
table as well as a log record that are shared by all 
concurrent transactions in a BS. A malicious process 
of higher-security level can use the entries in these ta-
bles and/or logs (or the sequence numbers used in the 
creation of the KT and JT) as it moves from pre-
selected cells to pass on secret information to a lower-
level subject.  

c. The Kangaroo transaction model [8] and the reporting 
mobile transaction model [19] are based on the princi-
ple of ‘open nested transaction’. According to that 
principle, the component transactions (i.e., the JTs in 
Kangaroo transactions and compensable reporting 
transactions) commit independently without waiting 
for the global transaction to commit. In the case of 
abort, however, a compensating transaction cancels 
the effects. These partial results are available to other 
mobile transactions in order to increase the availability 
of information and upgrade the transactions’ perform-
ance. This behavior can be used by a malicious 
higher-level transaction to pass on information cov-
ertly. If, for example, a transaction updates a data item 
(e.g., it makes it ‘1’ from ‘0’) and then that data item 
is locked for reading by another, higher-level transac-
tion, bit ‘1’ is passed. Else (i.e., if the lower-level 
transaction is not locked) bit ‘0’ is passed. Then the 
lower-level transaction aborts and forces a compensat-
ing transaction to run. The compensating transaction 
will successfully execute within a shorter time period 
if no lock has been placed on the updated data by an-
other (lower-level) transaction; this time difference 
will be noticed however by the other transaction.  

4. PROPOSED PROTOCOL FOR SECURE MOBILE 
TRANSACTIONS 

4.1. Development Rationale  

 As discussed in Section 2, existing models for mobile 
transactions are based primarily on local execution at MHs 
to increase performance. Moreover, these models have been 
designed to support conventional DBMS in mobile environ-
ments. There is a need to develop a technique that supports 
MLSDBS-based transaction processing, be independent of 
the processing power and storage capability of the MHs, 
does not depend on network bandwidth and is robust against 
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disconnections (i.e., previous work should not be wasted due 
to disconnection and a transaction should continue its execu-
tion despite several short disconnections). The support of 
MLSDBS in mobile environments has not been considered 
so far seriously (except in [28]). Instead, the solutions pro-
posed so far for MLSDBS are intended for static centralized 
systems and thus may not adequately support mobile transac-
tions. On the other hand, existing models for mobile transac-
tions do not fit into MLSDBS models. In fact, previous re-
search on MLSDBS has focused on eliminating covert chan-
nels, while in the case of mobile transactions the major con-
cerns are movement and disconnection management. Moreo-
ver, none of the existing MLSDBS models has considered 
the novel challenges arising in mobile networks (like the 
establishment of motion covert channels).  

 In this section we propose a protocol that is based on a 
nested transaction model for mobile transactions and utilizes 
an optional multiple-granularity locking scheme, which as-
sist in leveraging the performance and ensure the security of 
mobile transactions by eliminating any chances of timing 
and motion covert channels. Within the frames of this proto-
col we assume the existence of a distributed database system 
with a central repository managed by a MLSDBS, as well as 
a local MLSDBS at each BS that can handle cached data, 
manage the local execution of mobile transactions and main-
tain logs and status tables about each transaction. We pro-
pose moreover the use of a data cache at the BS that starts a 
mobile transaction; this cache holds the data acquired from 
the multi-granularity locking protocol on the central data-
base. The MLSDBS at the BS maintains the cached data 
throughout the execution of a mobile transaction, preserving 
thus the security level of each one of the different transac-
tions that execute concurrently on the same BS. Upon com-
pletion of a transaction’s execution, the data is updated in the 
central repository and removed from the local MLSDBS. 

