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Abstract. We present several results on the complexity of various forms
of Sperner’s Lemma in the black-box model of computing. We give a
deterministic algorithm for Sperner problems over pseudo-manifolds of
arbitrary dimension. The query complexity of our algorithm is linear in
the separation number of the skeleton graph of the manifold and the
size of its boundary. As a corollary we get an O(y/n) deterministic query
algorithm for the black-box version of the problem 2D-SPERNER, a
well studied member of Papadimitriou’s complexity class PPAD. This
upper bound matches the £2(1/n) deterministic lower bound of Crescenzi
and Silvestri. The tightness of this bound was not known before. In
another result we prove for the same problem an 2(/n) lower bound
for its probabilistic, and an 2(/n) lower bound for its quantum query
complexity, showing that all these measures are polynomially related.

Classification: computational and structural complexity, quantum computation
and information.

1 Introduction

Papadimitriou defined in [17, 18] the complexity classes PPA, PPAD, and PSK
in order to classify total search problems which have always a solution.The class
PSK was renamed PPADS in [5]. These classes can be characterized by some un-
derlying combinatorial principles. The class Polynomial Parity Argument (PPA)
is the class of NP search problems, where the existence of the solution is guar-
anteed by the fact that in every finite graph the number of vertices with odd
degree is even. The class PPAD is the directed version of PPA, and its basic
search problem is the following: in a directed graph, where the in-degree and the
out-degree of every vertex is at most one, given a source, find another source or
a sink. In the class PPADS the basic search problem is more restricted than in
PPAD: given a source, find a sink.

These classes are in fact subfamilies of TFNP, the family of all total NP-
search problems, introduced by Megiddo and Papadimitriou [16]. Other impor-
tant subclasses of TENP are Polynomial Pigeonhole Principle (PPP) and Poly-
nomial Local Search (PLS). The elements of PPP are problems which by their



combinatorial nature obey the pigeonhole principle and therefore have a solution.
In a PLS problem, one is looking for a local optimum for a particular objective
function, in some neighborhood structure. All these classes are interesting be-
cause they contain search problems not known to be solvable in polynomial time,
but which are also somewhat easy in the sense that they can not be NP-hard
unless NP = co-NP.

Another point that makes the parity argument classes interesting is that there
are several natural problems from different branches of mathematics that belong
to them. For example, in a graph with odd degrees, when a Hamiltonian path is
given, a theorem of Smith [25] ensures that there is another Hamiltonian path.
It turns out that finding this second path belongs to the class PPA [18]. A search
problem coming from a modulo 2 version of Chevalley’s theorem [18] from num-
ber theory is also in PPA. Complete problems in PPAD are the search versions
of Brouwer’s fixed point theorem, Kakutani’s fixed point theorem, Borsuk-Ulam
theorem, and Nash equilibrium (see [18]).

The classical Sperner’s Lemma [22] states that in a triangle with a regular
triangulation whose vertices are labelled with three colors, there is always a
trichromatic triangle. This lemma is of special interest since some customary
proofs for the above topological fixed point theorems rely on its combinatorial
content. However, it is unknown whether the corresponding search problem,
that Papadimitriou [18] calls 2D-SPERNER, is complete in PPAD. Variants
of Sperner’s Lemma also give rise to other problems in the parity argument
classes. Papadimitriou [18] has proven that a 3-dimensional analogue of 2D-
SPERNER is in fact complete in PPAD.

The study of query complexities of the black-box versions of several prob-
lems in TFNP is an active field of research. Several recent results point into the
direction that quantum algorithms can give only a limited speedup over deter-
ministic ones in this framework. The collision lower bound of Aaronson [1] and
Shi [20] about PPP, and the recent result of Santha and Szegedy [19] on PLS
imply that the respective deterministic and quantum complexities are polyno-
mially related. As a consequence, if an efficient quantum algorithm exists for a
problem in these classes, it must exploit its specific structure. In a related issue,
Buresh-Oppenheim and Morioka [8] have obtained relative separation results
among PLS and the polynomial parity argument classes.

