
The Regular Viewpoint on PA-Processes

D. Lugiez

Lab. d’Informatique de Marseille, Univ. Aix-Marseille & CNRS URA 1787,
39, r. Joliot-Curie, 13453 Marseille Cedex 13, FRANCE

and

Ph. Schnoebelen

Lab. Specification and Verification, ENS de Cachan & CNRS UMR 8643,
61 av. Pdt Wilson, 94235 Cachan Cedex, FRANCE

Abstract

PA is the process algebra allowing non-determinism, sequential and parallel com-
positions, and recursion. We suggest viewing PA-processes as trees, and using tree-
automata techniques for verification problems on PA.

Our main result is that the set of iterated predecessors of a regular set of PA-
processes is a regular tree language, and similarly for iterated successors. Further-
more, the corresponding tree-automata can be built effectively in polynomial-time.
This has many immediate applications to verification problems for PA-processes,
among which a simple and general model-checking algorithm.

Key words: Process algebra, verification of infinite-state systems, tree-automata.

Introduction

Verification of Infinite State Processes is a very active field of research
today in the concurrency-theory community. There has been an active Petri-
nets community for many years, but researchers involved in process algebra
and model-checking really became interested in infinite state processes after
the proof that bisimulation was decidable for normed BPA-processes [BBK87].
This prompted the investigation of decidability issues for BPP and BPA, with

1 The first author is supported by INRIA Action Presysa.

Preprint submitted to Elsevier Preprint 4 November 2004

or without the normedness condition (see [CHM94,Mol96,BE97] for a partial
survey).

From BPA and BPP to PA: BPA denotes the “non-determinism + se-
quential composition + recursion” fragment of process algebra. BPP is the
“non-determinism + parallel composition + recursion” fragment. PA [BW90]
combines both and is much less tractable. A few years ago, while more and
more decidability results for BPP and BPA were presented, PA was still be-
yond the reach of the current techniques. Then R. Mayr showed the decidabil-
ity of reachability for PA processes [May97c], and extended this into decidabil-
ity of model-checking for PA w.r.t. the EF fragment of CTL [May97b]. This
was an important breakthrough, allowing Mayr to successfully attack more
powerful process algebras [May97a] while other decidability results for PA were
presented by him and other researchers (e.g., [Kuč96,Kuč97,JKM98,HJ99]).

A field asking for new insights: The decidability proofs from [May97b]
(and the following papers) are certainly not trivial. The constructions are quite
complex and hard to check. It is not easy to see in which directions the results
and/or the proofs could be adapted or generalized without too much trouble.
Probably, this complexity cannot be avoided with the techniques currently
available in the field. We believe we are at a point where it is more important
to look for new insights, concepts and techniques that will simplify the field,
rather than trying to further extend already existing results.

Our contribution: In this article, we show how tree-automata techniques
greatly help dealing with PA. Our main results are two Regularity Theorems,
stating that Post∗(L) and Pre∗(L), the sets of configurations reachable from
(resp. allowing to reach) a configuration in some set L, is a regular tree lan-
guage when L is, and giving simple polynomial-time constructions for the
associated automata. Many important consequences follow directly, including
a simple algorithm for model-checking PA-processes.

Why does it work? The regularity of Post ∗(L) and Pre∗(L) could only be
obtained after we had the combination of two main insights:

1. the tree-automata techniques that proved to be very powerful in several
fields (see [CKSV97]) are useful for process-algebraic problems as well. Af-
ter all, PA is a simple term-rewrite system with a special context-sensitive
rewriting strategy, not unlike head-rewriting, in the presence of the sequen-
tial composition operator.

2

2. the syntactic congruences used to simplify notations in simple process alge-
bras bring one closer to the intended semantics of processes, but they break
the regularity of the behavior. The decidability results are much simpler
when one only introduces syntactic congruences at a later stage. (Besides,
this is a more general approach.)

Plan of the article: We start by recalling basic notions and facts from tree-
automata theory (§ 1) before we introduce our definition for the PA process
algebra (§ 2). After we explain how sets of PA processes can be seen as tree
languages (§ 3), we give a simple proof showing how Post ∗(t) and Pre∗(t) are
regular tree languages and start listing applications to verification problems.
We then move on to Post∗(L) and Pre∗(L) for L a regular language (§ 5). These
are our main technical results and we devote § 6 to the important applications
in model-checking. We end up with an extension to reachability and model-
checking under constraints (§ 7) and some simple but important techniques
allowing us to deal with PA processes modulo structural equivalence (§ 8).

Related work: Tree-automata have been successfully used in the field of
branching-time temporal logics [BVW94]. There, automata recognize the com-
putation trees of finite-state systems, not the reachability sets of infinite-state
systems.

The set of all reachable configurations of a pushdown automaton is a regu-
lar (word) language. This folk theorem is often attributed to [Büc64]. It was
extended in [Cau92] and applications to the model-checking of pushdown au-
tomata have been proposed in [FWW97,BEM97]. A “parallel” variant exists:
the reachable configurations of a BPP process form a semilinear set [Esp97].

The transitive closure
∗
→ of the rewrite relation induced by a ground term

rewrite system is recognizable by ground tree transducers [DT90]. Note that
PA is defined by a conditional ground rewrite system, and in fact the induced
reachability relation is a rational tree relation in the sense of Raoult [Rao97]
(see § 5.3).

Among the applications we develop for our regularity theorems, several have
been suggested by Mayr’s work on PA [May97c,May97b] and/or our earlier
work on RPPS [KS97a,KS97b]. Our results have been used in [EK99].

3

1 Regular tree languages and tree automata

We recall some basic definitions and results on tree automata and regular
tree languages. For more details, the reader is referred to any classical source
(e.g. [CDG+99,GS97]).

A ranked alphabet is a finite set of symbols F together with an arity function
η : F → N. This partitions F according to arities: F = F0 ∪ F1 ∪ F2 ∪ · · · .
We write T (F) the set of terms over F and call them finite trees or just trees.

A tree language over F is any subset of T (F).

Tree automata. A (finite, bottom-up) tree automaton A is a tuple 〈F , Q, F,R〉
where F is a ranked alphabet, Q = {q1, . . .} is a finite set of states, F ⊆ Q
is the subset of final states, and R is a finite set of transition rules of the
form f(q1, . . . , qn) 7−→ q where n ≥ 0 is the arity η(f) of symbol f ∈ F . Tree
automata with ε-rules also allow some transition rules of the form q 7−→ q ′.

The transition rules define a rewrite relation on terms built on F ∪Q (seeing
states from Q as nullary symbols). This works bottom-up. At first the nullary
symbols at the leaves are replaced by states from Q, and then the quasi-leaf
symbols immediately on top of leaves from Q are replaced by states from Q.

We write t
A

7−→ q when, using rules from A, t ∈ T (F) can be rewritten (in some
number of steps) to q ∈ Q and say t is accepted by A if it can be rewritten
into a final state of A. We write L(A) for the set of all terms accepted by
A. Any tree language which coincides with L(A) for some A is a regular tree
language. Regular tree languages are closed under complementation, union,
etc.

A tree automaton is completely specified (also complete) if for each f ∈ Fn

and q1, . . . , qn ∈ Q, there is a rule f(q1, . . . , qn) 7−→ q. By adding a sink state
and the obvious rules, any A can be extended into a complete one accepting
the same language.

An example. Let F be given by F0 = {a, b}, F1 = {g} and F2 = {f}.
There is an automaton accepting the set of all t ∈ T (F) where g occurs an
even number of times in t. A is given by Q

def
= {q0, q1}, R

def
= {a 7−→ q0, b 7−→

q0, g(q0) 7−→ q1, g(q1) 7−→ q0, f(q0, q0) 7−→ q0, f(q0, q1) 7−→ q1, f(q1, q0) 7−→
q1, f(q1, q1) 7−→ q0} and F

def
= {q0}.

Let t be g(f(g(a), b)). A rewrites t as follows:

g(f(g(a), b)) 7−→ g(f(g(q0), q0)) 7−→ g(f(q1, q0)) 7−→ g(q1) 7−→ q0.

4

Hence t
A

7−→ q0 and q0 ∈ F , so that t ∈ L(A).

If we replaceR byR′ def
= {a 7−→ q0, b 7−→ q0, g(q0) 7−→ q1, g(q1) 7−→ q0, f(q0, q0) 7−→

q0, f(q1, q1) 7−→ q1} we have an automaton accepting the set of all t where
there is an even number of g’s along every path from the root to a leaf.

Complexity. The size of a tree automaton, denoted by |A|, is the number
of states of A plus the size of the rules of A, where a rule f(q1, . . . , qn) 7−→ q
has size n + 2. In this article, we shall never be more precise than counting
|Q|, the number of states of our automata. Note that, for a fixed F where the
largest arity is m ≥ 2, |A| is in O(|Q|m).

A tree automaton is deterministic if all transition rules have distinct left-hand
sides (and there are no ε-rules). Otherwise it is non-deterministic. Given a non-
deterministic tree automaton, one can use the classical “subset construction”
and, at the cost of a potential exponential blow-up in size, build a deterministic
tree automaton accepting the same language. Telling whether L(A) is empty
for A a (non-necessarily deterministic) tree automaton can be done in time
O(|A|). Telling whether a given tree t is accepted by a given (non-necessarily
deterministic) A can be done in time polynomial in |A| + |t|.

Regular equations. Given a set of variables L1, . . . , Ln, a regular equa-
tion has the form L = exp1 ∪ . . . ∪ expk where the expi have the form
f(Lni,1

, . . . , Lni,m
) (for f ∈ Fm). Here the L’s denote tree-languages, and

f(L1, . . . , Lm) is {f(t1, . . . , tm) | ti ∈ Li}. The least solution (w.r.t. inclusion)
of a finite set of regular equations always exists and is a (tuple of) regular tree-
language(s). As with word languages, it is easy to translate a tree-automaton
into an equivalent system of regular equations, and vice versa.

