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Abstract

Statistics and Music: Fitting a Local Harmonic Model to Musical Sound Signals

by

Rafael Angel Irizarry

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor David R. Brillinger, Chair

Statistical modeling and analysis have been applied to di�erent music related �elds. One of

them is sound synthesis and analysis. Sound can be represented as a real-valued function

of time. This function can be sampled at a small enough rate so that the resulting discrete

version is almost as good as the continuous one. This permits one to study musical sounds

as a discrete time series, an entity for which many statistical techniques are available.

Physical modeling suggests that many musical instruments' sounds are characterized by a

harmonic and an additive noise signal. The noise is not something to get rid of rather it's

an important part of the signal. In this research the interest is in separating these two

elements of the sound. To do so a local harmonic model that tracks changes in pitch and

of the amplitude of the harmonics is �t. Deterministic changes in the signal, such as pitch

change, suggest that di�erent temporal window sizes should be considered. Various ways to

choose appropriate window sizes are studied. Amongst other things our analysis provides

estimates of the harmonic signal and of the noise signal. Di�erent musical composition

applications may be based on the estimates.

Professor David R. Brillinger
Dissertation Committee Chair
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Chapter 1

Prelude: Introduction and

Summary

Statistics has been applied in various ways to music. For example, various stochas-

tic techniques have been applied in composition (Jones 1981). Stochastic techniques have

also been used in forecasting un�nished works (Dirst and Weigend 1992). Voss and Clarke

(1975) studied the spectral properties of di�erent musical signals and speculated on the

possibility of it being so called 1/f noise, see also Voss and Clarke (1978). In Brillinger and

Irizarry (1998) this is studied in more detail, and in particular higher order statistics are

examined. In this work the particular application that will be examined in detail is the

analysis of sound signals produced by musical instruments. In this �eld, statistical tech-

niques have been used, for example, to separate the signals into deterministic and stochastic

parts and to deconstruct the deterministic part into harmonic components.

In these musical applications, as in many others, we need data. In Chapter 2 we

will discuss how di�erent musical entities can be represented as data, in particular how a

sound wave y(t) can be represented as discrete data.

Every sound we hear is the consequence of pressure uctuations traveling through

the air and hitting our ear drums. The function that describes the audible pressure uctua-

tions of air is called a \sound wave". In Chapter 2 we will also discuss some of the physical

theory and psychoacoustic concepts that motivates the statistical modeling of the signals

produced by \harmonic" instruments with what we will call a local harmonic model. This

model asserts that the signal is a sum of sinusoids with frequencies equal to multiples of
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a fundamental frequency. The sinusoids are called harmonics, whereas the sounds related

to these periodic components are called overtones. The amplitudes and phases of the fre-

quency components together with the fundamental frequency are parameters, determined

by the physical properties of the instrument and the person playing the instrument, which

will change in time. Physical theory also suggests that the sound waves produced by in-

struments contain a non-sinusoidal component which is an integral part of the sound. We

will assume that this non-sinusoidal component is somehow stochastic. The fact that the

parameters of this model change with time and that the stochastic part is non-stationary

makes the problem of estimating these parameters non-trivial and of interest.

In Chapter 3 we examine some of the previous work done on harmonic models

and develop some results on weighted estimates which will be used when we perform local

estimation of the parameters.

In Chapter 4 we de�ne the signal plus noise statistical model that will be used

in our analysis, (without loss of generality we assume the signal is one time unit long,

0 � t � 1)

y(t) = s[t; �(t)] + �(t)

s[t; �(t)] =

KX
k=1

�k(t) cos (k�(t)t+ �k(t))

where

�(t) = (A1(t); : : : ; AK(t); �1(t); : : : ; �K(t); �(t))
0

K is the number of partials, �(t) is the fundamental frequency (pitch), �k(t) is the amplitude

of the k-th partial (�k+1(t) is the amplitude of the k-th harmonic) and �k(t) is the phase of

the k-th partial. They are all assumed to be functions of time. The process �(t) represents

the non-sinusoidal component or the noise. Notice that we can rewrite the signal function

s[t; �(t)] =

KX
k=1

fAk(t) cos(k�(t)t) + Bk sin(k�(t)t)g

We assume that the signal s[t; �(t)] is locally approximately sinusoidal, or equivalently that

�(t) is locally approximately constant and that the noise �(t) is locally stationary. In the

work to follow precise de�nitions are given.

For analytic purposes a discrete (sampled) version of the signal y(t) is considered,

Yn;N = y
� n
N

�
, n = 0; : : : ; N:
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Here n is time measured in units of �t = 1=N , where N is the number of observations

in the unit time interval. This is called the sampling rate in the technological literature.

Notice that as N gets bigger the signal y(t) is observed on a �ner grid.

Fixing N , for any n0 2 f1; : : : ; Ng consider a small enough segment, say hN time

units long, of the signal around y(n0=N) such that one is able to assume that the parameters

are approximately constant within that segment.

To estimate �(n0=N) assume the parameters are actually constant in the time

segment and use a method equivalent to weighted least squares. Namely seek

�̂N

�n0
N

�
= min

�

NX
n=1

w

� jn� n0j
hN �N

��
Yn;N � �

�
t

T
; �

��2
with w a window function having support in [0; 1].

By repeating this procedure for each n0 2 f0; : : : ; Tg we end up with an estimate

�̂N(t) of the function �(t) for each t 2
�

1
N
; : : : ; N

N

	
. By interpolation, �(t) may be estimated

for each t 2 [0; 1].

Under certain assumptions discussed in Chapter 4, including those already men-

tioned, it is shown that for any t 2 [0; 1] and for an appropriate window size sequence hN

the estimates are consistent and asymptotically normal as N goes to in�nity. In current

sound analysis research it is common to give estimates of harmonic parameters without an

indication of their uncertainty. The asymptotic variance of the estimates provides a way to

give standard errors and con�dence intervals for our estimates. It is interesting to speculate

on the meaning of these quantities in a music context.

Notice how in this estimation procedure, for each n0, di�erent values for window

size hN can be used. In practice the sample rate is �nite and within any window the

parameter function �(t) is non-constant. If the window size is too small we might not have

enough data points to perform meaningful estimation. On the other hand, if the window

size is too big, the approximately constant assumption might not be appropriate. Many

deterministic factors can make the assumption inappropriate, for example, a change in note

creates a quick change in �(t). For �nite sample rates we can improve our estimates by

choice of hN for every n0.

In Chapter 5 methods similar to those used in the model selection literature are

employed to decide on an optimal window size. One contribution of the thesis is that when

taking the weights into consideration, criteria similar to Mallow's Cp, AIC and BIC are
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found for the case where the weight given to observations varies as well as the number of

parameters.

Using the statistical computing package Splus we have created a program that

realizes the analysis described above. It has been tested with various \harmonic" instrument

sounds, including single notes played by an oboe, tenor saxophone, guitar, violin, pipe organ

and shakuhachi ute, with encouraging results. Listening to the residuals of the �t (\residual

analysis by ear") we hear sounds similar to what we expect; for example, in the case of the

saxophone, we hear air and spit going through a tube. In many cases the residuals contain

no audible pitch verifying the fact that we have removed the harmonic part successfully.

The window size selection procedure appears to be working well in practice. Smaller window

sizes are selected in parts of the sound signal where the pitch is changing. In Chapter 6 we

present some of the examples studied. Future work is presented in Chapter 7.

There is an accompanying CD containing audio versions of some of these examples.

The �rst track on the CD is an example of a stochastic composition created by the author.

Tracks 2, 3, and 4 are examples of melodies created with an i.i.d. sequence, a random

walk, and 1/f noise respectively. The CD is available through the Graduate Assistant of

the Department of Statistics, 367 Evans Hall # 3860, Berkeley CA 94720-3860.
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Chapter 2

Music and Statistics

2.1 Introduction

What is music? What is a musical sound? Nobody will probably ever �nd a

de�nitive answer to these questions. It is beyond the scope of this thesis to seek to give

precise de�nitions, but we can say various things about some of the sounds that are generally

considered to be musical in nature, such as tones of orchestral instruments and the human

voice when singing.

For centuries, understanding sound has been of interest. The Greeks and others

must have noticed from the earliest times that plucked strings vibrate. Various Greek

philosophers associated fast motion with high pitch and slow motions with lower pitches.

In fact, the discovery of the relation between the lengths of strings and musical instruments

is commonly attributed to Pythagoras.

Today the study of sound has become a popular research �eld and, with the

advent of electronic music, a practical one too. Contemporary researchers are interested

in, for example, the problem of determining what particular characteristics of the sound

produced by musical instruments permit humans to distinguish one instrument from another

(Grey 1975, Grey 1977, Risset and Wessel 1982, Deutsch 1982, Hartman 1997). Trying to

answer this question has led to many new problems and interesting discoveries.