2 Results

A black-box problem is a relation R C S x T where T is a finite set and S C X"
for some finite set 2. The oracle input is a function = € S, hidden by a black-
box, such that z;, for i € {1,...,n} can be accessed via a query parameterized
by i. The output of the problem is some y € T such that (z,y) € R. A special
case is the functional oracle problem when the relation is given by a function
A:S — T, the (unique) output is then A(x). We say that A is total if § = X"

In the query model of computation each query adds one to the complexity of
the algorithm, but all other computations are free. The state of the computation



is represented by three registers, the query register ¢ € {1,...,n}, the answer
register @ € X', and the work register z. The computation takes place in the vector
space spanned by all basis states |i)|a)|z). In the quantum query model introduced
by Beals et al. [4] the state of the computation is a complex combination of all
basis states which has unit length in the norm l5. In the randomized model it
is a non-negative real combination of unit length in the norm [y, and in the
deterministic model it is always one of the basis states.

The query operation O, maps the basis state |i)|a)|z) into the state |i)|(a +
x;) mod |X])|z) (here we identify X with the residue classes mod|X|). Non-
query operations are independent of x. A k-query algorithm is a sequence of
(k + 1) operations (Up,Us,...,U;) where U; is unitary in the quantum and
stochastic in the randomized model, and it is a permutation in the deterministic
case. Initially the state of the computation is set to some fixed value |0)]0)|0),
and then the sequence of operations Uy, Oy, U1, Oy, ..., Ux_1,0,, Uy is applied.
A quantum or randomized algorithm computes (with two-sided error) R if the
observation of the appropriate last bits of the work register yield some y € T
such that (z,y) € R with probability at least 2/3. Then QQC(R) (resp. RQC(R))
is the smallest &k for which there exists a k-query quantum (resp. randomized)
algorithm which computes R. In the case of deterministic algorithms of course
exact computation is required, and the deterministic query complexity DQC(R)
is defined then analogously. We have DQC(R) > RQC(R) > QQC(R).

Beals et al. [4] have shown that in the case of total functional oracle problems
the deterministic and quantum complexities are polynomially related. For several
partial functional problems exponential quantum speedups are known [10, 21].

In this paper we will give several results about Sperner problems in the
black-box framework. In Section 5, we will prove that the deterministic query
complexity of REGULAR 2-SPM, the black-box version of 2D-SPERNER
is O(y/n). This matches the deterministic £2(y/n) lower bound of Crescenzi and
Silvestri [9]. The tightness of this bound was not known before. In fact, this
result is the corollary of a general algorithm that solves the Sperner problems
over pseudo-manifolds of arbitrary dimension. The complexity analysis of the
algorithm will be expressed in Theorem 4 in two combinatorial parameters of
the pseudo-manifold: the size of its boundary and the separation number of its
skeleton graph. In Section 6, we show that quantum, probabilistic, and deter-
ministic query complexities of REGULAR 2-SPM are polynomially related.
More precisely, in Theorem 8 we will prove that its randomized complexity is
2(/n) and that its quantum complexity is £2(/n). This result is analogous to
the polynomial relations obtained for the respective query complexities of PPP
and PLS. Because of lack of space, most proofs are absent from this extended
abstract, but can be found in the full paper.

3 Mathematical background on simplicial complexes

For an undirected graph G = (V, E), and for a subset V' C V of the vertices,
we denote by G[V'] the induced subgraph of G by V'. A graph G” = (V" E")



is a subgraph of G, in notation G” C G, if V" C V and E” C E. The ring Z/(2)
denotes the ring with 2 elements.

Definition 1 (Simplicial complex) A simplicial complex K is a non-empty
collection of subsets of a finite set U, such that whenever S € K then S’ € K for
every S’ C S. An element S of K of cardinality d + 1 is called a d-simplex. A
d'-simplex S’ C S is called a d'-face of S. We denote by Ky the set of d-simplices
of K. An elementary d-complex is a simplicial complex that contains exactly one
d-simplex and its subsets. The dimension of K, denoted by dim(K), is the largest
d such that K contains a d-simplex. The elements of Ky are called the vertices
of K, and the elements of Ky are called the edges of K. The skeleton graph
Gk = (Vk, Ex) is the graph whose vertices are the vertices of K, and the edges
are the edges of K.

Without loss of generality, we suppose that U consists of integers, and we
identify {u} with u, for u € U.

Fact 1 Let d be a positive integer. If S is an elementary d-complez, then Gg is
the complete graph.

