- Los Alamos

NATIONAL LABORATORY EST. 1943

Learning Features of Simple and Complex Cells: A Generative Approach via Multiplicative Interactions

Wentao Huang, Zhengping Ji and Garrett Kenyon

1. Overview

Goal:

- A computational model to learn the feature bases (receptive fields) of simple and complex cells in the primary visual cortex.
${ }^{-} \cdot$ Address the translation invariance developed from c cells via natural image sequences.

Approach:

$\infty_{\infty} \bullet$ Reconstruct an input via a linear combination of feature \$ bases in simple cells.
ث - Modulate the simple cell representation via multiplicative interactions from complex cells.
\because - Enforce a sparseness prior for the latent representation of simple cells and complex cells.

- Enforce a slowness prior and a trace-like rule for the representation of complex cells.

Advantages:
-Provided a factorized approach via the product of twoorder tensor weight parameters and only one latent variable for invariant representation, more efficient than bilinear models that contain three-order tensor weight parameters and two latent variables.
ㅇ. Demonstrated general simple cell feature maps and os complex cell invariant receptive fields simultaneously.

3. Sparseness prior

Sparse constraint of both S and C layers.

$$
\min E_{s p}: E_{s p}=\lambda_{c} \sum_{k}\left|c_{k}(t)\right|+\lambda_{y} \sum_{m}\left|y_{m}(t)\right|
$$

4. Slowness prior

Boost temporal autocorrelation for C cells

$$
\min E_{c r}: E_{c r}=\frac{\alpha}{2}\|\mathbf{c}(t)-\mathbf{c}(t-1)\|_{2}^{2}
$$

5. Learn feature bases

$$
\begin{aligned}
& \text { Total energy function } \\
& \begin{aligned}
\min E: E & =E_{0} \\
& +E_{s p} \\
& +E_{c r}
\end{aligned} \triangleleft\left\{\begin{array}{l}
\frac{d \mathbf{c}(t)}{d t}=-\eta_{c} \frac{\partial E}{\partial \mathbf{c}(t)} \\
\frac{d \mathbf{A}}{d t}=-\eta_{A} \frac{\partial E}{\partial \mathbf{A}} \\
\frac{d \mathbf{B}}{d t}=-\eta_{B} \frac{\partial E}{\partial \mathbf{B}}
\end{array}\right.
\end{aligned}
$$

6. Experimental results

Natural image sequences

cells