4.2. Nested Transaction Model for Mobile Transactions 
that Supports MLSDBS  

 Since mobile transactions are characterized by frequent 
transitory disconnections which, in turn, may lead to aborts, 
we propose the use of a nested transaction model that has 
been used also in the Kangaroo Transaction model [8], the 
Reporting Transaction model [19], as well as in the OPT-
WAIT technique [21] for partial redoing (i.e., redoing a 
transaction’s portion that has been lost due to a catastrophic 
disconnection). By utilizing nested transactions we assume a 
transaction model for MLSDBS in mobile environments that 
is similar to the model proposed in [12]. The beauty of this 
model is that each subtransaction can commit independently 
from the others and its results can be shared among other 
subtransactions of the same global transaction (if those sub-
transactions are of the same security level). The local 
MLSDBS performs the local commit (as part of the DAA) 
for each subtransaction and the results can be shared by the 
subtransaction’s siblings.  

 Contrary to the ‘pre-write’ approach [20], however, all 
the processing on the BS is done at the MLSDBS while the 
MH only contains a query processor and a browser (like a 
thin client) with no sensitive data onboard. This is done be-
cause, if a MH is captured or stolen, a minimum amount of 
secure information will be passed on to the enemy. In both 
the Kangaroo Transaction [8] and the Reporting Transaction 

[19] models, instead, the processing is done at the BS with 
subtransactions committing independently. However, there 
are obvious problems with these models as we mentioned 
earlier.  

 In the following we propose a locking for the nested 
transactions of our protocol, which makes them more robust 
than Kangaroo Transactions against catastrophic failures. 
Specifically, with this technique the global transaction does 
not need to abort in case of a subtransaction’s (JT) failure 
and, moreover, while no extra traffic is incurred on the net-
work (as it is done with Reporting Transactions). 

4.3. Optional Multiple Granularity Locking  

 As explained in the previous section, we want to make 
subtransactions as independent as possible so as to minimize 
effort duplication (through the repetition of cancelled work) 
in the phase of disconnections. For this reason, subtransac-
tions should be executing with minimum amounts of data in 
order to complete portions of a global transaction. Fine 
granularity is the best option to achieve this purpose and 
increase concurrency among multiple users, but it may de-
grade performance when a transaction requires large portions 
of data. To achieve both goals, we propose the use of multi-
ple granularities at which data may be locked. Moreover, we 
propose the use of optional locking, as many performance 
and security-related issues (especially covert channels) de-
pend on the way that locking is performed.  

 Specifically, we extend the multiple-granularity locking 
protocol presented in [5] which achieves syntactic and se-
mantic consistency (i.e., interface and data consistency) in 
synchronous CSCW. This protocol can be used in mobile 
transactions too, as it improves their performance and guar-
antees the consistency of data without incurring extra net-
work overhead (this is because MHs do not need to wait for 
decisions on their locking requests). Hence instead of lock-
ing with intention locks all the instances of an object class in 
a database or all the components of an object (or even the 
whole hierarchy of data objects), we may assign a scope to 
each intention lock in order to extend it to a specific compo-
nent only. Multiple-granularity locking also reduces the 
chances of establishing covert channels, as the size of the 
object granule that is being read by a higher-level transaction 
and the granule that is being updated by a lower-level trans-
action may not be the same all the time. With optional lock-
ing we can further reduce the chances of establishing timing 
covert channels, as a request for a tentative lock by a higher-
level transaction (in order to read a lower-level data item) 
can be granted immediately. Similarly, a tentative lock may 
be granted to a lower-level transaction in order to update a 
data item that is locked for reading by a higher-level transac-
tion. The lower-level transaction can update of course that 
item, but the resulting inconsistency will be notified to all 
the other transactions concerned (i.e., the higher-level trans-
actions which read that item).  

 However, instead of leaving the locking option at the 
discretion of users (as suggested in [3]), we propose a 
mechanism based on the ‘Raise_Signal’ and ‘Get_Signal’ 
primitives (which are like those presented in [12]). The only 
difference between the signal locking technique in [12] and 
the optional locking technique we propose here is that, in the 
former, notifications are only made to higher-level transac-
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tions that set a signal lock, whereas in our own technique 
notifications are sent to all the affected subjects, irrespective 
of their security classification. However, since only the sub-
jects of the same security level can update a data item of a 
particular classification (but, on the other hand, this item can 
be read by any higher-level security subject), notifications 
will be sent to the subjects of the same security level that 
were updating that item as well as to all higher-level subjects 
that are reading it. Hence since no notifications will be sent 
from higher-level to lower-level subjects, there are no 
chances to establish covert channels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Example scenario of multi-granularity locking. 