Definition 2 (Oriented Simplex) For every positive integer n, we define an
equivalence relation =, over Z™, by a =, b if there exists an even permutation o
such that o -a = b. For every a € Z™ we denote by [a]=, the equivalence class of
a for =,. The two equivalence classes of the orderings of the 0-faces of a simplex
are called its orientations. An oriented simplex is a pair formed of a simplex and

one of its orientations.

For an oriented d-simplex (5, []=,.,), where 7 is an ordering of the 0-faces
of S, and a permutation o over {1,...,d + 1}, we denote by o - (S, [7]=,,,)
the oriented d-simplex (S, [0 - 7]=,,,). For every integer d, and every simplicial
complex K whose simplices have been oriented, we denote by K, the set of
oriented d-simplices of K. From now on, S may denote an oriented or a non-
oriented simplex. When S is an oriented simplex, S will denote the same simplex
with the opposite orientation. We also define S to be S if i is even, and to
be S if i is odd. We will often specify an oriented simplex by an ordering of its
0-faces.

Definition 3 Let S = (vo,...,vq) be an oriented d-simplex. For every 0 < i <
d, for every (d—1)-face {vo, ..., vi—1,Vit1,-..,vq} of S, the induced orientation
is the oriented (d — 1)-simplex (vo, ..., Vi_1,Vis1,---,0q) .

Definition 4 Let K be a simplicial complex whose simplices have been oriented,
and let R be a ring. We define Cq(K; R) as the submodule of the free R-module
over the d-simplices of K with both possible orientations, whose elements are of
the form Y gy, (cs S +cg- S), with cs € R, satisfying the relation cg = —cg.
The elements of Cq(K; R) are called d-chains. For every oriented simplex S of
K, we denote by (S) the element S — S of C4(K; R).



Let S be an oriented d-simplex (vg,v1,...vq) of K. The algebraic boundary
of (S), denoted by 04 (S), is the (d—1)-chain of Cq_1(K; R) defined as 0q (S) =

2:?:0(—1)%(1}07 Vi1, Vit e+ Ud))-

Since 04 (S) = —04(S), the operator d; has been correctly defined on a
basis of Cy(K; R) and can therefore be uniquely extended into a homomorphism
04 : C4(K; R) — Cy—1(K; R). The proof ofthe next Lemma is straightforward.

Lemma 1 Let S be an oriented d-simplex of a simplicial complex K. Denote
by Fs the set of (d — 1)-faces of S, and for every S’ € Fs by 75, the induced
orientation on S'. Then 04 (S) = Y g ep, (S, 75/)).

Following an early version of a paper of Bloch [7], in the next definition
we generalize the notion of pseudo-manifold, without the usual requirements of
connectivity and pure dimensionality.

Definition 5 A simplicial complexr M is a pseudo d-manifold, for a positive
integer d, if (i) M is a union of elementary d-complexes, and (ii) every (d —1)-
simplex in M is a (d — 1)-face of at most two d-simplices of M. The boundary
of M is the set of elementary (d — 1)-complexes in M that belong exactly to one
d-simplex of M. We denote it by O M. A pseudo d-manifold M is said to be
orientable if it is possible to assign an orientation to each d-simplex of M, such
that for all (d — 1)-simplex of M that is not on its boundary the orientations
induced by the two d-simplices to which it belongs are opposite. Such a choice of
orientations for all the d-simplices of M makes M oriented.

If the d-simplices of M are oriented, then there is a natural orientation of
the (d — 1)-simplices of O M, where each (d — 1)-simplex has the orientation
induced by the oriented d-simplex of which it is a (d — 1)-face. Notice that if
M is a pseudo d-manifold, then @ M need not be a pseudo (d — 1)-manifold.
From now, all the simplicial complexes will be pseudo-manifolds. Observe that
if R =7/(2), then for any oriented d-simplex S, we have (S) = (S).

Definition 6 Given a simplicial complex K of dimension d, the standard d-
chain K of K will be defined depending on whether K is oriented as follows:

— if K is non-oriented, then K =) ¢ ((S,75)) € Ca(K,Z/(2)), for an arbi-
trary choice of orientations s of the d-simplices S in K,

— if K is oriented, then K = 3 e ((S,7s)) € Ca(K,Z) where 75 is the ori-
entation of S in K.