Every musical instrument has capabilities and limitations that help in distinguish-

ing one instrument from the other. For example, a trumpet can play louder tones than a

piano, but has a smaller range. But what really allows one to distinguish di�erent instru-

ments is a much more subtle characteristic that musicians call tone quality, tone color or
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timbre, (Pierce 1992, pages 196{199).

The human ear has been studied extensively and various theories have arisen to

explain how it is able to \hear" timbre (Patterson et al. 1992). Sound signals have also

been recorded and analyzed, using di�erent approaches, with the goal of understanding

what de�nes timbre. We will call this type of study sound analysis.

Recently scientists have also become interested in the creation or reproduction of

musical sounds without the use of an acoustical instrument. This is called sound synthesis.

The �rst attempt to synthesize musical sound was probably in 1906 with Thaddeus Cahill's

Teleharmonium. Powered only by electricity the smoothly rotating tone generators of the

Teleharmonium emitted synthetic tones purer than nature (Rhea 1984). More recently,

the commercial music industry has become interested in reproducing sounds of acoustic

instruments without the use of the actual instrument. Today, for less that US$1000 you can

purchase a sound synthesizer that will reproduce sounds of a wide variety of instruments

fairly well.

With today's technology we are �nally able to process sounds in a data analytic

fashion because the time is at hand when music can be treated directly as a quantity to be

analyzed by contemporary statistical procedures and packages. Mathews (1963) was one

of the �rst to successfully make use of sound analysis to produce e�ective sound synthesis.

Mathews used the computer to analyze the sound produced by musical instruments with

perceivable pitch, and then used the information obtained from the analysis to reproduce the

sound. Nowadays we are also interested in using this information to facilitate the creation

of new sounds based on the original sound. In our work we wish to analyze sound so as

to be able to obtain some parametric representation of it that can later be manipulated to

either reproduce the original sound or some version of it. We will call this procedure sound

analysis/synthesis.

In this chapter we will discuss some of the procedures that have been used in sound

analysis/synthesis. We will also discuss some of the physical and acoustical properties that

motivate these methods.

2.2 Music as a time series

In order to speak about statistical analysis of music, we need somehow to represent

the musical entities as data.
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Every sound we hear is the consequence of pressure uctuations traveling through

the air and hitting our ear drums. The function that describes the audible pressure uctu-

ations of air is called a \sound wave". The energy transmitted by this \sound wave" can be

transformed into a uctuating voltage V (t), which will be a continuous function in time. We

will call the sound wave V (t) produced by a musical sound its signal representation. Tape

recorders work by storing the voltage function V (t) on magnetic tape and then converting

it back to air uctuations through speakers.

Time in Seconds

V
(t

)

0.0460 0.0462 0.0464 0.0466 0.0468

-0.5

0.0

0.5

1.0

Figure 2.1: Function V(t) for a millisecond of a violin sound sampled at 44100 Hz.

One wants to have discrete data to facilitate statistical analysis. The obvious

procedure is to take a discrete approximation of the continuous sound signal. Simply choose

a sample rate �t and consider the discrete time series Yn = V (n�t) corresponding to the

dots in Figure 2.1. This is called digital sampling or simply sampling by sound engineers.

Compact Disc (CD) technology is proof of how well these discrete approximations of sound

signals can work (track 5 on accompanying CD). In the case of commercial CDs, the sample
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rate is a standard at �t = 1=44100 seconds i.e. 44100 Hz. The way CDs work is by sampling

continuous sound signals using an Analog to Digital Converter (ADC). The discrete time

series obtained from this procedure is then stored on the CD by making small and big

indentations on it to represent the data in binary form. The CD player converts this series

of numbers back into a continuous function (which is the approximation of the original) using

a Digital to Analog Converter (DAC) which the speakers then fashion into air uctuations.

2.3 The physics of musical sounds

Although not all existing sound synthesis and analysis techniques have found it

necessary to use models that are in agreement with physical theory, most of them are

essentially based on the physical properties of instruments.

The �rst important physical discovery related to music is that when uctuations of

air are approximately periodic, with period in the audible range, we perceive what musicians

have de�ned as a pitch (Pierce 1992, Chapter 2). We will call the frequency related to this

periodicity the fundamental frequency.

Instruments play di�erent pitches by changing the fundamental frequency of the

\sound wave" they are creating. Some cultures, e.g. Western cultures, have quantized these

pitches and created notes. The pitch corresponding to 440 Hz has been called an A note

(A 440 Hz. concert pitch). Any frequency that holds a 2n:1 relation with concert pitch A

is also called an A note, but in another octave. In Figure 2.2 we see 10 milliseconds of the

signal produced by a violin playing two C notes, one an octave above the other. Western

music uses the 12 tone equal-tempered scale in which the frequencies between the notes an

octave apart, say 440Hz (concert pitch A) and 880Hz (an octave above concert pitch A), are

divided into 12 notes corresponding to frequencies with constant ratio between successive

ones. These 12 notes are A, A] (A sharp), B, C, C], D, D], E, F, F], G, G] and that

will bring us back to A (an octave above). If you look at a piano, where the black keys

correspond to the sharps, you will see a twelve white-black key pattern repeating 7 times.

We will refer to the fourth A from the left (concert pitch A) as A4, to the fourth C (middle

C) as C4, the third D as D3, etc.. Adjacent notes are said to be a half-step apart or a

semitone away (Pierce 1992, Chapter 4). This means that there is a logarithmic relation

between note distance and frequency distance. Given a note with frequency f1, we can �nd
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the frequency f2 of a note that is k semitones away by solving a simple equation

12 log2(f1=f2) = k (2.1)

Notice that k is not necessarily an integer. In fact, musicians call a hundredth of semitone

a cent. Apparently the trained ear can distinguish two notes if they are 3 cents or more

apart. (Pierce 1992, page 72).

C4

Time in seconds

V
(t

)

0.500 0.502 0.504 0.506 0.508 0.510

-0.4

-0.2

0.0

0.2

0.4

C5

Time in seconds

V
(t

)

0.500 0.502 0.504 0.506 0.508 0.510

-1.0

-0.5

0.0

0.5

Figure 2.2: Function V(t) for 10 milliseconds of a violin sound playing C4 (middle C) and

also playing an octave above, C5.

It should be noted that the frequency related to concert pitch A is not necessarily

440 Hz. For example the San Francisco Symphony tunes to A 442 Hz. concert pitch. In

this work we will assume concert pitch A represents 440 Hz. and obtain the frequencies

related to all other notes using equation (2.1).

The equal tempered scale convention has permitted composers to write with a no-

tation that an instrumentalist can then turn into sounds. It provides another representation
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of music, the score representation. There are many ways in which scores can be converted

into data, see for example Brillinger and Irizarry (1998), Bilmes (1993). This thesis focuses

on the signal representation.

More recent discoveries have been related to the timbre of the instrument. For

centuries, when listening to sounds produced by most instruments with perceivable pitch,

musicians have been able to perceive tones at frequencies other than the fundamental fre-

quencies. These tones are called overtones, and the periodic components related to them

are called partials. For certain instruments, which we will call harmonic instruments, the

keen ear can notice that the pitches of these overtones are related to frequencies that are

multiples of the fundamental frequency being played (track 6 on accompanying CD). Sound

analysis experiments con�rm this fact (Brown 1996). When a harmonic structure is present,

the �rst partial is the fundamental frequency and the partials at multiples of the �rst are

called harmonics. Notice that in this case the �rst harmonic is the second partial. In-

struments that don't have this harmonic structure, or non-harmonic instruments, will have

partials, but not harmonics.

As early as the later half of the 19th century physicists were interested in the

harmonic structure of musical sound signal (Rayleigh Reprinted 1945). Around this time

a physicist named Hermann Ludwig Ferdinand von Helmholtz conducted an experiment

that proved that sound signals produced by harmonic instruments actually had frequency

components at multiples of the fundamental frequency, see von Helmholtz (1885). This

discovery inspired physicists to seek an explanation for this phenomenon.

When a string is struck or plucked, it vibrates at di�erent natural frequencies in

accordance with their tension and diameter. The energy of vibration is then transfered to

the air by way of a vibrating plate of wood and a resonating air chamber, with the sound

eventually dying away. The musician can change the pitch by changing the length of the

string using her/his �ngers or hands.

The principles underlying the acoustics of bowed-string instruments, such as the

violin, and wind instruments, such as the oboe, are di�erent from the plucked strings. Here,

a vibration is maintained by a feedback mechanism that converts the motion of the bow

or the application of blowing pressure into an oscillatory motion that is converted into a

sound signal. In the case of the wind and the bowed-string instruments, di�erent tones are

obtained by changing the length of the air column or the string respectively. The case of

brass instruments is a bit more complicated, see Benade (1973) for a detailed exposition.
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In Benade (1976), Fletcher and Rossing (1991) mathematical models of the phys-

ical acoustics of instrument sound productions are presented for practically all orchestral

instruments and various non-orchestral ones. The equations of these physical models de-

scribe the mechanical and acoustic behavior of an instrument being played.