 Fig. (2) below presents a simple scenario of multi-
granularity locking. A read lock of scope 2 is first applied to 
object A in the hierarchy. This locking operation has the im-
mediate effects of locking descendant objects B and C with 
read locks of scope 1 and objects D, E and F with read locks 
of scope 0, respectively (phase 2 of locking). According to 
our mobile transaction protocol, the locking operation upon 
object A entails a ‘Raise_Signal’ notification. At about the 
same time, a write lock of scope 1 is applied to object E at 
the bottom of the hierarchy (entailing therefore another 
‘Raise_Signal’ notification). Following the rules of multi-
granularity locking [5], appropriate intention locks should be 
placed then to all the “parents” above that object. However, 
only object G acquires an intention write lock of scope 3, 
because all other parent-objects bear read locks from the 
previous locking operation and disallow thus the simultane-
ous placement of write locks on them (since read locks are 
incompatible with write ones).  

 We deem it important to point out here that the use of 
optional locking in mobile transactions was necessitated by 
the frequent interference and disconnections in wireless mo-
bile networks, since more than one lock may be applied con-
currently to the same data item (as in Fig. 2, for example) 
and the acknowledgement of these locking operations may 

not reach all the interested users. Another argument that jus-
tifies the use of optional locking is that, when a data object is 
already locked by some user, other (concurrently executing) 
transactions will not need to abort nor will they be restarted 
again (and degrade thereby performance). Besides, we pro-
pose the caching of locked data in the BS that initiates the 
Kangaroo transaction. While this will increase performance 
(as the data is readily available there), it will also reduce the 
chances of establishing covert channels because all the exe-
cution will take place on the cached data. In fact, since a 
mobile transaction can only be initiated by one user and util-
izes only one cache, there is no chance for two users to es-
tablish a storage or timing covert channel (since the users 
work on different caches).  

4.4. Protocol Rules  

 As mentioned earlier, our protocol relies on a nested 
model to support mobile transactions and assumes the exis-
tence of a distributed MLSDBS consisting of a central re-
pository and a local MLSDBS (which, in turn, reside on BS 
and handle cached data via multiple logs and status tables, 
each one corresponding to a different security level). Moreo-
ver, our protocol takes advantage of an optional multi-
granularity locking technique to reduce the chances of covert 
channel establishment. That technique improves moreover 
transaction performance. Finally, we assume a nested 
MLSDBS to handle the central repository.  

 In general, the development of our protocol has been 
influenced by the nested transaction model for MLSDBS 
[12], the Kangaroo Transaction model [8], the Pro-Motion 
transaction model [21], the pre-serialization technique [22], 
as well as the multi-granularity locking protocol proposed in 
[5]. The execution phases of our protocol are as follows: 

4.4.1. Transaction Initiation  

a. A mobile transaction works in a thin-client mode 
without a data cache or any kind of local execution at 
the MH; instead, all the execution takes place at the 
MLSDBS (central or at the BS). A mobile user gets 
involved in this process using a specific application at 
her/his device or by selecting in her/his browser a link 
to a particular server.  

b. Upon connecting to that server, the user at the MH 
initiates the mobile transaction by issuing a combina-
tion of read/write operations on his/her authorized data 
(according to his/her security clearance).  

c. The transaction manager (TM) at the BS will make an 
entry into its particular status table (based on the secu-
rity clearance of the mobile user) in order to form a 
mobile transaction as well as the first site-transaction 
at that BS (which will be part of the mobile transac-
tion). The TM then enters corresponding records in its 
particular status table, as it is done in the BTKT (Begin 
Transaction of Kangaroo Transaction) and the BTJT 
(Begin Transaction of Joey Transaction) [8]. 