Fact 2 Let d be an integer, and let M be a pseudo d-manifold. Then, if M is
not oriented the equality O M = 943 M holds in Cq_1(0M,Z/(2)), and if M is
oriented the equality O M = 03 M holds in Cq_1(0 M, Z).

4 Sperner Problems

We state now a very general form of Sperner’s Lemma due to Fan [11]. The exact
formulation of the statement we reproduce here was given by Taylor in [24].



Definition 7 Let K be a simplicial complex. A labelling of K is a mapping £
of the vertices of K into the set {0,...,dim(K)}. If a simplex S of K is labelled
with all possible labels, then we say that S is fully labelled.

A labelling ¢ naturally maps every oriented d-simplex S = (v, ..., vq) to the
equivalence class £(S) = [(€(vo), ..., £(va))]=u,:-

Definition 8 Given a labelling ¢ of a simplicial complex K, and an integer
0 < d < dim(K), we define the d-dimensional flow Ng4[(S)] by Ng[(S)] = 1 if
S) = [(0,1,2...,d)]=,.,, Na[(S)] = =1 if £(S) = [(1,0,2,...,d)]=,,,, and
Ny[(S)] = 0 otherwise, and then extend it by linearity into a homomorphism
Ny : Cy(K;R) — R.

Theorem 1 (Sperner’s Lemma [22,11,24]) Let K be a simplicial complex
of dimension d, let ¢ be a labelling of K, and let R be a ring. For an element C
of C4(K; R), we have Ng[C] = (=1)Nyq_1[04C].

Using Fact 2, we translate Theorem 1 into terms of pseudo-manifolds.

Theorem 2 (Sperner’s Lemma on pseudo-manifolds) Let d be an inte-
ger, let M be a pseudo d- mamfold and let { be a labellmg of M. Then Ny [M]
(—1)IN,_ 1[8./\/1} where M € C’d(./\/l 7/(2)), OM e Cy_ 1(OM,Z/(2)) if M is
not oriented, and Me Ca(M,Z), OM e Cy—1(0M,Z) if M is oriented.

This version of Sperner’s lemma can be viewed, from a physicist’s point of
view, as a result equivalent to a global conservation law of a flow. If there is a
source for the flow and the space is bounded then there must be a sink for that
flow. More concretely, the lines of flow can be drawn over d-simplices, that goes
from one d-simplex to another if they share a (d — 1)-face that has all possible
labels in {0, ...,d — 1}. The sources and sinks of the flow are the fully labelled
d-simplices. The lemma basically says that if the amount of flow entering the
manifold at the boundary is larger than the exiting flow, then there must exist
sinks inside. The local conservation is stated by the fact that if there is an ingoing
edge, there will not be two outgoing edges, and conversely. Formally, we have
the following.

Fact 3 Let (S,7s) be an oriented d-simplex. Then at most two of its oriented
(d — 1)-faces have a non-zero image by Ny_1. Moreover, if there are exactly two
(d — 1)-faces (S',75) and (S”,75,) that have mon-zero image by Ngq_1, then
N4[((S,7s))] = 0 and Na—1[((S",75))] = —Na-1[{(S", 75))]-

This gives a relation between the problem of finding fully labelled d-simplices
and the natural complete problems for the parity argument classes. We can
consider an oriented d-simplex (S, 7s) with Ny4[((S,7s))] = 1 as a source for the
flow, and (57, 7s/) with Ny[{(S’,7s/))] = —1 as a sink.

We now state the non-oriented black-box Sperner problems we will consider.
The statement of d-OSPM, the general oriented problem can be found in the
full paper.



Sperner on Pseudo d-Manifolds (d-SPM)

Input: a pseudo d-manifold M, and S € M.
Oracle input: a labelling ¢ : Mo — {0,1,...,d}.
Promise: one of the two conditions holds, with R = Z/(2):

a) Nao[OM] =1,
b) Na—1[0 M] = 0 and N4[(S)] = 1.
Output: S’ € Mg such that N4[(S")] = 1, with S # S’ for case b.

We will deal in particular with the following important special case of 2-SPM.
Let Vi, = {(i,5) € N?|0 < i+ j < m}. Observe that |V,,,| = ("57?).