2 The PA process algebra

For our presentation of PA, we explicitly refrain from writing terms modulo
some simplification laws (e.g. the neutral laws for 0). Hence our use of the
IsNil predicate (see below), inspired by [Chr93].

This viewpoint is in agreement with the earliest works on (general) process
algebras like CCS, ACP, etc. It is a key condition for the results of the next
section, and it clearly does not prevent considering terms modulo some struc-
tural congruence at a later stage, as we demonstrate in section 8.

5

2.1 Syntax

Act = {a, b, c, . . .} is a set of action names.
Var = {X,Y, Z, . . .} is a set of process variables.
EPA = {t, u, . . .} is the set of PA-terms, given by the following abstract syntax

t, u ::= 0 | X | t.u | t ‖ u

Given t ∈ EPA, we write Var(t) the set of process variables occurring in t and
Subterms(t) the set of all subterms of t (includes t).

A guarded PA declaration is a finite set ∆ = {Xi
ai→ ti | i = 1, . . . , n} of

process rewrite rules. Note that the Xi’s need not be distinct.

We write Var(∆) for the set of process variables occurring in ∆, and Subterms(∆)
the union of all Subterms(t) for t a right- or a left-hand side of a rule in ∆.

∆a(X) denotes {t | there is a rule “X
a
→ t” in ∆} and ∆(X) is

⋃

a∈Act ∆a(X).

Var∅

def
= {X ∈ Var | ∆(X) = ∅} is the set of variables for which ∆ provides

no rewrite.

In the following, we assume a fixed Var and ∆.

2.2 Semantics

A PA declaration ∆ defines a labeled transition relation →∆⊆ EPA×Act×EPA.
We always omit the ∆ subscript when no confusion is possible, and use the

standard notations and abbreviations: t
w
→ t′ with w ∈ Act∗, t

k
→ t′ with

k ∈ N, t
∗
→ t′, t→, . . . →∆ is inductively defined via the following SOS rules:

t1
a
→ t′1

t1 ‖ t2
a
→ t′1 ‖ t2

t1
a
→ t′1

t1.t2
a
→ t′1.t2 X

a
→ t

(X
a
→ t) ∈ ∆

t2
a
→ t′2

t1 ‖ t2
a
→ t1 ‖ t′2

t2
a
→ t′2

t1.t2
a
→ t1.t′2

IsNil(t1)

6

where the IsNil(. . .) predicate is inductively defined by

IsNil(t1 ‖ t2)
def
= IsNil(t1) ∧ IsNil(t2), IsNil(0)

def
= true,

IsNil(t1.t2)
def
= IsNil(t1) ∧ IsNil(t2), IsNil(X)

def
=







true if ∆(X) = ∅,

false otherwise.

The IsNil predicate is a syntactic test for termination, and indeed
Lemma 2.1. The following three properties are equivalent:
1. IsNil(t) = true,
2. t 6→ (i.e. t is terminated),
3. Var(t) ⊆ Var∅.

Proof. (3 ⇒ 2) Assume, by way of contradiction, that t→ t′. This derivation
used some process rewrite rule Xi

ai→ ti with Xi ∈ Var(t).
(2 ⇒ 1) Use induction over t to prove that IsNil(t) = false implies that t→ t′

for some t′.
(1 ⇒ 3) is obvious from the definition.

3 EPA as a tree language

We shall use tree automata to recognize sets of terms from EPA. This is possible
because EPA is just a T (F) for F given by F0 = {0, X, Y, . . .} (= {0} ∪ Var)
and F2 = {., ‖}. Of course, we shall keep using the usual infix notation for
terms built with “.” or “‖”.

We begin with one of the simplest languages in EPA:
Proposition 3.1. For any t, the singleton tree language {t} is regular, and
an automaton for {t} needs only have |t| states.

Similarly, an immediate consequence of Lemma 2.1 is
Corollary 3.2. L∅, the set of terminated processes, is a regular tree language,
and an automaton for L∅ needs only have one state.

4 Regularity of the reachability set

For t ∈ EPA, we let Pre∗(t)
def
= {t′ | t′

∗
→ t} (resp. Post∗(t)

def
= {t′ | t

∗
→ t′})

denote the set of iterated predecessors (resp. the set of iterated successors,
also called the reachability set) of t.

7

These notions do not take into account the sequences w ∈ Act ∗ of action
names allowing to move from some t to some t′ in Post∗(t). Indeed, we will
forget about action names until section 7 which is devoted to Pre∗[C](t) and
Post∗[C](t) for C ⊆ Act∗.

Given two tree languages L,L′ ⊆ EPA, we let

L.L′ def
= {t.t′ | t ∈ L, t′ ∈ L′}, L ‖ L′ def

= {t ‖ t′ | t ∈ L, t′ ∈ L′}.

4.1 Regularity of Post∗(t)

We define (L′
t)t∈EPA

, (L′′
t)t∈EPA

, two infinite families of tree languages, as the
least solution of the following set of recursive equations:

L′
0 = {0}, L′′

0 = {0},

L′
X = {X} ∪

⋃

X
a
→t∈∆

L′
t, L′′

X =







{X} if X ∈ Var∅,

⋃

X
a
→t∈∆

L′′
t , otherwise,

L′
t‖t′ = L′

t ‖ L
′
t′ , L′′

t‖t′ = L′′
t ‖ L

′′
t′ ,

L′
t.t′ = L′

t.{t
′} ∪ L′′

t .L
′
t′ , L′′

t.t′ = L′′
t .L

′′
t′ .

(1)

Lemma 4.1. For any t ∈ EPA, L′
t = Post∗(t) and L′′

t = Post∗(t) ∩ L∅.

Proof (sketch). We have L′
t ⊆ Post∗(t) and L′′

t ⊆ Post∗(t) ∩ L∅ because
Post∗(t) and Post∗(t) ∩ L∅ satisfy the equations in (1).

For the other direction, we show that t
k
→ u imply u ∈ L′

t by induction over
k and then by induction over the structure of t. E.g., when t is some t1.t2 we

use the fact that t
k
→ u entails that u is some u1.u2 s.t. ti

ki→ ui and ki ≤ k
(i = 1, 2), and t2 = u2 if u1 6∈ L∅.

The equations in (1) can easily be turned into regular equations with stan-
dard unfolding and replacement techniques. The important observation is that,
eventually, a given L′

t or L′′
t only depends on a finite number of L′

u’s, L
′′
u’s and

8

{u}’s (the u’s are subterms of t and of ∆), so that a finite set of regular
equations defining L′

t can be extracted.
Corollary 4.2. For any t ∈ EPA, the sets L′

t and L′′
t are regular tree languages.

and the corresponding tree automata have O(|∆| + |t|) states. Hence
Theorem 4.3. For any t ∈ EPA, Post∗(t), Post(t) and Post+(t) are regular
tree languages that can be constructed effectively.

4.2 Regularity of Pre∗(t)

We define (Lt)t∈EPA
, an infinite family of tree languages, as the least solution

of the following set of recursive equations.

L0 = {0} ∪
⋃

Y
a
→0∈∆

LY , Lt‖t′ = Lt ‖ Lt′ ∪
⋃

t‖t′∈Post
∗(Y)

LY ,

LX = {X} ∪
⋃

Y
a
→X∈∆

LY , Lt.t′ =







Lt.Lt′ ∪
⋃

t.t′∈Post
∗(Y)

LY , if t ∈ L∅,

Lt.{t
′} ∪

⋃

t.t′∈Post
∗(Y)

LY , otherwise.

(2)

Lemma 4.4. For any t ∈ EPA, Lt = Pre∗(t).

Proof. Similar to the proof of Lemma 4.1, and omitted.

Again, a given Lt only depends eventually on a finite number of Lu’s
2 and the

equations from (2) can easily be transformed into regular equations. Observe
that the conditions t ‖ t′ ∈ Post∗(Y) (resp. t.t′ ∈ Post∗(Y)) are effective since
Post∗(Y) is a regular tree language and we can build an automaton accepting
this language. Moreover we can test in one pass whether a term s or any of
its subterm belongs to Post∗(Y) in time O(|s| × |∆|). Therefore the set of
equations defining Lt can be computed in time O(max(|t|, |∆|) × |∆|2).
Corollary 4.5. For any t ∈ EPA, the set Lt is a regular tree language.

and the corresponding tree automaton has O(|∆| + |t|) states. This entails

2 In section 5.1, we shall see that Corollary 4.5 holds even when ∆ is infinite (but
Var(∆) must be finite).

9

Theorem 4.6. For any t ∈ EPA, Pre∗(t), Pre(t) and Pre+(t) are regular tree
languages.

Theorems 4.3 and 4.6 will be generalized in sections 5 and 7. However, we
found it enlightening to give simple proofs of the simplest variants of our
regularity results.

4.3 Some applications

Theorems 4.3 and 4.6 and the effective constructibility of the associated au-
tomata already have many applications.
Theorem 4.7. The reachability problem “is t reachable from t′?” is in P.

Proof. Combine the cost of membership testing for non-deterministic tree au-
tomata and the regularity of Pre∗(t′) or the regularity of Post ∗(t).

For a different presentation of PA and →∆, [May97c] shows that the reacha-
bility problem is NP-complete. In section 8, we describe how to get his result
as a byproduct of our approach.