d. The local TM issues a lock request to the central lock 
manager (LM), which grants or denies it (i.e., the re-
quest) based on the availability of the relevant data. 
The central LM tries to grant to this mobile transaction 
a lock with as coarser a granularity as possible (in or-
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der to increase its performance) by issuing intention-
lock requests of a suitable granularity level.  

e. If the requested lock is granted, the data is cached onto 
the DBMS of the BS where the mobile transaction was 
initiated from, while all the subtransactions (ST) of 
that mobile transaction are executed on the cached 
data of this BS.  

f. All subtransactions (ST) generated at one BS become 
part of one site-transaction. Site-transactions are cre-
ated as a result of a split operation which is meant to 
split the ongoing mobile transaction while the MH 
moves towards another BS. The data is cached only at 
the first BS where the mobile transaction started from 
and, if the required data is not already in that cache, an 
“expansion” request is forwarded to the central data-
base. All the site-transactions under a mobile transac-
tion are sent to the DBMS of the BS that holds the 
cache. All STs below a particular site-transaction are 
local transactions (LT), since transaction execution 
only takes place upon cached data.  

g. Based on the request made by the MH, the local TM 
creates some STs to complement the current site-
transaction and adds their entries to the respective 
status table of the current JT. 

h. The TM makes also appropriate entries in the status 
tables and logs of each subtransaction (ST) that is 
saved on the stable storage, so as to support Long-
Lived-Transaction execution in the phase of discon-
nections and be able to run compensating transactions 
for recovery. The creation of nested STs under each 
site-transaction (as well as under one mobile transac-
tion) conforms to the nested transaction model pro-
posed by Bertino et al. [12]. 

4.4.2. Transaction Execution 

a. The execution of ST also conforms to the nested 
transaction model for MLSDBS ([12]), according to 
which execution only takes place on the leaves of the 
transaction hierarchy and the child transactions hand 
over all acquired locks to their parents. Siblings can 
share the updated records of each other, since a ST 
can deal with data of the same security level. However 
the transaction hierarchy (tree) will have one site-
transaction below the tree’s root, while all the other 
STs will be hung from it. We propose sequential exe-
cution at the site-transaction level only (hence transac-
tion blocking will be done according to the nested 
transaction model in [12]) in order to achieve better 
serializability (as discussed by Bertino et al.). In that 
case, the next site-transaction cannot start before the 
previous one has completed.  

 However, the STs under one site-transaction can be 
executed either in blocking or in non-blocking mode 
(i.e., the children can be executed in parallel with their 
parents in the case of non-blocking to avoid perform-
ance degradation), without affecting serializability 
that is anyway maintained by the split operation [30]). 
The results of a ST will become available to its parent 
after commit, as well as to the outside world after 
commit of the root transaction. The abort of a transac-

tion’s parent will hold the transaction in order to re-
start it later from the same place or to let the user re-
initiate, change or abort it. Similarly, abort of a child 
transaction will leave to the transaction’s parent the 
options of restarting or aborting that child (depending 
on the prevailing situation). 

b. STs can view the partial results of their parents. Yet 
when two siblings are executing concurrently, they 
cannot share the results of each other.  

c. Instead of using a ‘signal lock’ (as suggested by Ber-
tino et al. [12]), we propose the use of optional lock-
ing (as suggested by Sun [3]) to eliminate the chances 
of timing covert channel appearance and also to in-
crease transaction performance. Based on this, lower-
level transaction(s) can update a data item that is al-
ready locked for reading by a higher-level transaction. 
However, this update will be notified to all the trans-
actions concerned, which will take then appropriate 
actions to preserve consistency. Instead of leaving this 
to the users (as proposed by Sun), we propose a 
mechanism based on notification and action primi-
tives, namely a ‘Raise_Signal’ and a ‘Get_Signal’. 
The lower-security level data that is locked for read-
ing by the higher-level transaction is also brought to 
the local cache and is stored on the local MLSDBS, 
based on its security classification.  

d. Unlike the KT model [8], every mobile transaction in 
our protocol runs in compensating mode in order to 
maintain data consistency and guarantee recovery.  