Regular Sperner (REGULAR 2-SPM)

Input: n = ("}?) for some integer m.

Oracle input: a labelling £ : V,, — {0,1,2}.
Promise: for 0 <k < m, £(0,k) # 1, E( ,0) # 0, and é(k m—k) # 2.
Output: p,p’ and p” € V, such that p" = p+ (£,0), p”’ = p+ (0,¢) for

some ¢ € {—1,1}, and {{(p ) £ ’),Z(p”)} ={0,1,2}.
In fact, REGULAR 2-SPM on input n = (m;Q) is the instance of d-SPM
on the regular m-subdivision of an elementary 2-simplex. Theorem 2 states that
both d-SPM and d-OSPM have always a solution. The solution is not necessarily
unique as it can be easily checked on simple instances. Thus the problems are
not functional oracle problems.

5 Black-box algorithms for pseudo d-manifolds

The purpose of this section is to give a black-box algorithm for d-SPM. The
corresponding algorithm for d-OSPM can be found in the full paper. To solve
these problems, we adopt a divide and conquer approach. This kind of approach
was successfully used in [15,14] and [19], to study the query complexity of the
oracle version of the Local Search problem. However, the success of the divide
and conquer paradigm for Sperner problems relies heavily on the use of the very
strong statement of Sperner’s Lemma that is given in Theorem 2. The usual,
simpler version of Sperner’s Lemma, like the one given in [18] does not appear
to be strong enough for this purpose. Observe that though the standard proof
of Sperner’s Lemma is constructive, it yields only an algorithm of complexity
O(n). In our algorithms the division of the pseudo d-manifold M will be done
according to the combinatorial properties of its skeleton graph. The particular
parameter we will need is its iterated separation number that we introduce now
for general graphs.

Definition 9 Let G = (V, E) be a graph. If A and C are subsets of V' such that
V = AUC, and that there is no edge between A\ C and C\ A, then (A, C) is
said to be a separation of the graph G, in notation (A,C) < G. The set ANC
is called a separator of the graph G.

The iterated separation number is defined by induction on the size of the

graph G by s(G) = min4 o)< {|ANC|+max(s(G[A\ C]),s(G[C \ A]))}. A



pair (A, C) < G such that s(G) = |AN C| + max(s(G[A \ C)), s(G[C'\ 4))) is
called a best separation of G.

The iterated separation number of a graph is equal to the value of the sepa-
ration game on the graph G, which was introduced in [15]. In that article, that
value was defined as the gain of a player in a certain game. Notice, also, that
the iterated separation number is at most log |[V| times the separation number
as defined in [19]. Before giving the algorithms, and their analyses, we still need
a few observations.

Lemma 2 Let A and B be two pseudo d-manifolds, such that AU B is also a
pseudo d-manifold. Let £ be a labelling of AU B. If A and B have no d-simplex
in their intersection, then Ng[AU B] = N4[A] + Ny[B].

Lemma 3 Let M be a pseudo d-manifold, and M’ be a union of elementary
d-complexes such that M’ C M. Then M’ is a pseudo d-manifold.

Theorem 3 Let M be a pseudo d-manifold, H a subset of My, and ¢ be a
labelling of the vertices of M. Let (A,C) < Gm[Mo\ H|, B=HU(ANC), and
M’ = A\C and M" = C\ A. Denote by B the set of elementary d-complexes of
M whose vertices are all in B, and by M’ (resp. M" ) the set of elementary d-
complezes of which at least one of the vertices belongs to M’ (resp. M" ). Denote
also by B' the set of elementary (d — 1)-complezes of M whose vertices are all
in B. Then,

(i) B, M', M" and M’ UM” are pseudo d-manifolds,

(i) if H # Mo thgn B, M/’\and ./\/l”/cze proper subsets of M,

(#ii) Ng[M] = Ng[B] + Ng[M'] + Ng[M"],

(i) the inclusions 9 M’ C (OM)UB" and O M" C (0 M) U B’ hold,

We are now ready to state Algorithm 1 which solves d-SPM when the labels
of the O-faces of M are also known. The analogous Algorithm 2 for d-OSPM
can be again found in the full paper. We next give the result which states the
correctness of our algorithms and specifies their complexities.