Recently researchers have become interested in the fact that not all the energy put

into the physical system (that is the instrument) is converted into a sinusoidal signal, i.e.

there is more in the signal than the periodic components related to the overtones (Cook

et al. 1990). In some cases left over energy produces sound that is incorporated into the

sound signal we hear as produced by the instruments. For example, the sound produced by

a beginner on a ute may have a \windy" quality. This is the sound of air being blown into

the ute and not converted into a harmonic signal. The component of the sound that is not

produced by the partials or periodic components is referred to as the residual, noisy or non-

sinusoidal component of the sound signal (Serra 1989). Some instruments are characterized

by having a strong non-sinusoidal component, for example the shakuhachi ute discussed

in Chapter 6.

The presence of non-sinusoidal components in a sound signal seem to be stronger

during the beginning of a note, or what musicians refer to as the attack. For many instru-

ments, the system that produces the harmonic signal takes an instant to fall into equilibrium.

Researches have found that the attack is one of the most important factors in determining

timbre (Grey and Moorer 1977, Charbonneau 1981, Masri and Bateman 1996). The non-

sinusoidal component is therefore thought of as an important characteristic of the sound

signal (Maganza and Causs�e 1986, Cook et al. 1990, Chafe 1990).

Physical models also exist for non-harmonic instruments. Some non-harmonic

instruments, such as the marimba, xylophone, timpani and piano have perceivable funda-

mental frequency. Some of these have partials and in the case of the piano, they are close

to multiples of the fundamental. Others, such as percussion instruments like the gong,

cymbals, bongos, and wood-blocks, have few or no frequency components. The physics that

explains these facts can be be found in Benade (1976), Fletcher and Rossing (1991).

2.4 Psychoacoustics

In the second half of the 19-th century George Simon Ohm (of Ohm's law) conjec-

tured that the human auditory system operates as a spectrum analyzer that displays the
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power spectrum of a complex tone and is insensitive to the relative phases of the compo-

nents (Hartman 1997). By spectrum, Ohm was referring to the Fourier transform of the

signal

f(�) =

Z
1

�1

V (t) expfit�g dt

The power spectrum being the modulus jf(�)j2. At his time this conjecture was not accepted

as plausible, but recent psychology experiments seem to con�rm its validity, see Grey and

Gordon (1978), Risset and Wessel (1982) for some examples and Pierce (1992, Chapter 7) for

an overview. Furthermore, physiological studies of the ear have found evidence to support

the validity of Ohm's conjecture, (Patterson et al. 1992). It is believed that a sort of spectral

analysis is carried out in the cochlea to provide the brain with the necessary information

to determine timbre see Pierce (1992, Chapter 7) for an overview.

We must notice that any musical signal V (t) and its reverse V (�t) will have the
same power spectrum although in many cases the ear can de�nitely distinguish between a

sound, say of a song, and its reverse. Ohm was perhaps referring to the way the ear operates

within very small time windows. Studies have been conducted (Patterson and Green 1970)

to determine the temporal resolution at which phase starts to make a di�erence. Green

(1985) performed an experiment where subjects where played two di�erent sounds separated

in time by a number, �t, of seconds. Then the same sounds where played but in reverse.

Subjects were asked to say if they could hear a di�erence. After �t was smaller than 1.5

milliseconds the di�erence was never noticed.

Psychoacoustic experiments also suggest that we hear \distances" in pitch on a

logarithmic scale. For example, we perceive the distance between two notes that are an

octave apart as the same no matter how high the frequency. The distance between 110 Hz.

and 220 Hz., sounds the same as the distance between 4400 Hz. and 8800 Hz. For this

reason it might be convenient to measure pitch distance in semitones instead of Hz.

2.5 Sound analysis and synthesis

Existing sound synthesis and analysis techniques are not necessarily meant to

describe or model sound signals but rather to obtain useful parametric representations. A

main goal is to obtain a parametric representation �(t) of the sound signal y(t) that provides

a source for reconstruction or synthesis of the original signal, i.e. that y(t) � s(t; �(t)), and
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that meaningful sound transformations can be obtained through the function �(t). We will

briey describe the three basic models that are most commonly used for musical sound

analysis and synthesis. For a detailed survey see Moorer (1977), Poli (1989), Smith (1991).

2.5.1 Abstract models

Abstract or black box models attempt to provide musically useful parameters in an

general way. For example, Chowning's FM modulation (Chowning 1973) provides a way

to generate synthetic sounds that have the harmonic characteristics of natural instrument

sounds. In FM modulation we de�ne a carrier frequency function C(t), a modulator func-

tion M(t), and peak amplitudes A and I for the carrier and modulator respectively. The

parametric representation of a sound is then �(t) = (C(t);M(t); A; I). To synthesize we

use the formula

y(t) = A sin(C(t) + [I sin(M(t))])

The model is called abstract because the parameter function �(t) here has no apparent

physical interpretation. However, the synthesis obtained by altering the parameters until

the sound produced by y(t) is similar to the natural sound being synthesized works relatively

well. Furthermore, we may obtain musically meaningful sound transformation via changes

on the function �(t). Other examples of abstract models can be found in Templaars (1977)

2.5.2 Physical models

Physical models attempt to parameterize sound in a fashion reecting its source.

Physical modeling synthesis starts from mathematical models of the physical acoustics of

instrumental sound production. The parametric representation describes the mechanical

and acoustic behavior of an instrument being played. Physical dimensions and constants of

vibrating objects, such as their mass and elasticity, are speci�ed. Boundary conditions to

which the vibrating object is constrained are stipulated. Finally, the excitation is described

algorithmically as a force disturbing the vibrating object in some way. In Figure 2.3 a

clarinet is modeled using the waveguide technique (Hirschman et al. 1991, Hirschman 1991).

Di�erent notes and timbres can be obtained by changing parameters such as the size of the

upper and lower bore (diameter of the instruments hole). For examples of physical modeling

see Hiller and Ruiz (1971), Poli (1989), Ja�e and Smith (1983), Karplus and Strong (1983),
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Rodet and Vergez (1996), Sullivan (1990), Borin et al. (1992), Verge (1996), V�alim�aki et al.

(1996).

(modeled by delay line)

Bell
(modeled by filters)

Reed
(modeled by 
nonlinear oscillator)

Mouth
Pressure

scattering junction)
(modeled by 3-port
Register Hole

Upper bore
(modeled by delay line)
Lower bore

Bell Radiation
(written to sound file)

(written to sound file)
Register hole radiation

Figure 2.3: Clarinet modeled as a �ve-part structure.

2.5.3 Spectrum models

Spectrum models attempt to parameterize a sound by reecting the way the human

ear works. These models are based on the accepted belief that the human ear is able to

decompose sound into di�erent ranges of frequency. Example of spectrum models can be

found in Flanagan and Golden (1966), Portno� (1976).

Recent spectrum models combine ideas of the physical models. A common pro-

cedure assumes that the sound signal is the output of passing some simple waveform, for

example a glottal excitation or blown air, through a linear time-varying �lter that models

the characteristics of the instrument in question. This model is of particular interest in

the case of the human voice (Atal et al. 1978, Rodet et al. 1984). These characteristic

are not modeled via physical theory describing the instrument, but rather by a spectrum

type analysis of the sound. We summarize the characteristics describing the instrument by

keeping only the information needed by the ear. The �lter theory considered important

to these techniques is described in Smith (1985). Some procedures assume that the origi-

nal waveform is a stochastic processes and use statistical methods to motivate estimation

techniques of the parameters of the �lters, see for example Tabei et al. (1991), Yang and
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Cabrera (1992), Dandawate and Giannakis (1992), Platonov et al. (1992).

2.6 Additive synthesis

Some of the �rst attempts at sound synthesis were based on additive synthesis as

in Risset and Mathews (1969). This has proven to be one of the most e�ective methods

available until now (Rodet 1997). Sound signals are modeled as summations of time-varying

sinusoidal components. Additive synthesis is accepted perhaps as the most powerful and

exible method of sound/synthesis analysis. In fact, similar sinusoidal models have been

proposed for speech signals (McAualay 1986). The details and reasoning leading to this

technique are discussed below.

2.6.1 Periodogram analysis

We mentioned that when harmonic instruments produce musical sounds the keen

ear can hear harmonic components at multiples of the fundamental frequency. Time series

analysis provides a tool that allows us to check if the data are in agreement with this fact.

For a stretch of signal Yt the periodogram is de�ned by:

IT (�) =
1

2�T

�����
TX
t=1

expf�i�tgYt
�����
2

, 0 � � � � (2.2)

When the signal Yt has periodic components at certain frequencies, the peri-

odogram will show peaks at these frequencies (Bloom�eld 1976). Computed periodograms

of sound signals produced by harmonic instruments verify the existence of overtones. Figure

2.4 presents the periodograms for the signal produced by a trumpet playing concert pitch

A and for a clarinet playing that same note. Each signal is about 3 seconds long and the

sample rate is 44.1 kHz, so T � 132300. Also note that the periodogram has peaks in the

frequencies expected, mainly at k � 440 Hz, with k = 1; : : : ; K. Notice that the trumpet

seems to have more noticeable harmonics. This is in agreement with the fact that the timbre

of the trumpet is brighter than that of a clarinet.