Many other problems are solved by simple application of Theorems 4.6 and 4.3:

boundedness. Is Post∗(t) infinite?
covering. (a.k.a. control-state reachability). Can we reach a t′ in which
Y1, . . . , Ym occur (resp. do not occur).

inclusion. Are all states reachable from t1 also reachable from t2? Same
question modulo a regularity preserving operation (e.g. projection).

liveness. where a given ∆′ ⊆ ∆ is live if, in all reachable states, at least one
transition from ∆′ can be fired.

5 Regularity of Post∗(L) and Pre∗(L) for a regular language L

In this section we prove the regularity of Pre∗(L) and Post∗(L) for a regular
language L.

For notational simplicity, given two states q, q′ of an automaton A, we denote

by q ‖ q′ (resp. q.q′) any state q′′ such that q ‖ q′
A

7−→ q′′ (resp. q.q′
A

7−→ q′′),
possibly using ε-rules.

10

5.1 Regularity of Pre∗(L)

Ingredients for APre
∗: Assume AL is an automaton recognizing L ⊆ EPA.

APre
∗ is a new automaton combining several ingredients:

• A∅ is a completely specified automaton accepting terminated processes (see
Corollary 3.2).

• AL is the automaton accepting L.
• We also use a boolean to record whether some rewriting steps have been

done.

States of APre
∗: A state of APre

∗ is a 3-tuple (q∅ ∈ QA∅
, qL ∈ QAL

, b ∈
{true, false}) where Q... denotes the set of states of the relevant automaton.

The underlying idea is that a state (q∅, qL, b) recognize any predecessor of a
term recognized by qL. The other two components record additional informa-
tion (is a subterm terminated, is it a strict predecessor or not) we need to
make Lemma 5.1 work.

Transition rules of APre
∗: The transition rules of APre

∗ are easy to under-
stand once one knows we have Lemma 5.1 in mind. Formally, they are defined
as follows:

type 0: all rules of the form 0 7−→ (q∅, qL, false) s.t. 0
A∅

7−→ q∅ and 0
AL7−→ qL.

type 1a: all rules of the form X 7−→ (q∅, qL, true) s.t. there exists some u ∈

Post+(X) with u
A∅

7−→ q∅ and u
AL7−→ qL.

type 1b: all rules of the form X 7−→ (q∅, qL, false) s.t. X
A∅

7−→ q∅ and X
AL7−→

qL.
type 2: all rules of the form (q∅, qL, b)‖ (q′

∅
, q′L, b

′) 7−→ (q∅ ‖q′
∅
, qL ‖q

′
L, b∨b

′).
type 3a: all rules of the form (q∅, qL, b).(q

′
∅
, q′L, b

′) 7−→ (q∅.q
′
∅
, qL.q

′
L, b ∨ b′)

s.t. q∅ is a final state of A∅.
type 3b: all rules of the form (q∅, qL, b).(q

′
∅
, q′L, false) 7−→ (q∅.q

′
∅
, qL.q

′
L, b).

Lemma 5.1. For any t ∈ EPA, t
APre∗7−→ (q∅, qL, b) iff there is some u ∈ EPA

and some p ∈ N such that t
p
→ u, u

A∅

7−→ q∅, u
AL7−→ qL and (b = false iff p = 0).

Proof. By structural induction over t. There are three cases:

1. t = 0 or t = X: Because APre
∗ has no ε-rules, we only have to observe that

its rules of type 0, 1a and 1b exactly correspond to what the lemma requires.

11

2. t = t1.t2: (⇒): the rewrite t
APre∗7−→ (q∅, qL, b) required that, for i = 1, 2, we

have ti
APre∗7−→ (qi

∅
, qi

L, b
i) and there is a type 3 rule (q1

∅
, q1

L, b
1).(q2

∅
, q2

L, b
2) 7−→

(q∅, qL, b).

The induction hypothesis entails there are t1
p1→ u1 and t2

p2→ u2 corre-
sponding to the rewrite of t1 and t2 by APre

∗ . Now if APre
∗ used a type 3b

rule, then b2 = false hence p2 = 0, u2 = t2, p1 = p and t1.t2
p1→ u1.t2 = u1.u2.

If we used a type 3a rule, then q1
∅

is a final state, therefore u1 ∈ L∅ is a

terminated process, hence t1.t2
p1→ u1.t2

p2→ u1.u2 and (b = b1 ∨ b2 = false iff
p1 + p2 = 0).

(⇐): Conversely, assume t = t1.t2
p
→ u with u

A∅

7−→ q∅ and u
AL7−→ qL. Then

u is some u1.u2 and either (1) u2 = t2 and t1
p
→ u1, or (2) u1 ∈ L∅ and

t1.t2
p1→ u1.t2

p2→ u1.u2 for p1 + p2 = p.

In the first case the ind. hyp. entails t1
APre∗7−→ (q1

∅
, q1

L, b
1) with u1

AL7−→ q1
L,

and t2 = u2
APre∗7−→ (q2

∅
, q2

L, false). Now we can use a type 3b rule to show

t
APre∗7−→ (q1

∅
.q2

∅
, q1

L.q
2
L, b1) with u

AL7−→ q1
L.q

2
L.

In the second case, u1 ∈ L∅ entails t1
AL7−→ (q1

∅
, q1

L, b1) with q1
∅

a final state

of A∅. We can use a type 3a rule to show t
APre∗7−→ (q1

∅
.q2

∅
, q1

L.q
2
L, b1 ∨ b2).

3. t = t1 ‖ t2: This case is similar to the previous one (actually it is simpler).

If we now let the final states of APre
∗ be all states (q∅, qL, b) s.t. qL is a final

state of AL, then t
∗
→ u for some u accepted by AL iff APre

∗ accepts t (this is
where we use the assumption that A∅ is completely specified.)
Theorem 5.2. (Regularity)
(1) If L is a regular subset of EPA, then Pre∗(L) is regular.
(2) Furthermore, from an automaton AL recognizing L, it is possible to con-
struct (in polynomial time) an automaton APre

∗ recognizing Pre∗(L). If AL

has k states, then APre
∗ needs only have 4k states.

Proof. (1) is an immediate consequence of Lemma 5.1. Observe that the result
does not need the finiteness of ∆ (but Var(∆) must be finite).

(2) Building APre
∗ effectively requires an effective way of listing the type 1a

rules. This can be done by computing a product of AX , an automaton for

Post+(X), with A∅ and AL. Then there exists some u ∈ Post+(X) with u
A∅

7−→

q∅ and u
AL7−→ qL iff the language accepted by the final states {(qX , q∅, qL) |

qX a final state of AX} is not-empty. This gives us the pairs q∅, qL we need for
type 1a rules. Observe that we need the finiteness of ∆ to build the AX ’s.

12

5.2 Regularity of Post∗(L)

Ingredients for APost
∗: Assume AL is an automaton recognizing L ⊆ EPA.

APost
∗ is a new automaton combining several ingredients:

• Automata A∅ and AL as in the previous construction, but this time we
need to assume each of them is a completely specified automata.

• A∆ is a completely specified automaton recognizing the subterms of ∆. More

precisely, it has all states qs for s ∈ Subterms(∆). We ensure “t
A∆7−→ qs iff

s = t” by taking as transition rules 0 7−→ q0 if 0 ∈ Subterms(∆), X 7−→ qX

if X ∈ Subterms(∆), qs‖qs′ 7−→ qs‖s′ (resp. qs.qs′ 7−→ qs.s′) if s‖s′ (resp. s.s′)
belongs to Subterms(∆). In addition, the automaton has a sink state q⊥ and
the obvious transitions so that it is a completely specified automaton.

• Again, we use a boolean b to record whether rewrite steps have occurred.

States of APost
∗: The states of APost

∗ are 4-uples (q∅ ∈ QA∅
, qL ∈ QAL

, q∆ ∈
QA∆

, b ∈ {true, false}).

Here the underlying idea is that a state (q∅, qL, q∆, b) recognize any successor
of a term recognized by qL, as formally stated in Lemma 5.3. If q∆ is some qu
for a subterm u of ∆, this means that additionally the current term happens
to be u.

Transition rules of APost
∗: The transition rules of APost

∗ are easy to un-
derstand once one knows we have Lemma 5.3 in mind. Formally, they are
defined as follows:

type 0: all rules of the form 0 7−→ (q∅, qL, q∆, false) s.t. 0
A∅

7−→ q∅, 0
AL7−→ qL

and 0
A∆7−→ q∆.

type 1: all rules of the formX 7−→ (q∅, qL, q∆, false) s.t.X
A∅

7−→ q∅,X
AL7−→ qL,

and X
A∆7−→ q∆.

type 2: all ε-rules of the form (q∅, q
′
L, qs, b

′) 7−→ (q∅, qL, qX , true) s.t. X → s

is a rule in ∆ with X
AL7−→ qL.

type 3: all rules of the form
(q∅, qL, q∆, b) ‖ (q′

∅
, q′L, q

′
∆, b

′) 7−→ (q∅ ‖ q′
∅
, qL ‖ q′L, q∆ ‖ q′∆, b ∨ b

′)
type 4a: all rules of the form

(q∅, qL, q∆, b).(q
′
∅
, q′L, q

′
∆, false) 7−→ (q∅.q

′
∅
, qL.q

′
L, q∆.q

′
∆, b).

type 4b: all rules of the form
(q∅, qL, q∆, b).(q

′
∅
, q′L, q

′
∆, b

′) 7−→ (q∅.q
′
∅
, qL.q

′
L, q∆.q

′
∆, b ∨ b

′) s.t. q∅ is a final
state of A∅.

13

Lemma 5.3. For any t ∈ EPA, t
APost∗7−→ (q∅, qL, q∆, b) iff there is some u ∈ EPA

and some p ∈ N such that u
p
→ t, u

AL7−→ qL, u
A∆7−→ q∆, (b = false iff p = 0)

and t
A∅

7−→ q∅.