Lemma 4 If M and S satisfy the promises of the respective Sperner problems,
then Algorithms 1 and 2 return a solution and use at most s(Gm[Mo \ H])
queries.

Theorem 4 DQC(d-SPM) = O(s(Gm[Mo \ (O M)o])) + [(OM)o] and
DQC(d-0SPM) = O(s(Gar[ Mo \ (9 M)o])) + | (9M)a.

Proof. The algorithms consist in querying the labels of the vertices of M and
then running respectively Algorithm 1 or Algorithm 2 with the initial choice
H = (0 M).

To bound the complexity of our algorithms we need an upper-bound on the
iterated separator number of the skeleton graph. The following theorem gives, for
any graph, an upper bound on the size of a balancing separator, whose deletion
leaves the graph with two roughly equal size components. The bound depends
on the genus and the number of vertices of the graph.



Algorithm 1 Main routine for solving d-SPM.

Input: A pseudo d-manifold M, S € My, aset H D (0M)g together with the labels
of its elements.
Let (A,C) < Gm[Mo \ H] be a best separation, and B=H U (ANC).
Let the complexes B, M’ and M" be defined as in Theorem 3.
Query the labels of the vertices in AN C.
if B contains a fully labelled elementary d-complex then
Return the corresponding oriented d-simplex.
end if . o o
Evaluate Ng—1[0 B], Nq—1[0 M'] and Nq_1[0 M"].
if Nd,1[(’*)/f\(] =1 for K € {B,M', M"} then
Iterate on K, any d-simplex S € K, and B with the labels of its elements.
else
Iterate on K € {B, M’, M"} containing S, S and B with the labels of its elements.
end if

Theorem 5 (Gilbert, Hutchinson, Tarjan [12]) A graph of genus g with n
vertices has a set of at most 6,/g - n + 2v/2n + 1 vertices whose removal leaves
no component with more than 2n/3 vertices.

For our purposes we can immediately derive an upper bound on the iterated
separation number.

Corollary 1 For graphs G = (V,E) of size n and genus g we have s(G) <
A(64/g 7 +2v2n) + logg o n, where X is solution of A =1+ A\\/2/3.

In general, there is no immediate relationship between the genus of a pseudo
d-manifold and the genus of its skeleton graph. However, if the pseudo d-manifold
M is a triangulated oriented surface, then the genus of the graph is equal to the
genus of M. Used in conjunction with Corollary 1, Theorem 4 gives an effective
upper bound for pseudo d-manifolds.

Corollary 2 Let M be a pseudo d-manifold such that G g is of size n and of
genus g. Then, DQC(d-SPM) = O(,/g) - v/n + [(OM)o| and DQC(d-OSPM) =
O0(v9) - Vn +[(0M)o].

Since the skeleton graph of the underlying pseudo 2-manifold of REGULAR
2-SPM is planar, it has genus 0. Thus we get:

Theorem 6 DQC(REGULAR 2-SPM) = O(/n).

In the next section, we show nontrivial lower bounds on the randomized and
the quantum query complexity of the REGULAR 2-SPM problem. Observe
that for some general instances of the 2-SPM over the same pseudo 2-manifold
we can easily derive exact lower bounds from the known complexity of Grover’s
search problem [6]. For example, if a labelling is 2 everywhere, except on two
consecutive vertices on the boundary where it takes respectively the values 0 and
1, then finding a fully labelled 2-simplex is of the same complexity as finding a
distinguished element on the boundary.



6 Lower bounds for REGULAR 2-SPM

We denote by UNIQUE-SPERNER all those instances of REGULAR 2-
SPM for which there exists a unique fully labelled triangle. There exist several
equivalent adversary methods for proving quantum lower bounds in the query
model [23]. Here, we will use the weighted adversary method [2, 3, 13].