Helmholtz and other researchers of his time used methods based on the peri-

odogram to analyze musical sounds that were \stable" (approximately �xed in amplitude

and pitch). The intensity of each partial, as measured by the periodogram, namely

intensity of partial k =

q
IT (k�), � the fundamental frequency
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Figure 2.4: Periodogram for sound signals of a trumpet and a clarinet playing concert pitch

A.

was used as a characterization of the sound. This characterization suggests the following

parametric representation: de�ne �(t) = (�; a1; : : : ; ak) where � is the fundamental fre-

quency and ak is the value of the square root of the periodogram at the k-th partial. To

obtain the approximation of the original sound from the parametric representation simply

take ŷ(t) =
P

k
akcos(k�t). Instruments' sounds have been synthesized using this represen-

tations but the results are not satisfactory, in the sense that the synthetic sounds obtained

sounded quite di�erent from the original (track 7 on accompanying CD).

2.6.2 Dynamic periodogram analysis

In the early 1960s, Risset and Mathews (1969) made a discovery that greatly

advanced the understanding of timbre. Risset and Mathews (1969) were the �rst to use

the computer to analyze the sound produced by musical instruments in digital form. This
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allowed him to study the local behavior of the harmonic components of signals. Mathews

noticed that the intensity of the overtones varied relative to each other through time.

One way to verify this discovery using statistical tools is to compute dynamic

periodograms, or spectrograms. We de�ne the spectrogram of a signal at time t0 by:

IT (t0; �) =
1

2�T

������
t0+MX
t=t0�M

expf�i�tgYt

������
2

(2.3)

Here T = 2M + 1 is a suitable window size.
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Figure 2.5: Spectrograms for harmonic instruments.

In Figure 2.5 we see the spectrogram for the signals produced by three harmonic

instrument; a violin, an oboe, and a guitar (tracks 8, 9, and 10 on accompanying CD). The

violin and oboe are both playing C4 (261:6256 Hz), while the guitar is playing D3 (146:8324

Hz). Dark shades of grey represents high power for the spectrogram. In these spectrograms

the window size 2M +1 is taken to be 20 milliseconds. Notice that the spectrograms verify
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Mathews' discovery. All the instruments show harmonic components at the frequencies we

expect, yet the amplitudes of these harmonic components are de�nitely varying through

time in di�erent ways. This is particularly clear in the case of the guitar where the higher

harmonics \die o�" more rapidly in the sound.
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Figure 2.6: Spectrograms for non-harmonic instruments.

In Figure 2.6 we see the spectrogram for the signals produced by three non-

harmonic instrument; a marimba, a timpani and a gong (tracks 11, 12, and 13 on accompa-

nying CD). We notice that for these non-harmonic instruments the spectrograms show the

lack of a harmonic structure. The graphs also give examples of signals with perceivable,

ambiguous and non-perceivable pitch. Notice that the dark lines, representing high power

in Figure 2.6, suggest that the marimba has a very de�nite fundamental frequency and some

partials. In the case of the timpani there seems to be a fundamental frequency although it

is not as clear as in the marimba and is more apparent in the later part of the signal. The

gong seems to have no fundamental frequency or partials whatsoever. All these observations
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are in agreement with what is perceived by our ears and described by the physical theory.

This analysis suggests the following parametric representation

�(t) = (�; a1(t); : : : ; aK(t))

The signal reconstruction would then be ŷ(t) =
P

k
a1(t)cos(k�). Mathews synthesized

sounds using this parametric representation and found it greatly improved on the earlier

mentioned technique.

The signals obtained from this reconstruction are still not exactly equal to the

original, i.e. y(t)� ŷ(t) 6= 0. In fact, the di�erence between the original and the synthesized

signals is perceived by a trained human ear (track 14 on accompanying CD). One possible

explanation for this is the existence of a non-sinusoidal component. Some of the non-

sinusoidal components that can be incorporated into the signals are the sound produced by

�ngers hitting keys, nails plucking strings, and surplus blown air. Some researchers have

assumed this part of the signal to be stochastic and have proposed using an additive plus

residual model.

2.7 Additive sinusoidal plus residual model

Serra (1989) incorporated a non-sinusoidal residual part to the additive synthesis

and modeled it as an additive random signal. Since, many have proposed and used similar

models (Serra and Smith 1991, DePalle and Poirot 1991, Rodet and Depalle 1992, Depalle

and Tromp 1996, Solbach and W�ohrmann 1996, Rodet 1997). Notice that under this as-

sumption one is dealing with a signal plus noise statistical model. In Serra (1989) the model

presented is

y(t) = s [t; �(t)] + �(t) (2.4)

with

s [t; �(t)] =

KX
k=1

ak cos(�k(t)) (2.5)

with �(t) = (a1(t); : : : ; aK(t); �1(t); : : : ; �K(t))
0. An implicit assumption is that the signal

s[t; �] resembles a sum of pure sinusoids.

Notice that in this case the parameter �(t) can be thought of as the parametric rep-

resentation of the deterministic part of the sound. Serra (1989) assumes the non-sinusoidal
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part, �(t) to be a stationary autoregressive process. The parameters of this stochastic

process would then complete the parametric representation of the sound.

2.7.1 Estimation

One is interested in estimating �k(t) and ak(t). Estimation is done in two steps. In

the �rst step the signal is divided into short, possibly overlapping segments, called analysis

frames (Serra 1989). For each segment the peaks of the periodogram of the tapered data

are considered as possible indication of a sinusoidal partial. The amplitude and frequency

of each peak is recorded. In the second step, peaks of successive analysis frames are grouped

into tracks. For a particular track, say the i-th track, the frequencies at which the peaks

occur are considered to be estimates of the sinusoidal partial associated with �k(t). This is

called partial tracking (Depalle et al. 1993a). This tracking is usually based on a heuristic

approach (McAualay 1986, Serra 1989) that matches peaks of consecutive frames by the

proximity of the frequencies associated with them. The algorithm allows deaths and births of

partials for the case where one frame contains more peaks than the other. The problem with

this technique is that it does not take into account the fact that some of the peaks might

not be produced by sinusoidal components, but rather by the stochastic non-sinusoidal part

of the signal. A procedure described in Depalle et al. (1993a), DePalle et al. (1993b) takes

this into account and performs the tracking by globally optimizing over the set of all tracks

via a Hidden Markov Model. The validity of this method under the model de�ned in (2.5)

and the statistical properties of the estimates obtained are not discussed by DePalle et al.

(1993b). Solbach and W�ohrmann (1996) test partial tracking techniques in simulated data,

however theoretical exploration of this problem is not done and is left as future work.

2.7.2 Problems

Notice that we assume the existence of deterministic sinusoidal components (the

partials). The strong peaks seen in the periodogram and spectrograms of signals produced

by harmonic instruments, see Figures 2.4 and 2.5, agree with this assumption. The above

mentioned partial tracking algorithms allow partials to exist at frequencies that are not mul-

tiples of the fundamental frequencies. Estimates obtained for the deterministic sinusoidal

signal s[t; �(t)] when many non-harmonic partials are \tracked" are hard to interpret.

Furthermore, the periodogram of a signal that is assumed to be stochastic will
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also be stochastic. A peak in the periodogram can be due to chance and in particular

when say only 256 observations are used when computing the periodogram the variation

can be relatively large. Computing the statistical properties of periodogram peaks found by

a tracking algorithm as the one presented in Rodet (1997) can be complicated, even when

using a simple statistical model. For this reason �nding an algorithm for partial tracking

that provides useful estimates is not straightforward. In this work we do not intend to search

for such an algorithm. Instead, for the case of signals produced by harmonic instruments,

we assume a harmonic version of (2.5) and present an estimation procedure that, under

regularity conditions, provides consistent asymptotically normal estimates. These do appear

useful in practice. Notice that this will not only reduce the risk of incorporating unwanted

partial tracks but also improve the accuracy of our estimates, as will be shown in section

3.4.3.

2.7.3 An example of partial tracking

For Figure 2.7, a stretch of length 0.4 seconds of a trumpet sound, playing concert

pitch A, was analyzed. The stretch of sound was divided into 70 non-overlapping frames,

each with 256 data points (0.006 seconds). For each frame, the �gure shows various dots.

These dots represent the frequencies (up to 4410 Hz) at which the periodogram has local

maxima. The size of the points in the �gure represents the amplitude of the local maxima.

The lines seen in the �gure represent the tracks believed to be the sinusoidal partials that

a particular partial tracking algorithm detects. A straight forward method is employed.

Within a given frame, say frame i, we do the following: for each frequency 440 x k, k

an integer, the closest peak frequency �k(i) is considered to be part of the i-th track if

j�k(i)�440kj < 220. If no such frequency exist, the track has a death at that frame. Notice

that in some of the partials the tracks end at a particular frame and begin again in another.