Proof. We first prove the (⇒) direction by induction over the length k of the

rewrite t
APost∗7−→ (q∅, qL, q∆, b). We distinguish four cases:

1. k = 1: Then t = 0 or t = X and we used a type 0 or type 1 rule. Taking
u = t and p = 0 satifies the requirements.

2. k > 1 and the last rewrite step used a type 2 ε-rule: Then the rewrite

has the form

k − 1 steps
︷ ︸︸ ︷

t 7−→ (q′
∅
, q′L, qs, b

′) 7−→ (q∅, qL, qX , true). By ind. hyp., there

is a u′ and a p′ s.t. u′
p′

→ t. Now u′
A∆7−→ qs entails u′ = s. The existence

of the type 2 rule entails X → s ∈ ∆. Hence X
p′+1
→ t. Taking u = X and

p = p′ + 1 satifies the requirements.
3. k > 1 and the last rewrite step used a type 4 rule: Then t is some
t1.t2 and the type 4 rule applied on top of two rewrite sequences ti 7−→
(qi

∅
, qi

L, q
i
∆, b

i) for i = 1, 2. The ind. hyp. gives us, for i = 1, 2, some ui and

pi s.t. ui
pi→ ti.

If the last rule was a type 4a rule, then b2 = false so that p2 = 0 and
u2 = t2. Then u1.u2

p1→ t1.u2 = t. Taking u = u1.u2 and p = p1 satifies the
requirements.

Otherwise the last rule was a type 4b rule. Then q1
∅

is a final state and

t1
A∅

7−→ q1
∅

entails that t1 is a terminated process. Hence u1.u2
p1→ t1.u2

p2→
t1.t2 = t. Again, taking u = u1.u2 (with p = p1 + p2) satifies the require-
ments.

4. k > 1 and the last rewrite step used a type 3 rule: This case is sim-
ilar (actually simpler) to the previous one.

For the (⇐) direction, we assume u
p
→ t with the accompanying conditions

(a.c.), and proceed by induction over the length of the transition sequence (i.e.
over p), followed by structural induction over u. There are five cases:

1. u = 0: Then t = u and the a.c.’s ensure there is a type 0 rule for t
APost∗7−→

(q∅, qL, q∆, false).
2. u = X and p = 0: Like the previous case but with a type 1 rule.

3. u = X and p > 0: Then the sequence has the form X
1
→ u′

p−1
→ t. Here the

a.c.’s read q∆ = qX and b = true. X
1
→ u′ ∈ ∆ entails u′ ∈ Subterms(∆). If

we now take a q′L s.t. u′
AL7−→ q′L (one such q′L must exist) and let b′ be false

iff p− 1 = 0, the ind. hyp. gives us t
APost∗7−→ (q∅, q

′
L, qu′ , b′). Now, there must

be a type 2 ε-rule (q∅, q
′
L, qu′ , b′) 7−→ (q∅, qL, qX , true). We use it to show

14

t
APost∗7−→ (q∅, qL, qX , true).

4. u = u1.u2: Then t is some t1.t2 and u
p
→ t is a combination of some u1

p1→ t1
and u2

p2→ t2 with p = p1 + p2. Additionally, if p2 > 0 then t1 ∈ L∅.

For i = 1, 2, The rewrites t
A∅

7−→ q∅, u
AL7−→ qL and u

A∆7−→ q∆ used some

ti
A∅

7−→ qi
∅
, ui

AL7−→ qi
L and ui

A∆7−→ qi
∆ (for i = 1, 2). If we now define bi

according to pi, the ind. hyp. entails that, for i = 1, 2, ti
APost∗7−→ (qi

∅
, qi

L, q
i
∆, b

i).
There are two cases. If t1 ∈ L∅ then q1

∅
is a final state of A∅ and APost

∗

has a type 4b rule (q1
∅
, q1

L, q
1
∆, b

1).(q2
∅
, q2

L, q
2
∆, b

2) 7−→ (q∅, qL, q∆, b) that we
can use. If t1 6∈ L∅, then p2 = 0 and b2 = false. There is a type 4a rule that
we can use.

5. u = u1 ‖ u2: Similar to the previous case (actually it is simpler).

If we now let the final states of APost
∗ be all states (q∅, qL, q∆, b) s.t. qL is a

final state of AL, then APost
∗ accepts a term t iff u

∗
→ t for a u accepted by

AL iff t belongs to Post∗(L). Hence the
Theorem 5.4. (Regularity)
(1) If L is a regular subset of EPA, then Post∗(L) is regular.
(2) Furthermore, from an automaton AL recognizing L, it is possible to con-
struct (in polynomial time) an automaton APost

∗ recognizing Post∗(L). If AL

has k states, then APre
∗ needs only have O(k.|∆|) states.

Proof. Obvious from the previous construction.

5.3 Recognizability of
∗
→

Our two regularity theorems relate L and Pre∗(L) (resp. Post∗(L)). A natural
question is to ask whether the relation “

∗
→” (i.e. {(t, u) | t

∗
→ u}, a subset of

EPA × EPA) is recognizable in some sense.

Ground tree transducers. For this question, the most relevant notion of
recognizability is based on ground tree transducers, GTT’s for short, see [DT90,CDG+99]
for details. It can be shown that the

∗
→ relation induced by a ground rewrite

system is recognizable by a GTT. In the case of PA processes, the rules are
ground rewrite rules with simple left-hand sides, but with a contextual restric-
tion on when a rule may be applied (reflecting the semantics of the sequential
composition operator). This restriction has the unfortunate consequence that
∗
→ for PA is not stable under contexts. And the natural extensions of GTT
that could handle such conditional rules are immediately able to recognize any
recursively enumerable relation.

15

Rational tree relations. Actually, there exists a notion of relation on trees
which allows us to say

∗
→ is recognizable (with, as a corollary, an alternative

proof of our two regularity theorems). These relations are Raoult’s rational
tree relations [Rao97]. Compared to tree automata, the rational tree relations
allow a more general result (i.e. recognizability of

∗
→) but they require more

involved notions and techniques. Here we only give the main ideas on how this
alternative technique works.

Top-down tree automata can be easily understood as bottom-up tree automata
working in the reverse direction. Final states are now initial states and a rule
f(q1, . . . , qn) → q yields a rule q → f(q1, . . . , qn). The expressive power of
top-down and bottom-up tree automata is the same. The regular equations
we used are a formalism very close to the tree automata formalism. In fact,
these regular equations are just regular tree grammars.

Rational tree relations are similar to tree grammars. The main difference is
that rules are defined for tuples of non-terminals, i.e. a rule has the form
[X1, . . . , Xn] → [t1, . . . , tn] where the ti’s are terms built from function symbols
in F and non-terminals of the grammar (seen as nullary symbols). Several
copies of the same tuple of non-terminals may appear in [t1, . . . , tn] and we
add indexes to distinguish between copies. For instance the right-hand side
of [X,Y] → [f(X1, X2), f(Y 1, Y 2)] involves two copies of the pair [X,Y] i.e.
[X1, Y 1] and [X2, Y 2]. If we assume a second rule [X,Y] → [a, b], a possible
derivation is

[X,Y] → [f(X1, X2), f(Y 1, Y 2)] → [f(a,X2), f(b, Y 2)] → [f(a, a), f(b, b)].

If furthermore the axiom of the grammar is the pair [X,Y], then we say that
[f(a, a), f(b, b)] belong to the relation generated by the grammar. Here the
relation is the set of pairs [s, t] which can be derived from the axiom. In
general, when the axiom is a n-tuple, the defined relation is a n-ary relation.
Such relations are called rational tree relations. For a complete description of
rational tree grammars, we refer to [Rao97].
Proposition 5.5. The relation

∗
→⊆ EPA ×EPA is a rational tree relation and

a grammar generating
∗
→ has size O(|∆|).

Proof. Using results from section 4, we easily get a grammar (with axiom NX)
generating Post∗(X), and this for any X. In the same way we get grammars
(with axiom N ′

X) generating Post∗(X) ∩ L∅.

s
∗
→ t holds if s = C[X1, . . . , Xn] and t = C[t1, . . . , tn] for some context C,

and Xi
∗
→ ti for i = 1, . . . , n. Moreover a rewrite may occur to the right of a

sequential composition only if no rewrite may occur to its left. The idea of the
next construction is to give a grammar for pairs such that each component

16

of the pair derive the context C until the left part derives some Xi and the
right part some ti ∈ Post∗(Xi). Moreover, the condition on the sequential
composition complicates the grammar a little bit. For simplicity, we assume
that there is only one variable and we use the classical presentation of grammar
rules.

The pair [I, R] (I for identity, R for rewrite) generates pairs [s, t] such that
s

∗
→ t.

[I, R] → [.(I, Il), .(R, Ir)]

| [.(I ′, I), .(RT,R)]

| [‖ (I1, I2), ‖ (R1, R2))]

| [X,NX]

The pair [Il, Ir] (I for identity and subscripts r, l for right and left) generates
pairs [s, s] for any ground term s.

[Il, Ir] → [.(I1
l , I

2
l), .(I1

r , I
2
r)]

| [‖ (I1
l , I

2
l), ‖ (I1

r , I
2
r)]

| [X,X]

The pair [I ′, RT] generates pairs [s, t] such that s
∗
→ t and t is a terminated

process.