4.4.3. Handoff Procedure 

a. During handoff, split-transactions operate as in the KT 
model [8], requiring first some entries in respective 
transaction-status tables. In our protocol, these tables 
are maintained in stable storage under the MLSDBS 
and conform to the security clearance of mobile users. 
A new site-transaction is created at the destination cell 
with its own ID, while its various operations are gen-
erated by the MH as STs under this site-transaction. 
An expansion in the cache may be done at this stage if 
the requested data is not already there. As concerns 
the previous BS, if the STs of the previous site-
transaction continue their execution, the log record is 
flushed to the stable storage so as to facilitate the exe-
cution of the compensating transaction. 

b. The TM at the destination BS runs its portion of the 
split-transaction and makes appropriate entries (like 
the Continue Transaction KT in [8]) into relevant 
status tables, which (i.e., the entries) hold the state of 
the mobile transaction. In addition, the TM creates 
another site-transaction (as before) so as to manage 
the new STs requested by the MH in the destination 
cell.  

4.4.4. Ending Transaction 

Commit 

a. Each site-transaction is handled independently and its 
commit is notified to all the TMs involved in the mo-
bile transaction. These TMs make transaction-ending 
entries into respective status tables (like End-
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Transaction ST and End-Transaction JT [8]). The STs 
will commit locally at the MLSDBS holding the 
cached data (i.e., at the first BS where the KT started 
from). On successful termination, each ST notifies to 
its parent(s) and to the site-transaction and, at the end, 
to the mobile transaction too. 

b. Upon commit, each ST makes its results available to 
its parent and to other sibling transactions (if these are 
of the same security level in one mobile transaction). 
The locks held by that ST are retained by its parent.  

c. The results become available to the outside world only 
if the mobile transaction has committed and the data-
base has resynchronized with the central repository. 

d. As every transaction is running in compensating 
mode, all logs are kept on stable storage until the mo-
bile transaction commits (or aborts), in which case 
these logs are removed. 

e. The mobile transaction’s status table at the last BS 
will keep the current state of the transaction. If there is 
no live site-transaction and the MH sends eventually 
an end-transaction request, the mobile transaction 
commits. The end-mobile-transaction entry (like the 
ETKT in [8]) is written into the respective log and all 
the records in the BS status tables are freed, so the 
mobile transaction ends. Following through this, the 
cached data is updated into the central repository and, 
upon successful update, this data and all the entries re-
lated to the mobile transaction are removed from all 
the BS’s to preserve security. 

Abort 

a. If a subtransaction aborts, the MH is notified of this 
effect and can decide to abort the whole (or part of 
that) transaction, retry some portion of the ST, or re-
initiate the whole transaction according to the prevail-
ing situation at that time (contrary to the KT model). 

b. If some ST aborts due to a fault, the MH can still carry 
on with the remaining site-transactions and the mobile 
transaction. This matter will be reported however to 
the client who can continue without this ST, or send 
another ST, or re-initiate automatically the same ST 
using entries in the log (according to the nested-
transaction model). 

c. When a ST aborts the mobile transaction itself does 
not abort (thanks to the employed models of nested 
and split-transaction). Instead, the client is notified of 
the ST’s abort and can possibly re-initiate that ST by 
himself or can request its restart (the restart can be 
done using the log entries of the last operations of the 
transaction). Alternatively, the client may ask for 
abort if the site-transaction is not required any more. 
In that case the site-transaction will not be removed 
but it will be an empty site-transaction without any ST 
under it, while the entries in the BS status table and 
the log will be used for running a compensating trans-
action (bring thus the database to a consistent state).  

d. Upon receiving an abort request from a client, an end-
mobile-transaction entry (like the ETKT in [8]) is 
written onto the log, while all entries in all BS status 

tables are freed. Then a compensating transaction runs 
in order to cancel the effects of the failed transaction.  

e. A transaction-level or root-level rollback/abort will 
result in the global transaction’s rollback with the help 
of a compensating transaction, regardless of the re-
sults produced in the meantime. 