This is a feature of many partial tracking algorithms.

2.8 Applications

Obtaining parametric representations of sounds leads to many musical applica-

tions, (Mathews 1969, Mathews and Pierce 1989, Rowe 1994). In particular, the separation

of the noise from the discrete part of the signal and the decomposition of the sinusoidal

part into the separate partials can be used as in the following applications.
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Figure 2.7: Periodogram maxima of analysis frames with partial tracks of a 0.4 second

stretch of the sound signal of a trumpet playing A4.
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2.8.1 Audio signal restoration

Music recordings can be damaged in di�erent ways. For example, archived grama-

phone recordings are usually of poor quality. Recovering the original signal from the avail-

able one is a problem that many in signal processing and music technology �elds have tried

to solve. In Vaseghi and Rayner (1988) some statistical tools are employed with multiple

copies of the same recording. Sound synthesis techniques can be used as an alternative

method, even when only one copy of the recording exists.

2.8.2 Sound recreation

As mentioned above, once we obtain a parametric representation of a sound signal,

we can then use it to recreate the sound without the use of the musical instrument that

created it. The parameters should be musically meaningful and should allow us to change

the sound in musically meaningful ways.

Sound recreation techniques can provide more realistic synthetic sounds of natural

instrument tones. The way most synthesizers work today is by recording a large number of

an instrument's tones. When a key is pressed on the synthesizer, the appropriate recording

is played back. Tones for which there are no recordings are synthesized by playing the

recorded tone at a di�erent volume and/or pitch. The result is for the most part easily

distinguishable from the actual instrument. This is because there are spectral changes

associated with dynamic and pitch changes. These changes are not captured by simply

varying the amplitude and pitch of a recording. An actual loud piano note sounds di�erent

from a quiet piano note played at a high volume. This technique relates to timbre morphing

which is discussed in the following section.

2.8.3 Timbre morphing

Timbre morphing is the process of combining two or more sounds to create a

new sound with intermediate timbre and duration. This process di�ers from simply mixing

sounds in that only a single sound, with characteristics from the two original ones, is audible

as the morph sound (Tellman et al. 1995).

Morphing can be used to create interesting sounds that are not found in nature,

but that have the characteristics of naturally occurring sounds. The resulting sounds can

be used, for example, in electronic music composition.
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An interesting example is the recreation of a castrato voice (Depalle et al. 1995).

This was done to produce a sound-track for the �lm about Farinelli, the famous 18th century

castrati. To create Farinelli's voice, the voice of a counter tenor and a soprano were analyzed

and parametric representations were obtained. These two representations were combined

in a way that produced a timbre similar to that of a castrato.

The representation of the signal obtained from �tting a harmonic model provides

us with a direct method of morphing two sounds. In general if we have the parametric

representations of two sounds, �1(t) and �2(t), we may then obtain a morph sound via

~y(t) = s [t;�(t)�1(t) + [1� �(t)]�2(t)]

with �(t) 2 [0; 1] determining the \mix" of the morph at each time t.

2.8.4 Time-scale and pitch modi�cation

By playing a 33 speed record at 45 speed, we can modify the pitch of our favorite

artists so that they sing high enough so as to sound like the \Chipmunks". Yet in this case

the sound signal is also played faster, i.e. the time-scale also changes. Fancy samplers used

in the music industry use a technique similar to the record speed technique. The sample

rate conversion technique used in digital samplers (Smith and Gossett 1984), achieves pitch

alterations by changing the rate at which sounds are read from memory.

In many applications it is useful to vary the time scale of a signal without a�ecting

pitch, or to conversely modify pitch without changing the time scale. An advantage of

additive synthesis is that it permits the pitch and time-scale to be varied independently

(Quatieri 1992). A simple example is to take the simple parametric representation presented

in section 2.6.1, �(t) = (�; a1; : : : ; ak), and create a new signal with higher or lower pitch

by simply changing the value of �. To change the time-scale we could simply re-scale the

time-unit through a time-scale function z(t). In this case we reconstruct the new signal

y(t) =
P

k
akcos(k�z(t))

2.9 Conclusion

In this chapter we have shown how musical sound signals may be represented as

discrete time series that can be analyzed statistically. We also discussed di�erent applica-

tions that motivate sound analysis and synthesis. The physics of musical instruments and
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psychology of music motivate di�erent sound analysis and synthesis techniques. One such

technique, additive sinusoidal plus residual model, is based on a statistical signal plus noise

model which we will study in the work that follows.
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Chapter 3

Frequency Estimation

3.1 Introduction

The physical modeling described in Chapter 2 suggests that sound signals produced

by musical instruments may be characterized by a harmonic structure and noise. In this

chapter we will present some results relating to previous work on frequency estimation that

will subsequently be used in the following chapters.

Consider the model

yt = s(t; �) + �t t = 1; : : : ; T

where the stationary �t has autocovariance function c��(u) = Covf�t+u; �tg, satis�es As-

sumption 1 below and has power spectrum

f��(�) =
1

2�

X
u

c�� expf�i�ug; 1 < � <1

Assumption 1 f�tg is a strictly stationary real valued random process all of whose mo-

ments exist, with zero mean, and with c�:::�(u1; : : : ; uL�1) the joint cumulant function of

order L of the series �t for L = 2; 3; : : :. Further the

CL =

1X
u1=�1

: : :

1X
uL�1=�1

jc�:::�(u1; : : : ; uL�1)j (3.1)

satisfy X
k

Ckz
k=k! <1

for z in a neighborhood of 0.
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This assumption requires that the time series �t have a short span of dependence in a sense

including that the measurements �t and �s are less statistically dependent on each other as

they become more distant, i.e. as t� s!1.

Many signals in nature have been statistically analyzed via sinusoidal regression

models (Brillinger 1977), for example

s(t; �) =

KX
k=1

fAk cos(!kt) + Bk sin(!kt)g

where � = (A;B;!)0 = (A1; : : : ; AK ; B1; : : : ; BK ; !1; : : : ; !K)
0. In a musical context, as

indicated in previous chapters, we call the components of ! the frequencies of the partials.

The amplitudes of the partials are de�ned by �k =
q
A2
k
+B2

k
.

In Walker (1971), Hannan (1971), Hannan (1973), Hannan (1974), Brown (1990)

estimates that are asymptotically equivalent to least squares estimates are presented. Con-

sistency is shown for these estimates and asymptotic variance expressions are developed.

We intend to assume a model like the above holds locally in time for sound signals.

Since we are going to be �tting this model in order to obtain estimates of parameter functions

that depend on time, it is only natural to consider window based estimates. In this chapter

we will be presenting the results obtained ibid, but for estimates that are asymptotically

equivalent to weighted least squares. The results follow in almost the same way as in the

unweighted case. We present the results needed for the more general weighted case.

3.2 One sinusoidal component

We will �rst consider the case of one sinusoidal component, that is

s(t; �0) = A0 cos(!0t) + B0 sin(!0t) (3.2)

with �0 = (A0; B0; !0)
0 and then generalize to the case of several partials. Hannan (1973)

and Walker (1971), amongst others, observe that the least squares method is asymptotically

equivalent to the following, more direct, estimation procedure:

ÂT =
2

T

TX
t=1

yt cos(!̂T t) (3.3)

B̂T =
2

T

TX
t=1

yt sin(!̂T t) (3.4)
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where !̂T is such that

qT (!̂T ) = max
0�!��

qT (!) (3.5)

Here qT is de�ned by

qT (!) =

�����T�1
TX
t=1

yt expfit!g
�����
2

(3.6)

Notice that qT (!) is proportional to the periodogram, de�ned in (2.2). The authors above

mentioned show that these estimates are consistent and asymptotically normal and the

asymptotic variance matrix is obtained.

The weighted least squares method consists of choosing �̂ to minimize the criterion

ST (�) =

TX
t=1

w(
t

T
) [yt � s(t; �)]2 (3.7)

Here w(s) is a weight function such that if we de�ne the following constants

Wn =

Z 1

0

tnw(t) dt

Un =

Z 1

0

tnw(t)2 dt (3.8)

then w(s) satis�es the following assumption.

Assumption 2 Assume that w(s) is non-negative, bounded, of bounded variation, has sup-

port [0; 1] , W0 > 0 and, W 2
1 �W0W2 6= 0.

Set

�T

n (�) =

TX
t=1

w(
t

T
)tn expfi�tg (3.9)

Throughout we are going to need the following simple result

Lemma 1 If w(t) satis�es Assumption 2 then we have

lim
T!1

T�(n+1)�T

n
(�) =Wn; for � = 0; 2� (3.10)

�T

n (�) = O(Tn); for 0 < � < 2� (3.11)

for n = 0; 1; 2.