[I ′, RT] → [X,N ′
X]

| [‖ (I
′1, I

′2), ‖ (RT 1, RT 2)]

| [.(I
′1, I

′2), .(RT 1, RT 2)]

Rational tree relations are closed under composition when the grammars are
transduction grammmars. This means roughly that we can decompose each
non-terminal into two parts, the first one for the first projection, the second one
for the second projection. The grammar for

∗
→ has this property. Rational tree

relations generated by transduction grammars are closed under composition
and inverse. Moreover the image and the range of a rational tree relation is a
regular tree language.

It is then possible to derive our two regularity theorems from Proposition 5.5.
For L a regular tree language such that there exists an automaton with k
states accepting L, there exists a transduction grammar of size O(k) generat-
ing the relation IdL = {(t, t) | t ∈ L}. By composing IdL and

∗
→ we get that

Post∗(L) and Pre∗(L) are regular tree languages. The composition between
IdL and

∗
→ requires a synchronization between the rules of IdL and

∗
→. This

17

yields an O(k|∆|) bound on the resulting grammar, hence on the size of the
tree automaton accepting Post ∗(L) (resp. Pre∗(L)).

If we compare this to the direct automata-theoretic proof we gave, this tech-
nique yields the regularity of both Post ∗(L) and Pre∗(L) at the same time.
But the direct approach is simpler and can be adapted e.g. for reachability un-
der constraints (section 7) where actions are taken into account. Dealing with
constraints inside the rational tree relation framework would require adding
the constraints inside Raoult’s framework, and adapting the complex proofs
of [Rao97].

6 Model-checking PA processes

In this section we show a simple approach to the model-checking problem
solved in [May97b]. We see this as one more immediate application of our
main regularity theorems.

We consider a set Prop = {P1, P2, . . .} of atomic propositions. For P ∈ Prop,
Let Mod(P) denotes the set of PA processes for which P holds. We only con-
sider propositions P such that Mod(P) is a regular tree-language. Thus P
could be “t can make an a-labeled step right now”, “there is at least two oc-
curences of X inside t”, “there is exactly one occurence of X in a non-frozen
position”, . . .

The logic EF has the following syntax:

ϕ ::= P | ¬ϕ | ϕ ∧ ϕ′ | EXϕ | EFϕ

and semantics

t |= P
def
⇔ t ∈ Mod(P),

t |= ¬ϕ
def
⇔ t 6|= ϕ,

t |= ϕ ∧ ϕ′ def
⇔ t |= ϕ and t |= ϕ′,

t |= EXϕ
def
⇔ t′ |= ϕ for some t→ t′,

t |= EFϕ
def
⇔ t′ |= ϕ for some t

∗
→ t′.

Thus EXϕ reads “it is possible to reach in one step a state s.t. ϕ” and EFϕ
reads “it is possible to reach (via some sequence of steps) a state s.t. ϕ”.
Definition 6.1. The model-checking problem for EF over PA has as inputs
a given t in EPA and a given ϕ in EF. The answer is yes iff t |= ϕ.

R. Mayr [May97b] gives a quite involved procedure for this problem. Here we
give a simple more general solution.

18

Let us define Mod(ϕ)
def
= {t ∈ EPA | t |= ϕ}. It is well known that the following

holds

Mod(¬ϕ) = EPA − Mod(ϕ) Mod(EXϕ) = Pre(Mod(ϕ))

Mod(ϕ ∧ ϕ′) = Mod(ϕ) ∩ Mod(ϕ′) Mod(EFϕ) = Pre∗(Mod(ϕ))
(3)

Theorem 6.2. (1) For any EF formula ϕ, Mod(ϕ) is a regular tree language.
(2) If we are given tree-automata AP ’s recognizing the regular sets Mod(P),
then a tree-automaton Aϕ recognizing Mod(ϕ) can be built effectively.

Proof. A corollary of (3) and the regularity theorems.

This gives us a decision procedure for the model-checking problem: build an
automaton for Mod(ϕ) and check whether it accepts t. We can estimate the
complexity of this approach in term of |ϕ| and nalt(ϕ).

We define nalt(ϕ) the number of alternation of negations and temporal con-
nectives in ϕ as

nalt(P) = 0 nalt(¬P) = 1

nalt(ϕ ∧ ψ) = max(nalt(ϕ), nalt(ψ)) nalt(¬(ϕ ∧ ψ)) = max(nalt(¬ϕ), nalt(¬ψ))

nalt(EFϕ) = nalt(ϕ) nalt(¬EFϕ) = 1 + nalt(ϕ)

nalt(EXϕ) = nalt(ϕ) nalt(¬EXϕ) = 1 + nalt(ϕ)

nalt(¬¬ϕ) = nalt(ϕ)

Theorem 6.3. (Model-checking) An automaton for Mod(ϕ) can be com-
puted in time

2

2|ϕ||∆|2O(|ϕ||∆|)

. .
.

|ϕ||∆|2







nalt(ϕ)

.

Proof. We assume all automata for the Mod(P)’s have size bounded by M
(a constant). We construct an automaton for Mod(ϕ) by applying the usual
automata-theoretic constructions for intersection, union, complementation of
regular tree languages, and by invoking our regularity theorems for Pre and
Pre∗. All constructions are polynomial except for complementation. With only

19

polynomial constructions, we would have a 2O(|ϕ|) size for the resulting au-
tomaton. The negations involving complementation are the cause of the non-
elementary blowup.

Negations can be pushed inward except that they cannot cross the temporal
connectives EF and EX. Here we have one exponential blowup for determiniza-
tion at each level of alternation. This is repeated nalt(ϕ) times, yielding the
given bound on the number of states hence the overall complexity.

The procedure described in [May97b] is non-elementary (and the known lower-
bound is PSPACE-hard).

Observe that computing a representation of Mod(ϕ) is more general than just
telling whether a given t belongs to it. Observe also that our results just
translate the EF logic into a combination of boolean and Pre∗ operations on
sets, hence assuming a “backward” method. More generally, our two regularity
theorems allow symbolic model-checking approaches based on combinations of
forward and backward methods.

7 Reachability under constraints

In this section, we consider reachability under constraints. Let C ⊆ Act ∗ be

a (word) language over action names. We write t
C
→ t′ when t

w
→ t′ for some

w ∈ C, and we say that t′ can be reached from t under the constraint C. We
extend our notations and write Pre∗[C](L), Post∗[C](L), . . . with the obvious
meaning.

Observe that, even if we assume C is regular, the problem of telling whether

t
C
→, i.e. whether Post∗[C](t) is not empty, is undecidable for the PA algebra.

This can be proved by a reduction from the intersection problem for context-
free languages as follows: Let Σ be an alphabet and # some distinguished
symbol. We use two copies a, a of every letter a in Σ ∪ {#}. Context-free
languages can be defined in BPA (PA without ‖), that is, for any context-

free language L1 (resp. L2) on Σ, we can define PA rules such that X1

w.#
→ iff

w ∈ L1 (resp.X2
w.#
→ iff w ∈ L2). These rules don’t overlap. We now introduce

the regular constraint C
def
= (a1.a1 + · · ·+an.an)∗#.#. Then (X1 ‖X2)

C
→ holds

iff L1 ∩ L2 6= ∅, which is undecidable.

In this section we give sufficient conditions over C so that the problem becomes
decidable (and so that we can compute the C-constrained Pre∗ of a regular
tree language).

20

7.1 Decomposable languages

Recall that the shuffle w tt w′ of two finite words is the set of all words one
can obtain by interleaving w and w′ in an arbitary way.
Definition 7.1. • {(C1, C

′
1), . . . , (Cm, C

′
m)} is a (finite) seq-decomposition of

C iff for all w,w′ ∈ Act∗ we have

w.w′ ∈ C iff (w ∈ Ci, w
′ ∈ C ′

i for some 1 ≤ i ≤ m).

• {(C1, C
′
2), . . . , (Cm, C

′
m)} is a (finite) paral-decomposition of C iff for all

w,w′ ∈ Act∗ we have

C ∩ (w tt w′) 6= ∅ iff (w ∈ Ci, w
′ ∈ C ′

i for some 1 ≤ i ≤ m).

Observe that a seq-decomposition of C must apply to all possible ways of
splitting any word in C. It even applies to a decomposition w.w′ with w = ε
(or w′ = ε) so that one of the Ci’s (and one of the C ′

i’s) contains ε.

Actually, there are close links between seq-decompositions and the classical
notion of residuals of a language, but paral-decompositions have no equivalent.

Seq- and paral-decompositions look similar, but w‖w′ usually contains several
elements: when w ∈ C can be decomposed as a shuffle of some u and some
v, there must be a (Ci, C

′
i) for (u, v). Reciprocally, when u ∈ Ci and v ∈ C ′

i,
there must be some way of shuffling them into some w ∈ C. Hence, while
we have Ci.C

′
i ⊆ C in seq-decompositions, we don’t ask for (Ci ‖ C

′
i) ⊆ C in

paral-decompositions, and in general it does not hold.
Definition 7.2. A family C = {C1, . . . , Cn} of languages over Act is a finite
decomposition system iff every C ∈ C admits a seq-decomposition and a paral-
decomposition only using Ci’s from C.
A C is decomposable if it belongs to a finite decomposition system.
Lemma 7.3. Any decomposable C ⊆ Act ∗ is regular.

since it has a finite number of residuals.

However not all regular C admit finite decompositions, even in the regular case.
Consider C = (ab)∗ and assume {(C1, C

′
1), . . .} is a finite paral-decomposition.

Then for every k, there is a shuffle of ak and bk in C. Hence there must be a
ik s.t. ak ∈ Cik and bk ∈ C ′

ik
. Now if ik = ik′ then there there must exist a

shuffle w′′ of ak and bk
′
with w′′ ∈ C. This is only possible if k = k′. Hence all

ik’s are distinct, contradicting finiteness.