4.4.5. Locking 

a. Locking follows the multi-granularity locking proto-
col in [5], the optional locking scheme in [3] and the 
nested transaction model in [12], except that multiver-
sion locking (that is supported in [5]) is not supported 
here so as to ensure 1-copy serializability.  

b. The granularity of locking operations is decided by 
the LM at the central DBMS, so as to facilitate the op-
erations of the mobile transaction which have been re-
quested as part of the first site-transaction. The deci-
sion is essentially a compromise between coarse 
granularity (i.e., maximum-size cache that yields high 
efficiency by keeping local executions at the BS) and 
fine granularity (i.e., minimum-size cache that pro-
vides maximum concurrency with other mobile trans-
actions executing at the MHs). Intention locks are as-
signed implicitly to the parents of explicitly locked 
items (as well as to the parents above them) and the 
depth of each intention lock is set by the LM.  

c. In addition to multi-granularity levels in locking we 
also propose the use of optional (tentative) locks (like 
the ones proposed in [3]), which enable low-level 
transactions to perform updates even if the targeted 
data items have been locked for reading by other, 
higher-level transactions. As we explained in Section 
4.3, tentative locks prevent the appearance of covert 
channels and increase also transaction throughput. 

5. SECURITY AGAINST COVERT CHANNELS IN 
THE PROPOSED PROTOCOL 

 In this section we discuss how the proposed protocol 
provides security against covert channels (especially motion 
covert channels). In fact, our protocol allows for: 

a. No Data Cache in MH. This feature prevents on one 
hand the compromising of secure data when a MH is 
or stolen and, on the other hand, it prevents a mali-
cious high-level subject (or a Trojan Horse) on the 
mobile device from sending secret pieces of informa-
tion to low-level subjects (and establish thus covert 
channels).  

b. No Local Execution at MH. This feature prevents the 
establishment of covert channels that would allow the 
pass of secret information to lower-level subjects, 
since local execution requires the manipulation of data 
to be done at the local host. If local execution were al-
lowed at the MH, this could be exploited by a mali-
cious user for establishing covert channels.  

c. Use of MLSDBS at BS. The data cached at the BS is 
handled via a MLSDBS so as to prevent the sharing of 
the same data (or resources) by subjects of different 
levels. As mobile transactions consist of update opera-
tions related to only one security classification, the 
cached information consists of data of one classifica-
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tion only (except the data items belonging to lower 
classifications, which are brought in by the MLSDBS 
and stored in read-only mode on respective data files, 
based on their security level). 

d. Use of different Logs and Status Tables based on the 
Security Clearance of Subjects. One major cause of 
the establishment of motion covert channels is the 
way that the movement behavior of clients is captured 
at base stations by status tables and logs. As these ta-
bles and logs are shared by all transactions that exe-
cute on a BS, they offer a good chance to establish 
covert channels. In our model, the status tables and 
logs are maintained within the MLSDBS based on 
their security level. Thereby the establishment of mo-
tion covert channels is prevented, since mobile trans-
actions of the same security level utilize one status ta-
ble and log. 

e. Multiple Granularity Locking. In this technique, the 
granule size is never fixed, hindering thus the syn-
chronization between two subjects of different secu-
rity clearances. Therefore covert channels are hard to 

be created, because a storage or timing channel re-
quires two subjects of different security clearances to 
synchronize on a common data item or system re-
source (e.g., time). 

f. Optional Locking. The use of optional locks allows a 
high-level subject to read lower-level data without de-
laying a lower-level subject from updating that data. 
This prevents the establishment of timing covert 
channels (as we explained in Section 4.3). 

g. Use of Data Caches at BS. This eliminates the 
chances of coordination between two subjects and 
prevents thus the establishment of timing or motion 
covert channels. As we mentioned earlier, one cache 
belongs to only one mobile transaction or to the mo-
bile transactions of only one security level and also it 
is resident at the first BS where the mobile transaction 
was initiated from. This implies that no sharing of 
data or resources can be done by two subjects of dif-
ferent levels. 