Proof: Fix n. To prove (3.10) notice that for � = 0; 2� we have that

T�(n+1)�T

n
(�) =

TX
t=1

(
t

T
)nw(

t

T
)(
1

T
)
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From the boundedness and bounded variation of w(u) we have

lim
T!1

T�(n+1)�T

n
(�) =

Z 1

0

unw(u) du = Wn

To prove (3.11) let 0 < � < 2� and de�ne

�t(�) =

tX
s=1

expfi�sg

with the convention that �0(�) = 0. Letting h(u) = unw(u) and using summation by parts

we have that

�T

n (�) = Tn

TX
t=1

h(
t

T
)
�
�t(�)��t�1(�)

�
= Tn

"
TX
t=1

h(
t

T
)�t(�)�

T�1X
t=0

h(
t + 1

T
)�t(�)

#

= Tn

"
h(1)�T(�) +

T�1X
t=1

�
h(

t

T
)� h(

t + 1

T
)

�
�t(�)

#
Notice that if w(t) is bounded and has bounded variation on [0; 1], so does h(t). Let M be

supt jh(t)j and V be the total variation of h(t). Then we have

���T

n (�)
�� = Tn

�����h(1)�T(�) +

T�1X
t=1

�
h(

t

T
)� h(

t + 1

T
)

�
�t(�)

�����
� Tn

"
jh(1)jj�T(�)j+

TX
t=1

����h( tT )� h(
t+ 1

T
)

���� j�t(�)j
#

� Tn

�
M j�T (�)j+ V max

1�t�T
j�t(�)j

�
We know, see for example Bloom�eld (1976), that j�t(�)j � L = 1=j sin(1

2
�)j for all t.

Notice that L depends on �, but given 0 < � < 2� it is constant for all t thus���T

n
(�)
�� � TnL(M + V )

and this completes the proof of the lemma. �

As done in Walker (1971) for the unweighted case, we notice that if we de�ne

RT (�) =

TX
t=1

w(
t

T
)y2t +

1

2
(A2 +B2)

TX
t=1

w(
t

T
)

�2
TX
t=1

w(
t

T
)ytfA cos(!t) +B sin(!t)g (3.12)
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with � = (A;B; !), then

ST (�)�RT (�) =
1

2

TX
t=1

w(
t

T
)f(A2 � B2) cos(2!t) + 2AB sin(2!t)g (3.13)

Here ST (�) is the weighted residual sum of squares of equation (3.7). The di�erence in

equation (3.13) is deterministic and, using Lemma 1, we can show it is bounded as T ! 1
if 0 < ! < �.

Now notice that the ! that maximizes the periodogram of the tapered data

w(t=T )Yt also maximizes 2
P

T

t=1 w(t=T )ytfA cos(!t)+B sin(!t)g in equation (3.12). Given

! we can directly �nd the A and B that minimize RT (�) by taking derivatives and solving

when they are set to 0. This and (3.13) may be used to show that the following estimates

are asymptotically equivalent to the least squares estimates,

ÂT = 2

TX
t=1

w(
t

T
)yt cos(!̂T t)=

TX
t=1

w(
t

T
)

B̂T = 2

TX
t=1

w(
t

T
)yt sin(!̂T t)=

TX
t=1

w(
t

T
)

Here !̂T is such that

qT (!̂T ) = max
0�!��

qT (!)

with qT now de�ned by

qT (!) =

�����T�1
TX
t=1

w(
t

T
)yt expfit!g

�����
2

(3.14)

Notice that these estimates are the exact same ones of equations (3.3), (3.4), (3.5), and

(3.6) obtained in the unweighted case, but now using tapered data w(t=T )Yt.

To prove consistency and asymptotic normality for these estimates we are going

to need a result concerning the behavior of the periodogram of the noise and its derivatives

with respect to !.

Lemma 2 Let the stationary noise process f�tg satisfy Assumption 1 and let the weight

function w(u) satisfy Assumption 2 then if

pT (!) =

�����T�(k+1)

TX
t=1

w(
t

T
)tk�t expf�it!g

�����
one has

lim
T!1

sup
0�!��

pT (!) = 0, in probability
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Lemma 2 has been shown to be true under di�erent assumptions for the equally

weighted case, w(s) = 1. Walker (1971) proves the Lemma for white noise with �nite

variance. Hannan (1973) proves it under ergodic and purely non-deterministic conditions.

Wang (1991) simply assumes the periodogram of the noise is asymptotically bounded. Under

this assumption we can readily obtain the result of Lemma 2. In this case letting

dt(�) =

tX
s=1

�s expfi�sg

we know, by assumption, that max1�t�T jdt(�)j = Op(1) and by a summation by parts

argument like that in the proof of Lemma 1, the result for the weighted case of Lemma 2

follows. Brillinger (1986) proves a version of this Lemma for spatial point processes. Under

Assumptions 1 and 2, Lemma 2 follows directly from results of Brillinger (1981). Speci�cally

de�ning h(u) = ukw(u) and

dT
k (!) =

TX
t=1

h(
t

T
)�t expf�it!g

we have by Theorem 4.5.1 in (Brillinger 1981, page 98)

sup
0�!��

��dTk (!)�� = Op(fT logTg� 1

2 )

Since

pT (!) = T�1
��dTk (!)��

the lemma follows.

Now we are ready to prove the following theorem concerning the consistency of

the estimates.

Theorem 1 If �t satis�es Assumption 1 and weight function w(t) satis�es Assumption 2,

then for 0 < !0 < �

lim
T!1

ÂT = A0, lim
T!1

B̂T = B0, lim
T!1

T j!̂T � !0j = 0, in probability

Proof: We start by proving

lim
T!1

T j!̂T � !0j = 0, in probability (3.15)

which is stronger than ordinary consistency, but is needed to prove the consistency of the

remaining two estimates and asymptotic normality.
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Next write

A0 cos(!0t) + B0 sin(!0t) = D0 expfi!0tg+D0 expf�i!0tg

where D0 =
1
2
(A0 � iB0). Now we have

qT (!) =
��T�1dT0 (!)��2 + ��T�1[D0�

T

0 (!0 + !) +D0�
T

0 (!0 � !)]
��2

+ 2<
��
T�1dT0 (!)

� �
T�1[D0�

T

0 (!0 + !) +D0�
T

0 (!0 � !)]
��

By Lemma 1 we have that for 0 < ! < �

T�1�T

1 (!0 + !) = o(1)

and that

T�1�T

1 (!0 � !) =

8<: W0 : ! = !0

o(1) : otherwise

Lemma 2 implies that for 0 < ! < �

T�1dT0 (!) = op(1)

So we have that

qT (!) =
1

4
�20
��T�1�T

0 (! � !0)
��2 + op(1)

and therefore

qT (!0) =
1

4
�20W

2
0 + op(1)

To prove (3.15), for any b > 0, de�ne

PT (b) = f! : T j! � !0j � bg (3.16)

Notice that

Pr (T j!̂T � !0j � b) � Pr

 
sup

!2PT (b)

qT (!) � qT (!0)

!

= Pr

 
sup

!2PT (b)

��T�1�T

0 (! � !0)
�� � W0 + op(1)

!
By proposition B.1.3 in Wang (1991, page 106) we have that

sup
!2PT (b)

��T�1�T

0 (! � !0)
�� = sup

!2PT (b)

�����jT�1
TX
t=1

w(
t

T
) expfiT (! � !0)

t

T
g
�����

= sup
!2PT (b)

����Z 1

0

w(s) expfiT (! � !0)sg ds
����+ o(1)
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Let !� be such that����Z 1

0

w(s) expfiT (!� � !0)sg ds
���� = sup

!2PT (b)

����Z 1

0

w(s) expfiT (! � !0)sg ds
���� (3.17)

Let b� = T j!�� !0j � b > 0. Then, by the de�nition of PT (b) given by equation (3.16), we

have

sup
!2PT (b)

����Z 1

0

w(s) expfiT (! � !0)sg ds
���� � ����Z 1

0

w(s) expfib�sg ds
����+ o(1) (3.18)

Thus

lim
T!1

Pr (T j!̂T � !0j � b) =

lim
T!1

Pr

 
sup

!2PT (b)

��T�1�T

0 (! � !0)
�� � W0 + op(1)

!
= (3.19)

lim
T!1

Pr

�����Z 1

0

w(s) expfib�sg ds
����+ o(1) � W0 + op(1)

�
= 0 (3.20)

Since W0 > 0 is a deterministic constant and b� > 0

W0 =

����Z 1

0

w(s) ds

���� = Z 1

0

jw(s) expfib�sgj ds >
����Z 1

0

w(s) expfib�sg ds
���� (3.21)

we have (3.15).