[Sch99] summarizes what is currently known about decomposable languages.
They form a class of regular languages closed by union and concatenation.

21

They include all commutative regular language, hence all UPC’s (union-product
of commutative languages) and it is conjectured that they are exactly the
UPC’s. They are closed by shuffle, contain all finite and co-finite languages.

7.2 Extended regularity theorems

Theorem 7.4. (Regularity)
For any regular L ⊆ EPA and any decomposable C0 ∈ C, Pre∗[C0](L) and
Post∗[C0](L) are regular tree languages.

Ingredients for APost
∗[C]: We build APost

∗[C] in the same way as APost
∗ but

states contain a new C ∈ C component.

States of APost
∗[C]: The states of APost

∗[C] are 5-uples (q∅ ∈ QA∅
, qL ∈

QAL
, q∆ ∈ QA∆

, b ∈ {true, false}, C ∈ C).

Transition rules of APost
∗[C]: The transition rules are:

type 0: all rules of the form 0 7−→ (q∅, qL, q∆, false, C) s.t. 0
A∅

7−→ q∅, 0
AL7−→ qL,

0
A∆7−→ q∆ and ε ∈ C.

type 1: all rules of the form X 7−→ (q∅, qL, q∆, false, C) s.t. X
A∅

7−→ q∅, X
AL7−→

qL, X
A∆7−→ q∆ and ε ∈ C.

type 2: all ε-rules of the form (q∅, q
′
L, qs, b

′, C ′′) 7−→ (q∅, qL, qX , true, C) s.t.

X
a
→ s is a rule in ∆ with X

AL7−→ qL, and a ∈ C ′ for some C ′ s.t. (C ′, C ′′)
appears in the seq-decomposition of C.

type 3: all rules of the form
(q∅, qL, q∆, b, C) ‖ (q′

∅
, q′L, q

′
∆, b

′, C ′) 7−→ (q∅ ‖ q′
∅
, qL ‖ q′L, q∆ ‖ q′∆, b ∨ b

′, C ′′)
s.t. (C,C ′) appears in the paral-decomposition of C ′′.

type 4a: all rules of the form
(q∅, qL, q∆, b, C).(q′

∅
, q′L, q

′
∆, false, C

′) 7−→ (q∅.q
′
∅
, qL.q

′
L, q∆.q

′
∆, b, C).

type 4b: all rules of the form
(q∅, qL, q∆, b, C).(q′

∅
, q′L, q

′
∆, b

′, C ′) 7−→ (q∅.q
′
∅
, qL.q

′
L, q∆.q

′
∆, b∨ b

′, C ′′) s.t. q∅

is a final state of A∅ s.t. (C,C ′) appears in the seq-decomposition of C ′′.

Lemma 7.5. For any t ∈ EPA, t
APost∗[C]
7−→ (q∅, qL, q∆, b, C) iff there is some

u ∈ EPA and some w ∈ C such that u
w
→ t, u

AL7−→ qL, u
A∆7−→ q∆, (b = false iff

|w| = 0) and t
A∅

7−→ q∅.

22

Proof. APost
∗[C] is APost

∗ equipped with a new component and the proof follows
exactly the lines of the proof of Lemma 5.3. We refer to this earlier proof and
only explain how we deal with the new C components.

The (⇒) direction is as in lemma 5.3. The new observations in the 4 cases are:

1. k = 1: The type 0 and type 1 rules entail ε ∈ C, so that we can take w = ε.
2. k > 1 and the last rewrite step used a type 2 ε-rule: Use the fact that
w′ ∈ C ′′ entail a.w′ ∈ C.

3. k > 1 and the last rewrite step used a type 4 rule: Use the fact that
C.C ′ ⊆ C ′′.

4. k > 1 and the last rewrite step used a type 3 rule: Use the fact that
w1 ∈ C and w2 ∈ C ′ entail that there exists at least one shuffling w of w1

and w2 s.t. w ∈ C ′′.

The (⇐) direction is as in lemma 5.3. The new observations in the 5 cases are:

1. u = 0: The type 0 rules allow all C’s containing ε.
2. u = X and p = 0: Idem.

3. u = X and p > 0: Then the sequence has the form X
a
→ u′

w′

→ t. Now if
w = a.w′ ∈ C, there must be a (C ′, C ′′) in the seq-decomposition of C s.t.
a ∈ C ′ and w′ ∈ C ′′. So that there is a type 2 rule (. . . , qu′ , b′, C ′′) 7−→
(. . . , qX , true, C) we can use.

4. u = u1.u2: Here u1
w1→ t1, u2

w2→ t2 and w1.w2w ∈ C. If t1 6∈ L∅ then w2 = ε,
w1 ∈ C and we have the type 4a rule we need. Otherwise there is a pair
(C1, C2) in the seq-decomposition of C s.t. wi ∈ Ci (i = 1, 2). This pair
gives us the type 4b rule we need.

5. u = u1 ‖ u2: Here u1
w1→ t1, u2

w2→ t2 and w ∈ C is some shuffle of w1 and w2.
Therefore there is a (C1, C2) in the paral-decomposition of C s.t. wi ∈ Ci

(i = 1, 2). This pair gives us the type 3 rule we need.

If we now let the final states of APost
∗[C] be all (q∅, qL, q∆, b, C0) s.t. qL is a

final state of AL, then APost
∗[C] accepts a term t iff t ∈ Post∗[C0](t). (The set

of final states can easily be adapted so that we recognize Post+[C0](L).)

Ingredients for APre
∗[C]: Same as in the construction of APre

∗ , with an
additional C ∈ C component.

States of APre
∗: A state of APre

∗ is a 4-tuple (q∅ ∈ QA∅
, qL ∈ QAL

, b ∈
{true, false}, C ∈ C).

23

The final states are all (q∅, qL, b, Ci) s.t. qL is a final state of AL and Ci the
constraint to satisfy.

Transition rules of APre
∗: The transition rules of APre

∗ are defined as
follows:

type 0: all rules of the form 0 7−→ (q∅, qL, false, C) s.t. 0
A∅

7−→ q∅, 0
AL7−→ qL

and ε ∈ C.
type 1a: all rules of the form X 7−→ (q∅, qL, true, C) s.t. there exists some

u ∈ Post+[C](X) with u
A∅

7−→ q∅ and u
AL7−→ qL.

type 1b: all rules of the form X 7−→ (q∅, qL, false, C) s.t. X
A∅

7−→ q∅, X
AL7−→ qL

and ε ∈ C.
type 2: all rules of the form

(q∅, qL, b, C)‖(q′
∅
, q′L, b

′, C ′) 7−→ (q∅‖q
′
∅
, qL‖q

′
L, b∨b

′, C ′′) s.t. (C,C ′) appears
in the paral-decomposition of C ′′.

type 3a: all rules of the form
(q∅, qL, b, C).(q′

∅
, q′L, b

′, C ′) 7−→ (q∅.q
′
∅
, qL.q

′
L, b∨b

′, C ′′) s.t. q∅ is a final state
of A∅ and (C,C ′) appears in the seq-decomposition of C ′′

type 3b: all rules of the form
(q∅, qL, b, C).(q′

∅
, q′L, false, C

′) 7−→ (q∅.q
′
∅
, qL.q

′
L, b, C).

Lemma 7.6. For any t ∈ EPA, t
APre∗[C]
7−→ (q∅, qL, b, C) iff there is some u ∈ EPA

and some w ∈ C such that t
w
→ u, u

A∅

7−→ q∅, u
AL7−→ qL and (b = false iff

|w| = 0).

Proof. APre
∗[C] is APre

∗ equipped with a new component and the proof follows
exactly the lines of the proof of Lemma 5.3. We refer to this earlier proof and
only explain how we deal with the new C components.

1. t = 0 or t = X: The conditions on the C component for the existence of
rules of type 0, 1a and 1b agree with the statement of the lemma.

2. t = t1.t2: (⇒): Now, for i = 1, 2, we have ti
APre∗7−→ (qi

∅
, qi

L, b
i, C i) and there

is a type 3 rule (. . . , C1).(. . . , C2) 7−→ (. . . , C). Also, the ind. hyp. gives
ti

wi→ ui (i = 1, 2) with w1 ∈ C i. In the type 3b case, w1 ∈ C. In the type 3a
case, we use C1.C2 ⊆ C.

(⇐): Here we have either (1) u2 = t2 and t1
w
→ u1, or (2) u1 ∈ L∅ and

t1.t2
w1→ u1.t2

w2→ u1.u2 with w = w1.w2.
In the first case we apply the induction hypothesis with C itself on t1 and

some C ′ containing ε on t2, then we can use a type 3b rule. In the second
case, there must be a pair (C1, C2) in the seq-decomposition of C, with
wi ∈ C i and we just have to use the ind. hyp. and a type 3a rule.

3. t = t1 ‖ t2: This case is similar to the previous one. The (⇐) direction uses

24

the pair accouting for w1, w2 in the paral-decomposition of C. The (⇒)
direction uses the crucial fact that whenever ti

wi→ ui for i = 1, 2, we have
t1 ‖ t2

w
→ u1 ‖ u2 for any w in w1 tt w2, in particular for the w that C must

contain.

7.3 Applications to model-checking

The above results let us apply the model-checking method from section 6 to
an extended EF logic where we now allow all 〈C〉ϕ formulas for decomposable
C. The semantics is given by

t |= 〈C〉ϕ
def
⇔ t′ |= ϕ for some t

C
→ t′.

so that Mod(〈C〉ϕ) = Pre∗[C](Mod(ϕ)). Then a corollary of Theorem 7.4 is
that Mod(ϕ) is regular for any ϕ in the extended EF.