Theorem 7 Let X' be a finite set, let n > 1 be an integer, and let S C X™ and
S’ be sets. Let f : S — S'. Let I' be an arbitrary S x S nonnegative symmetric
matriz that satisfies I'[z,y] = 0 whenever f(x) = f(y). For 1 <k < n, let I},
be the matriz such that I'y[x,y] =0 if xx = yx, and I;[z,y] = I[x,y] otherwise.
For all S x S matriz M and x € S, let o(M,z) =} g M[z,y]. Then

- . ol z)o(lhy)
QQC(f) = £ <r[m,y]%gk¢yk \/G(TkaI)U(Fkvy)> ’

qrD Ay,

RQC(f) = 2 ( min  max (

Tla,y]#0,24 ys

For the lower bound we will consider specific instances of REGULAR. 2-
SPM. For that, we need a few definitions. For any binary sequence b, let |b]
denote the length of the sequence b, and for ¢ = 0, 1 let w;(b) be the number of
bits i in b. For 0 <t < |b|, let b* = by ...b; denote the prefix of length ¢ of b.

The instances of REGULAR 2-SPM we will consider are those whose
oracle inputs Cj are induced by binary sequences b = by ... b,,_o of length m — 2
as follows:

ifj=0andi#0,

if i =0 and j # m,

ifi+j=mandj#0,

if there exists 0 < t < m — 2 with (4,7) = (wo(b") + 1, w1 (")),
if there exists 0 < t < m — 2 with (4,7) = (wo(b"), w1 (b") + 1),
otherwise.

C’b(7f7]) =

SO N = O N =

Notice that the first and fourth (resp. second and fifth) conditions can be
simultaneously satisfied, but the labelling definition is consistent. Also observe
that, for any b, there is a unique fully labelled triangle, whose coordinates are
{(wo(b) + 1, w1 (b)), (wo(b),w1(b) + 1), (wo(b) + 1, w1 (b) + 1)}. Therefore C} is an
instance of UNIQUE-SPERNER. We illustrate an instance of C}, in Figure 1.

It turns out that technically it will be easier to prove the lower bound for a
problem which is closely related to the above instances of REGULAR 2-SPM,
that we call SNAKE. Recall that V,,, = {(i,j) € N*|0 < i+ j < m}. For every
binary sequence b = by ...by,_2, we denote by O, the function V,, — {0,1}
defined for p € V,,, by

On(p) = 1 if there exists 0 <t < m — 2 with (3,5) = (wo(b") + 1, w1 (b)),
o 0 otherwise.



VAV, /A%A
WAV//AVAVAN
JAVAVAVAVAVAY
JAVAVAVAVAVAY

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

() (i)

Fig.1: In the coordinates system of the Figure, the point (0,0) is the highest
corner of the triangles, the x coordinates increase by going down and left, and the
y coordinates increase by going down and right. On sub-figure (%), the labelling
C} corresponds to the binary sequence b = 0100110. On sub-figure (i), the
labelling Oy, corresponds to the same sequence b. The unmarked vertices are all
labelled 0.

See again Figure 1 for an example.

SNAKE

Input: n = (’;) for some integer m.

Oracle input: a function f : V,, — {0,1}.

Promise: there exists a binary sequence b = by ...by—2 such that f = Oy.
Output: (wo(b), w1(b)).

We recall here the definition of [19] of c-query reducibility between black-box
problems, which we will use to prove our lower bound.

Definition 10 For an integer ¢ > 0, a functional oracle problem A : S; — T

with S1 C X7 is c-query reducible to a functional oracle problem B : Sy — 15

with Sy C X3 if the following two conditions hold:

(i) Ja: 51 — Sz, 3B : Ty — Ty, such that Vx € S1, A(z) = B(B(a(z))),

(i) Iy, osve {1, ' = {1,...,n} and v : {1,...,n'} x X{ — X5 such
that Vo € Sy, k€ {1,...,n'},  a(x)(k) = vk, Ty k)s -+ > Tyo())-

Lemma 5 ([19]) If A is c-query reducible to B then QQC(B) > QQC(A)/2c,
and RQC(B) > RQC(A4)/c.

Lemma 6 SNAKE is 3-query reducible to UNIQUE-SPERNER.
Lemma 7 RQC(SNAKE) = 2({/n) and QQC(SNAKE) = 2(/n).

Theorem 8 The query complexity of REGULAR 2-SPM satisfies
RQC(REGULAR 2-SPM) = 2(¥/n) and QQC(REGULAR . 2-SPM) = Q(¥/n).

Proof. By Lemma 5 and 6, the lower bounds of Lemma 7 for SNAKE also
apply to REGULAR 2-SPM.
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