Now we will prove consistency for ÂT and B̂T . We have that

ÂT + iB̂T = 2(WT

0 )
�1

TX
t=1

w(
t

T
)r(t; �) expf�i!̂T tg

where

r(t; �) =
�
D0 expfi!0tg+D0 expf�i!0tg

�
and

WT

0 =

TX
t=1

w(
t

T
)

By the mean value theorem we have that for some ~!T satisfying j~!T � !0j � j!̂T � !0j

jÂT � A0 + i(B̂T �B0)j =�����2(WT

0 )
�1

TX
t=1

w(
t

T
)r(t; �) [expfi!0tg � it expfi~!T tg(!̂T � !0)]� (A0 + iB0)

�����
�
�����2(WT

0 )
�1

TX
t=1

w(
t

T
)r(t; �) expfi!0tg � (A0 + iB0)

�����
+

�����2(WT

0 )
�1

TX
t=1

w(
t

T
)r(t; �)it expfi~!T tg(!̂T � !0)

����� (3.22)
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Looking at the �rst term of equation (3.22) and using Lemma 1 we have

2(WT

0 )
�1

TX
t=1

w(
t

T
)r(t; �) expfi!0tg

= 2(WT

0 )
�1

TX
t=1

w(
t

T
)
�
D0 expfi!0tg+D0 expf�i!0tg

�
expfi!0tg

= 2(WT

0 )
�1
�
D0�

T

0 (2!0) +D0�
T

0 (0)
�

= 2(WT

0 )
�1 1

2
(A0 + iB0)�

T

0 (0) + o(1)

= (A0 + iB0) + o(1)

For the second term of equation (3.22)�����2(WT

0 )
�1

TX
t=1

w(
t

T
)r(t; �)it expfi~!T tg(!̂T � !0)

�����
� 2(WT

0 )
�1

TX
t=1

����w( tT )r(t; �)it expfi~!T tg(!̂T � !0)

����
� 2(WT

0 )
�1

TX
t=1

w(
t

T
)jr(t; �)jtj!̂T � !0j

� 2(WT

0 )
�1

TX
t=1

w(
t

T
)[jD0j+ jD0j]T j!̂T � !0j

� �0T j!̂T � !0j (WT

0 )
�1

TX
t=1

w(
t

T
)

= �0 T j!̂T � !0j = op(1)

And thus j(ÂT �A0)+ i(B̂T �B0)j = op(1), and because both the real and imaginary parts

converge in probability to 0 the Theorem is proved. �

Theorem 2 Under the same conditions as in Theorem 1 the vector of weighted estimates:

�
T 1=2(ÂT �A0); T

1=2(B̂T �B0); T
3

2 (!̂T � !0)
�

(3.23)

converges in distribution to a normal vector with zero mean and variance matrix

4�f��(!0)

(A2
0 +B2

0)
V (3.24)



35

where

V =

0BB@
c1A

2
0 + c2B

2
0 �c3A0B0 �c4B0

�c3A0B0 c2A
2
0 + c1B

2
0 c4A0

�c4B0 c4A0 c0

1CCA (3.25)

Here

c0 = a0b0

c1 = U0W
�2
0

c2 = a0b1

c3 = a0W1W
�2
0 (W 2

0W1U2 �W 3
1U0 � 2W 2

0W2U1 + 2W0W1W2U0)

c4 = a0(W0W1U2 �W 2
1U1 �W0W2U1 +W1W2U0) (3.26)

where

a0 = (W0W2 �W 2
1 )
�2

a1 = (U0U2 � U2
1 )

a2 = W�2
0 (W0U1 �W1U0)

2

bn = W 2
nU2 +Wn+1(Wn+1U0 � 2WnU1) , n = 0; 1 (3.27)

Here W0;W1;W2; U0; U1 and U2 are de�ned by (3.8).

Proof: If we let Xt = (�t; �t) we have that each component of Xt satis�es Assumption

1. Also, as mentioned above, the functions h1(s) = w(s) and h2(s) = sw(s) both satisfy

Assumption 2. The assumptions for Theorem 4.4.2 in (Brillinger 1981, page 95) are then

satis�ed for the series Xt and the taper functions h1(t) and h2(t). Thus, we have that the

vector u, with components equal to the real and imaginary parts of the Fourier transform

of the components of Xt

u1 = T�
1

2

X
h1(

t

T
)X1;t cos!0t = T�

1

2

X
w(

t

T
)�t cos!0t

u2 = T�
1

2

X
h1(

t

T
)X1;t sin !0t = T�

1

2

X
w(

t

T
)�t sin!0t

u3 = T�
1

2

X
h2(

t

T
)X2;t cos!0t = T�

3

2

X
w(

t

T
)�t t cos!0t

u4 = T�
1

2

X
h2(

t

T
)X2;t sin !0t = T�

3

2

X
w(

t

T
)�t t sin!0t (3.28)
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is asymptotically multivariate normal with zero mean and variance matrix

U = �f��(!0)

0BBBBB@
U0 0 U1 0

0 U0 0 U1

U1 0 U2 0

0 U1 0 U2

1CCCCCA (3.29)

Expanding q0
T
(!) in the �rst two terms of its Taylor series, about !0 we can write:

T�
1

2 q0
T
(!0) = �T 3

2 (!̂T � !0)T
�2q00

T
(~!T ); j~!T � !0j � j!̂T � !0j (3.30)

Notice that, calculating, the derivative

q0
T
(!0) = T�

1

2

 
TX
t=1

w(
t

T
)yt sin(!0t)

!
T�

3

2

 
TX
t=1

w(
t

T
)yt t cos(!0t)

!
�

T�
1

2

 
TX
t=1

w(
t

T
)yt cos(!0t)

!
T�

3

2

 
TX
t=1

w(
t

T
)yt t sin(!0t)

!
(3.31)

Using Lemmas 1 and 2 we can show that

T�
1

2

 
TX
t=1

w(
t

T
)yt cos(!0t)

!
= T�

1

2

 
A0

TX
t=1

w(
t

T
) cos2(!0t)

+ B0

TX
t=1

w(
t

T
) sin(!0t) cos(!0t) +

TX
t=1

w(
t

T
)�t cos(!0t)

!
= T

1

2A0W0 + u1 + o
�
T�

1

2

�
as yt = A0 cos(!0t) + B0 sin(!0t) + �t. By calculating an expression like this for each term

in (3.31) and multiplying out we �nd that

T�
1

2 q0T (!0) = �W1B0u1 +W1A0u2 +W0B0u3 �W0A0u4 + op(1) (3.32)

Taking the second derivative we have

T�2q00T (~!) =

"
�T�1

 
TX
t=1

w(
t

T
)yt sin(~!t)

!
T�3

 
TX
t=1

w(
t

T
)yt t

2 sin(~!t)

!

+T�2

 
TX
t=1

w(
t

T
)yt t cos(~!t)

!
T�2

 
TX
t=1

w(
t

T
)yt t cos(~!t)

!

+T�2

 
TX
t=1

w(
t

T
)yt t sin(~!t)

!
T�2

 
TX
t=1

w(
t

T
)yt t sin(~!t)

!

�T�1
 

TX
t=1

w(
t

T
)yt cos(~!t)

!
T�3

 
TX
t=1

w(
t

T
)yt t

2 sin(~!t)

!#
(3.33)
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Now

T�1

 
TX
t=1

w(
t

T
)yt cos(~!T t)

!
= T�1

 
A0

TX
t=1

w(
t

T
) cos(!0t) cos(~!T t)

+ B0

TX
t=1

w(
t

T
) sin(!0t) cos(~!T t) +

TX
t=1

w(
t

T
)�t cos(~!T t)

!
(3.34)

as yt = A0 cos(!0t) +B0 sin(!0t) + �t.

Since T j~!T � !0j converges to zero in probability, we have that the �rst term on

the left of equation (3.34) converges to A0W0 in probability and the second term to 0. The

third term is dominated by

sup
0�!��

�����T�1
TX
t=1

w(
t

T
)�t expf�it!g

�����
which by Lemma 2 goes to 0 in probability. Similarly we �nd the limit in probability of

each of the eight terms in (3.33). Multiplying out we have

T�2q00T (~!T ) =
1

2
(A2

0 +B2
0)(W

2
1 �W0W2) + op(1) (3.35)

Using (3.30), (3.32) and (3.35) we have

T
3

2 (!̂T � !0) =
2W1B0u1 � 2W1A0u2 � 2W0B0u3 + 2W0A0u4

(A2
0 + B2

0)(W
2
1 �W0W2)

+ op(1)

T
1

2 (ÂT � A0) =
2

W0

u1 �
W1

W0

B0T
3

2 (!̂T � !0) + op(1)

T
1

2 (B̂T �B0) =
2

W0

u2 +
W1

W0

A0T
3

2 (!̂T � !0) + op(1)

By Assumption 2 we know that all the denominators are not 0, so now we can express

the vector of standardized estimates as a linear combination of the vector u, de�ned by

equation (3.28), plus a quantity converging to 0 in probability.

zT = Au+ op(1)

with

zT =

0BB@
T

1

2 (ÂT �A0)

T
1

2 (B̂T �B0)

T
3

2 (!̂T � !0)

1CCA
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and

A =

0BB@
B2
0W2 + A2

0(W2 � W12

W0

) �A0B0W
2

1

W0

�B2
0W1 A0B0W1

�A0B0W
2

1

W0
A2
0W2 +B2

0(W2 � W
2

1

W0
) A0B0W1 �A2

0W1

�B0W1 A0W1 B0W0 �A0W0

1CCA
This implies that Au is asymptotically multivariate normal with variance matrix

AUA0. Speci�cally by Slutsky's theorem z has the same asymptotic distribution as Au.