Decomposability of C is a quite general condition. It excludes the undecid-
able situations that would exist in the general regular case and immediately
includes the extensions proposed in [May97b].

Observe that it is possible to combine decomposable constraints already in
the model-checking algorithm: when C ∈ C and C ′ ∈ C

′ are decomposable,
we can deal with 〈C ∩C ′〉ϕ directly (i.e. without constructing a finite decom-
position system containing C and C ′) because it is obvious how to extend the
construction for APre

∗[C] to some APre
∗[C,C′] where several C components are

dealt with simultaneously.

One can also deal with 〈C ∪C ′〉ϕ and 〈C.C ′〉ϕ directly since Pre∗[C ∪C ′](L)
and Pre∗[C.C ′](L) are Pre∗[C](L)∪Pre∗[C ′](L) and Pre∗[C](Pre∗[C ′](L)) for
any C,C ′ and L.

8 Structural equivalence of PA terms

In this section we show how our tree-automata techniques can quite directly
solve problems about PA modulo structural equivalence. Here we consider the

25

congruence ≡ induced on PA terms by the following equations:

(C‖) t ‖ t′ ≡ t′ ‖ t

(A‖) (t ‖ t′) ‖ t′′ ≡ t ‖ (t′ ‖ t′′)

(A.) (t.t′).t′′ ≡ t.(t′.t′′)

(N1) t.0 ≡ t

(N2) 0.t ≡ t

(N3) t ‖ 0 ≡ t

(N4) 0 ‖ t ≡ t

This choice of equations is motivated by the fact that several recent works on
PA (and extensions) only consider processes up-to this same congruence. Our
tree-automata techniques could deal with variants.

It is useful to explain how our definition of PA compares with the definition
used in [May97c,May97b]. We consider a transition system between terms
from EPA. The terms Mayr considers for his transition system can be seen
as equivalence classes, modulo ≡, of our EPA terms. Write [t]≡ for the set
{t′ | t ≡ t′}. The transition relation used by Mayr coincides with a transition
relation defined by

[t]≡
a
→ [u]≡

def
⇔ ∃t′ ∈ [t]≡, u

′ ∈ [u]≡ s.t. t′
a
→ u′. (4)

In the following, we speak of “PA≡” when we mean the transition system one
obtains with ≡-classes of terms as states, and transitions given by (4).

Our approach to PA is more general in the sense that we can define PA≡ in
our framework. By contrast, if one reasons modulo ≡ right from the start, one
loses the information required to revert to the other approach.

For example, the reachability problem “do we have t
∗
→ u?” from Theorem 4.7

asks for a very precise form for u. The reachability problem solved in [May97c]
asks for u modulo ≡. In our framework, this can be stated as “given t and
u, do we have t′

∗
→ u′ for some t′ ≡ t and u′ ≡ u?” (see below). In the other

framework, it is impossible to state our problem. (But of course, the first
motivation for our framework is that it allows the two regularity theorems.)

The rest of this section is devoted to some applications of our tree-automata
approach to problems for PA≡. The emphasis is on simplicity, not on exhaus-
tivity.

8.1 Structural equivalence and regularity

(A.), (C‖) and (A‖) are the associativity-commutativity axioms satisfied by .
and ‖. We call them the permutative axioms and write t =P u when t and t′

are permutatively equivalent.

26

(N1) to (N4) are the axioms defining 0 as the neutral element of . and ‖. We
call them the simplification axioms and write t↘ u when u is a simplification
of t, i.e. u can be obtained by applying the simplification axioms from left to
right at some positions in t. Note that ↘ is a (well-founded) partial ordering.
We write ↙ for (↘)−1. The simplification normal form of t, written t↓, is the
unique u one obtains by simplifying t as much as possible (no permutation
allowed).

Such axioms are classical in rewriting and have been extensively studied [BN98].
≡ coincide with (=P ∪ ↘ ∪ ↙)∗. Now, because the permutative axioms com-
mute with the simplification axioms (i.e., ↘ ◦ =P ⊆ =P ◦ ↘), we have

t ≡ t′ iff t↘ u =P u′ ↙ t′ for some u, u′ iff t↓ =P t′↓. (5)

This lets us decompose questions about ≡ into questions about =P and ques-
tions about ↘. We start with =P .
Lemma 8.1. For any t, the set [t]=P

def
= {u | t =P u} is a regular tree language,

and an automaton for [t]=P
needs only have m.(m/2)! states if |t| = m.

Proof (sketch). This is because [t]=P
is a finite set with at most (m/2)! ele-

ments. (The exponential blowup cannot be avoided.)

The simplification axioms do not have the nice property that they only allow
finitely many combinations, but they behave better w.r.t. regularity. Write
[L]↘ for {u | t↘ u for some t ∈ L}, [L]↙ for {u | u↘ t for some t ∈ L}, and
[L]↓ for {t↓ | t ∈ L}.
Lemma 8.2. For any regular L, the sets [L]↙, [L]↘, and [L]↓ are regular tree
languages. From an automaton AL recognizing L, we can build automata of
size O(|A|) for these three languages in polynomial time.

Proof. 1. [L]↙: u is in [L]↙ iff u is some t ∈ L with additional 0’s that can be
simplified out. Hence an automaton accepting [L]↙ is obtained from AL by
adding a new state q0 for the subterms that will be simplified. We also add
rules 0 7−→ q0, q0 ‖ q0 7−→ q0, and q0.q0 7−→ q0 for accepting these subterms,
and, for any q in AL, rules q.q0 7−→ q, q0.q 7−→ q, q ‖ q0 7−→ q and q0 ‖ q 7−→ q
for simulating simplification.

2. [L]↘: u is in [L]↘ iff u is some t ∈ L where some 0’s have been simplified. A
simple way to obtain an automaton for [L]↘ is to synchronize the automaton
AL accepting L with the complete automaton A0 recognizing terms built with
0, . and ‖ only. A0 has only two states: q0 and q 6=0.

27

Once the two automata are synchronized, we have t 7−→ (q, q ′) iff t
AL7−→ q and

t
A07−→ q′. We simulate simplification of nullable terms with additional ε-rules.

Namely, whenever there is a rule (q1, q
′
1) ‖ (q2.q

′
2) 7−→ (q3.q

′
3) with q′2 = q0, we

add an ε-rule (q1, q
′
1) 7−→ (q3.q

′
3). We add a symmetric rule if q′1 = q0 and do

the same for . instead of ‖.

Now a routine induction on the length of derivations shows that s 7−→ (q, q ′)

iff ∃t ∈ L s.t. t↘ s and t
AL7−→ q.

3. [L]↓: The simplest way to see regularity is to note that [L]↓ is [L]↘ ∩
[EPA]↓.

Note that for a regular L, [L]=P
and [L]≡ are not necessarily regular [GD89].

However we have
Proposition 8.3. For any t, the set [t]≡ is a regular tree language, and an
automaton for [t]≡ needs only have m.(m/2)! states if |t| = m.

Proof. Combine (5) with lemmas 8.1 and 8.2.

8.2 Structural equivalence and behaviour

Seeing terms modulo ≡ does not modify the observable behaviour because of
the following
Proposition 8.4. ≡ is a bisimulation relation, i.e. for all t ≡ t′ and t

a
→ u

there is a t′
a
→ u′ with u ≡ u′ (and vice versa).

The proof is standard but tedious. We shall only give a proof sketch.

Proof. For any single equation l = r in the definition of ≡, we show that the
set R = {(lσ, rσ)} of all instances of the equation is a bisimulation relation. A
complete proof of this for (A‖) takes the better part of p. 95 of the book [Mil89]
and the other six equations can be dealt with similarly, noting that IsNil()
is compatible with ≡. Then there only remains to prove that the generated
congruence is a bisimulation. This too is standard: the SOS rules for PA obey
a format ensuring that the behaviour of a term depends on the behaviour of
its subterms, not their syntax.

We may now define a new transition relation between terms: t
a
⇒ t′ iff t ≡ u

a
→

u′ ≡ t′ for some u, u′. This amounts to the “[t]≡
a
→ [u]≡” from (4) and is the

simplest way to translate problems for PA≡ into problems for our set of terms.

28

We adopt the usual abbreviations
∗
⇒,

w
⇒,

k
⇒ for w ∈ Act∗, k ∈ N, etc.

Proposition 8.5. For any w ∈ Act∗, t
w
⇒ u iff t

w
→ u′ for some u′ ≡ u.

Proof. By induction on the length of w, and using Proposition 8.4.

8.3 Reachability modulo ≡

Now it is easy to prove decidability of the reachability problem modulo ≡:
t

∗
⇒ u iff Post∗(t) ∩ [u]≡ 6= ∅. Recall that [u]≡ and Post∗(t) are regular tree-

languages one can build effectively. Hence it is decidable whether they have a
non-empty intersection.

This gives us a simple algorithm using exponential time (because of the size
of [u]≡). Actually we can have a better result 3 :
Theorem 8.6. The reachability problem in PA≡, “given t and u, do we have
t

∗
⇒ u?”, is in NP.

Proof. NP-easiness is straightforward in the automata framework: We have
t

∗
⇒ u iff t

∗
→ u′ for some u′ s.t. u′↓ =P u↓. Write u′′ for u′↓ and note that |u′′| ≤

|u|. A simple algorithm is to compute u↓, then guess non-deterministically a
permutation u′′, then build automata A1 for [u′′]↘ and A2 for Post∗(t). These
automata have polynomial-size. There remains to checks whether A1 and A2

have a non-empty intersection to know whether the required u′ exists.

Corollary 8.7. The reachability problem in PA≡ is NP-complete.