 Table 1 below summarizes these features along with the 
kind(s) of covert channel (or other security breach) that each 

Table 1. Operational Features of our Protocol and Security Services it Provides 

No Data Cache in Mobile Hosts Prevents timing covert channels This service is also supported by the protocols de-

scribed in Ref. [12], [14], [24], [25], [26], [27] and 

[28]. 

 Prohibits data compromising in the case of 

disaster or theft  

Not guaranteed by any other protocol in the research 

literature. 

No Local Execution at Mobile Hosts Prevents motion covert channels Not supported by any other protocol in the research 

literature. 

Use of MLSDBS at Base Stations Prevents unauthorized access to classified data This service is also supported by the protocols de-

scribed in Ref. [12], [14], [25], [26] and [27]. 

Use of Different Logs and Status Tables based 

on the Security Clearance of each Subject 

Prevents motion covert channels Not supported by any other protocol in the research 

literature. 

Multiple Granularity Locking Prevents timing and storage covert channels This service is also supported by the protocols de-

scribed in Ref. [12], [14], [24], [25], [26], [27] and 

[28]. 

Optional Locking Prevents timing covert channels This service is also supported by the protocols de-

scribed in Ref. [12], [14], [24], [25], [26], [27] and 

[28]. 

 Increases transaction performance This service is also supported by the protocols de-

scribed in Ref. [14], [21] and [28].  

Use of Data Cache at Base Stations Prevents timing and motion covert channels Not supported by any other protocol in the research 

literature. 

 Prevents unauthorized access to classified data This service is also supported by the protocols de-

scribed in Ref. [12], [14], [25], [26] and [27]. 

Support of Nested Transactions Allows for multiple levels of security in mo-

bile databases 

This service is also supported by the protocols de-

scribed in Ref. [12], [26], [27] and [28]. 

Support of Compensating Transaction Mode Guarantees transaction recovery This service is also supported by the protocols de-

scribed in Ref. [12] and [27].  
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feature is meant to eliminate. Based on this information, it 
compares our protocol against earlier ones in the research 
literature and shows its superiority with regard to the secu-
rity it affords in mobile data access.  

6. SUMMARY AND FUTURE RESEARCH  

 In this paper we have examined the possibility of estab-
lishing multiple levels of data security over mobile networks, 
and we have discovered a number of drawbacks in existing 
protocols for fixed networks as well as in protocols for mo-
bile transactions. Based on this discovery, we proposed a 
novel transaction model that supports multilevel database 
security in mobile environments by eliminating the chances 
of covert channel appearance, especially the appearance of 
motion covert channels that we have identified as a new kind 
of security threat in mobile environments. Specifically, our 
model incorporates nested transaction techniques along with 
multi-granularity and optional locking protocols to ward off 
any type of covert channels and make transaction execution 
faster. In addition, it assumes the existence of distributed 
data caches at base stations in order to leverage the perform-
ance of mobile transactions and prevent the synchronization 
of malicious processes with different security classifications. 
On the other hand, local caches have been removed from 
mobile hosts to ensure the absence of security breaches. 
Overall, our protocol prevails over similar ones regarding the 
security it provides in mobile data access (as shown in Table 
1 above). In fact, no other protocol allows for multiple levels 
of security in mobile environments and prevents simultane-
ously the establishment of all kinds of covert channels (i.e., 
timing, storage and motion).  

 We intend henceforth to extend our research towards 
verifying the above protocol with model checking tools. 
Upon completing the verification process, we intend to per-
form simulation experiments in order to evaluate the proto-
col’s performance in mobile environments. To this end, we 
are about to develop prototype components (such as MTM 
and LM) based on the ideas proposed in this paper. Moreo-
ver, we want to explore meticulously the security effects of 
optional locking, because this technique was initially pro-
posed for collaborative editing rather than for database secu-
rity. For example, utilizing optional locking to overwrite a 
transaction’s effects may cause losses of multimillion dollars 
or result in the leakage of sensitive information (related for 
instance to national security). The aforementioned use of 
model checking will be extremely useful in that case, as op-
tional locking can cause numerous event interleavings [3] 
(and generate thus many different states in the operation of a 
system).  
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