Proof. NP-hardness of reachability for BPP’s is proved in [Esp97] and the
proof idea can be reused in our framework. We reduce 3SAT to reachability
in PA≡. Consider an instance P of 3SAT. P has m variables and n clauses,
so that it is some

∧n
i=1

∨3
j=1 εi,jxri,j

where, for every i, j, 1 ≤ ri,j ≤ m and
εi,j ∈ {+,−}. We define the following ∆P :

∆P
def
=







(R1) Xr → Xε
r for 1 ≤ r ≤ m and ε ∈ {+,−},

(R2) Xε
r → 0 for 1 ≤ r ≤ m and ε ∈ {+,−},

(R3) X
εi,j
ri,j → Cj ‖X

εi,j
ri,j for 1 ≤ i ≤ n and 1 ≤ j ≤ 3.

(Note that |∆P | = O(|P |).) The (R1) rules pick a valuation v for the Xr’s, the
(R3) rules use v to list satisfied clauses, the (R2) rules discard unnecessary

3 First proved in [May97c]

29

elements. Finally

(X1 ‖ (X2 ‖ (· · · ‖Xm) . . .))
∗
⇒ (C1 ‖ (C2 ‖ (· · · ‖ Cn) . . .)) iff P is satisfiable.

Other applications are possible, e.g.:
Proposition 8.8. The boundedness problem in PA≡ is decidable in polynomial-
time.

Proof. [t]≡ can only reach a finite number of states in PA≡ iff t can only reach
a finite number of non-≡ terms in PA. Now because the permutative axioms
only allow finitely many variants of any given term, Post ∗(L) contains a finite
number of non-≡ processes iff [Post ∗(L)]↓ is finite.

8.4 Model-checking modulo ≡

The model-checking problem solved in [May97b] considers the EF logic over
PA≡. Translated into our framework, this amounts to interpret the temporal
connectives in terms of ⇒ instead of →: if we write Mod≡(ϕ) for the interpre-
tation modulo ≡, we have

Mod≡(〈C〉ϕ)
def
= {t | t

w
⇒ u for some u ∈ Mod≡(ϕ) and some w ∈ C}.

Additionally, we only consider atomic propositions P compatible with ≡, i.e.
where t |= P and t ≡ u imply u |= P .

Model-checking in PA≡ is as simple as model-checking in PA:
Lemma 8.9. For any EF-formula ϕ we have Mod≡(ϕ) = Mod(ϕ) = [Mod(ϕ)]≡.

Proof. By structural induction over ϕ, using Prop. 8.5 and closure w.r.t. ≡
for the 〈C〉ϕ case.

The immediate corollary is that we can use exactly the same approach for
model-checking in PA with or without ≡.

Conclusion

In this article we showed how tree-automata techniques are a powerful tool
for the analysis of the PA process algebra. Our main results are two general

30

Regularity Theorems with numerous immediate applications, including model-
checking of PA with an extended EF logic.

The tree-automata viewpoint has many advantages. It gives simpler and more
general proofs. It helps one to understand why some problems can be solved
in P-time, some others in NP-time, etc. It is quite versatile and many variants
of PA can be attacked with the same approach.

References

[BBK87] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of
bisimulation equivalence for processes generating context-free languages.
In Proc. Parallel Architectures and Languages Europe (PARLE’87),
Eindhoven, NL, June 1987, vol. II: Parallel Languages, volume 259 of
Lecture Notes in Computer Science, pages 94–111. Springer, 1987.

[BE97] O. Burkart and J. Esparza. More infinite results. In Proc. 1st Int.
Workshop on Verification of Infinite State Systems (INFINITY’96),
Pisa, Italy, Aug. 1996, volume 5 of Electronic Notes in Theor. Comp.
Sci. Elsevier Science Publishers, 1997.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model-checking. In Proc. 8th Int.
Conf. Concurrency Theory (CONCUR’97), Warsaw, Poland, Jul. 1997,
volume 1243 of Lecture Notes in Computer Science, pages 135–150.
Springer, 1997.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[Büc64] J. R. Büchi. Regular canonical systems. Arch. Math. Logik Grundlag.,
6:91–111, 1964.

[BVW94] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. In Proc. 6th Int. Conf.
Computer Aided Verification (CAV’94), Stanford, CA, USA, June 1994,
volume 818 of Lecture Notes in Computer Science, pages 142–152.
Springer, 1994.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Univ.
Press, 1990.

[Cau92] D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61–86, 1992.

31

[CDG+99] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications, 1997–
99. A preliminary version of this electronic book is available at
http://www.grappa.univ-lille3.fr/tata.

[CHM94] S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS.
The Computer Journal, 37(4):233–242, 1994.

[Chr93] S. Christensen. Decidability and decomposition in process algebras. PhD
thesis CST-105-93, Dept. of Computer Science, University of Edinburgh,
UK, 1993.

[CKSV97] H. Comon, D. Kozen, H. Seidl, and M. Y. Vardi, editors. Applications of
Tree Automata in Rewriting, Logic and Programming, Dagstuhl-Seminar-
Report number 193. Schloß Dagstuhl, Germany, 1997.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems
is decidable. In Proc. 5th IEEE Symp. Logic in Computer Science
(LICS’90), Philadelphia, PA, USA, June 1990, pages 242–248, 1990.

[EK99] J. Esparza and J. Knoop. An automata-theoretic approach to
interprocedural data-flow analysis. In Proc. Conf. Foundations
of Software Science and Computation Structures (FoSSaCS’99),
Amsterdam, The Netherlands, Mar. 1999, volume 1578 of Lecture Notes
in Computer Science, pages 14–30. Springer, 1999.

[Esp97] J. Esparza. Petri nets, commutative context-free grammars, and basic
parallel processes. Fundamenta Informaticae, 31(1):13–25, 1997.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems (extended abstract). In Proc. 2nd
Int. Workshop on Verification of Infinite State Systems (INFINITY’97),
Bologna, Italy, July 1997, volume 9 of Electronic Notes in Theor. Comp.
Sci. Elsevier Science Publishers, 1997.

[GD89] R. Gilleron and A. Deruyver. The reachability problem for ground TRS
and some extensions. In Proc. Int. Joint Conf. Theory and Practice of
Software Development (TAPSOFT’89), Barcelona, Spain, March 1989,
Vol. 1, volume 351 of Lecture Notes in Computer Science, pages 227–243.
Springer, 1989.

[GS97] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3, chapter 1,
pages 1–68. Springer, 1997.

[HJ99] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for
normed process algebra. In Proc. 26th Int. Coll. Automata, Languages,
and Programming (ICALP’99), Prague, Czech Republic, July 1999,
volume 1644 of Lecture Notes in Computer Science, pages 412–421.
Springer, 1999.

32

[JKM98] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-
like equivalences with finite-state processes. In Proc. 25th Int.
Coll. Automata, Languages, and Programming (ICALP’98), Aalborg,
Denmark, July 1998, volume 1443 of Lecture Notes in Computer Science,
pages 200–211. Springer, 1998.

[KS97a] O. Kouchnarenko and Ph. Schnoebelen. A model for recursive-parallel
programs. In Proc. 1st Int. Workshop on Verification of Infinite State
Systems (INFINITY’96), Pisa, Italy, Aug. 1996, volume 5 of Electronic
Notes in Theor. Comp. Sci. Elsevier Science Publishers, 1997.

[KS97b] O. Kushnarenko and Ph. Schnoebelen. A formal framework for
the analysis of recursive-parallel programs. In Proc. 4th Int. Conf.
Parallel Computing Technologies (PaCT’97), Yaroslavl, Russia, Sep.
1997, volume 1277 of Lecture Notes in Computer Science, pages 45–59.
Springer, 1997.

[Kuč96] A. Kučera. Regularity is decidable for normed PA processes in
polynomial time. In Proc. 16th Conf. Found. of Software Technology and
Theor. Comp. Sci. (FST&TCS’96), Hyderabad, India, Dec. 1996, volume
1180 of Lecture Notes in Computer Science, pages 111–122. Springer,
1996.

[Kuč97] A. Kučera. How to parallelize sequential processes. In Proc. 8th Int.
Conf. Concurrency Theory (CONCUR’97), Warsaw, Poland, Jul. 1997,
volume 1243 of Lecture Notes in Computer Science, pages 302–316.
Springer, 1997.

[May97a] R. Mayr. Combining Petri nets and PA-processes. In Proc. Int. Symp.
Theoretical Aspects of Computer Software (TACS’97), Sendai, Japan,
Sep. 1997, volume 1281 of Lecture Notes in Computer Science, pages
547–561. Springer, 1997.

[May97b] R. Mayr. Model checking PA-processes. In Proc. 8th Int. Conf.
Concurrency Theory (CONCUR’97), Warsaw, Poland, Jul. 1997,
volume 1243 of Lecture Notes in Computer Science, pages 332–346.
Springer, 1997.

[May97c] R. Mayr. Tableaux methods for PA-processes. In Proc. Int. Conf.
Automated Reasoning with Analytical Tableaux and Related Methods
(TABLEAUX’97), Pont-à-Mousson, France, May 1997, volume 1227 of
Lecture Notes in Artificial Intelligence, pages 276–290. Springer, 1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.

[Mol96] F. Moller. Infinite results. In Proc. 7th Int. Conf. Concurrency Theory
(CONCUR’96), Pisa, Italy, Aug. 1996, volume 1119 of Lecture Notes in
Computer Science, pages 195–216. Springer, 1996.

[Rao97] J.-C. Raoult. Rational tree relations. Bull. Belg. Math. Soc., 4:149–176,
1997.

33

[Sch99] Ph. Schnoebelen. Decomposable regular languages and the shuffle
operator. EATCS Bull., 67:283–289, 1999.

34