By computing AUA0 we obtain f4�f��(!0)=(A2
0+B2

0)gV and this completes the proof. �

Notice that the constants presented in equation (3.26) and (3.27) are quite com-

plicated. However for certain window functions we have that

W0U1 �W1U0 = 0 (3.36)

The uniform window function, w(t) = 1, and the Tukey triweight window function, w(t) =

(1� j2t� 1j3)3+, are examples where (3.36) holds. If this is the case we obtain the following

simpli�cations for the constants

c3 = a0W
2
1W

�2
0 (W 2

1U0 �W 2
0U2)

c4 = a0W1(W0U2 �W1U1)

a2 = 0

b0 = W 2
0U2 �W0W1U1

Also observe that if w(t) = 1 for all t, the constants in (3.26) reduce to c1 = 1,

c2 = 4, c3 = 3, c4 = 6 and c0 = 12 and the variance matrix reduces to the variance matrix

obtained in the equally weighted case by, for example, Walker (1971).

3.3 Several sinusoidal components

Now consider the model with more than one frequency

s(t; �0) =

KX
k=1

fAk;0 cos(!k;0t) + Bk;0 sin(!k;0t)g (3.37)

with �0 = (A0;B0;!0) and 0 < wk;0 6= wl;0 < 2� for all 1 � k 6= l � K. The func-

tion corresponding to (3.12) whose minimization yields approximate weighted least squares
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estimators becomes

RT (�) =

TX
t=1

w(
t

T
)y2
t
+
1

2

KX
k=1

(A2
k
+ B2

k
)

TX
t=1

w(
t

T
) (3.38)

�2
KX
k=1

TX
t=1

w(
t

T
)ytfAk cos(!kt) +Bk sin(!kt)g

Here � = (A;B;!). Similar to the case of one sinusoidal component we de�ne the estimates

Âk;T , B̂k;T and !̂k;T for k = 1; : : : ; K by

Âk;T = 2

TX
t=1

w(
t

T
)yt cos(!̂k;T t)=

TX
t=1

w(
t

T
) (3.39)

B̂k;T = 2

TX
t=1

w(
t

T
)yt sin(!̂k;T t)=

TX
t=1

w(
t

T
) (3.40)

where if we write ! = (!1; : : : ; !K) and !̂T = (!̂1;T ; : : : ; !̂K;T ), !̂T is such that

qT (!̂) = max
0�!��

qT (!) (3.41)

where qT is de�ned by:

qT (!) =

KX
k=1

�����T�1
TX
t=1

w(
t

T
)yt expfit!kg

�����
2

(3.42)

In this case to obtain (3.38) from the weighted least squares equation (3.7) we

need to have that terms of the form AkAl

P
t
cos(!k) cos(!l) and BkBl

P
t
sin(!k) sin(!l)

are bounded, since they are included in ST (A;B;!)�RT (A;B;!). Some conditions need

to be imposed to avoid having the !k become too close together and thus prevent the

estimators of two or more frequencies from converging in probability to the same value.

Notice that if no constraint is imposed, the estimate for all the frequencies w1;0; : : : ; wK;0

will be the frequency that maximizes qT (!) of equation (3.14) in the previous section. An

appropriate condition is

lim
T!1

min
1�k 6=l�K

(T j!k � !lj) =1 (3.43)

Walker (1971) proposes maximizing qT (!) subject to

min
k 6=l

(j!k � !lj) = T�
1

2 (3.44)

So we rede�ne the estimates of !0 as the value that maximizes

qT (!̂) = max
0�!��

qT (!)
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but under the constraint (3.44).

The following results for the weighted least squares estimates follow from Theorems

1 and 2.

Corollary 1 Under the same assumptions as Theorem 1

lim
T!1

Âk;T = Ak;0, lim
T!1

B̂k;T = Bk;0, lim
T!1

T j!̂k;T � !k;0j = 0

in probability for each k

Proof: When (3.43) holds, then only K of the K2 di�erences !k � !l;0 can be O(T�1). If

we label these di�erences !k � !k;0, then we have

qT (!) =

KX
k=1

�����T�1
KX
l=1

w(
t

T
)fDl;0�

T

0 (!k + !l;0) +Dl;0�
T

0 (!k � !l;0)g

+

TX
t=1

w(
t

T
)�t expfi!ktg

�����
2

where Dk;0 =
1
2
(Ak;0� iBk;0) for k = 1; : : : ; K. Notice that qT (!) will be dominated by the

sum of the terms jDk;0�
T

0 (!k � !k;0)gj when the !k � !k;0, k = 1; : : : ; K are small. In fact,

we can show, just as in the proof of Theorem 1, that

qT (!) =
1

4

KX
k=1

�2k
��T�1�T

0 (!k;0 � !k)
��2 + op(1)

and

qT (!0) =
1

4
W 2

0

KX
k=1

�2k + op(1)

For any b > 0, de�ne

PT (b) = f! : T j!k � !k;0j � b; (1� k � K)g

Following in a similar way to that of the proof of Theorem 1, for some b� > 0

lim
T!1

Pr (T j!̂T � !0j � b) =

lim
T!1

Pr

 
sup

!2PT (b)

KX
k=1

�2kjT�1�T

0 (!k � !k;0)j � W0

KX
k=1

�2k + op(1)

!
=

lim
T!1

Pr

 
KX
k=1

�2k

����Z 1

0

w(s) expfib�sg ds
����+ o(1) � W0

KX
k=1

�2k + op(1)

!
=

lim
T!1

Pr

�����Z 1

0

w(s) expfib�sg ds
����+ o(1) � W0 + op(1)

�
= 0
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and the T-consistency of the frequency estimates !̂ is proved. Having established this, the

consistency of each estimate Âk;T and B̂k;T , k = 1; : : : ; K follows in the same way as the

proof of Theorem 1. �

Corollary 2 Under the same assumptions of Theorem 2 the vectors�
T

1

2 (Âk;T � Ak;0); T
1

2 (B̂k;T � Bk;0); T
3

2 (!̂k;T � !k;0)
�

, k = 1; : : : ; K (3.45)

converge in distribution to mutually independent normal vectors with zero mean and vari-

ance matrices
4�f��(!k;0)

A2
k;0 +B2

k;0

Vk

where

Vk =

2664
c1A

2
k;0 + c2B

2
k;0 �c3Ak;0Bk;0 �c4Bk;0

�c3Ak;0Bk;0 c2A
2
k;0 + c1B

2
k;0 c4Ak;0

�c4Bk;0 c4Ak;0 c0

3775 (3.46)

and the constants c0; : : : ; c4 are de�ned in equation (3.26)

Proof: By taking derivatives of qT (!) we notice that @qT (!)=@!k doesn't depend on !l

when l 6= k. We can then de�ne, for each k = 1; : : : ; K

q0k;T (!k) =
@qT (!

�)

@!k

����
!�
k
=!k

Then for each k = 1; : : : ; K there exists a ~!k;T with j~!k;T � !k;0j � j!̂k;T � !k;0j such that

T�
1

2 q0k;T (!0) = �T 3

2 (!̂k;T � !k;0)T
�2q00T (~!k;T )

Now for each one of these we can directly compute the derivatives and, following the proof

of Theorem 2, �nd that

T�
1

2 q0
k;T

(!k;0) = �W1Bk;0uk;1 +W1Ak;0uk;2 +W0Bk;0uk;3 �W0Ak;0uk;4 + op(1)

and

T�2q00
k;T

(~!k;T ) =
1

2
(A2

k;0 +B2
k;0)(W

2
1 �W0W2) + op(1)

Here uk;1; : : : ; uk;4 are de�ned as in equation (3.28) but with using !k;0 in place of !0. It is

known, see for example Brillinger (1981), that the vectors (uk;1; : : : ; uk;4)
0 are asymptotically

independent and that under condition (3.43) so are the !̂k 's. The result is then obtained

in the same way as the proof of Theorem 2. �



42

3.4 Harmonic model

In the case of a \harmonic" musical instrument a more appropriate model for the

sound it produces contains the constraint that all the component frequencies are a multiple

of a fundamental frequency, a pitch. We will call this a harmonic model. Now the model

comes down to

s(t; �) =

KX
k=1

fAk cos(k�t) + Bk sin(k�t)g (3.47)

with � = (A;B; �)0, � the fundamental frequency or pitch.

For this model Brown (1990) �nds the asymptotic distribution for the unweighted

least squares estimates by redoing the whole problem under the new model. We will estimate

using a technique similar to the one used by Brillinger (1980) to estimate a bifrequency and

show that the same result is obtained in a simpler manner. We will also consider the

weighted case.

The estimation procedure is the following. De�ne

! = (!1; : : : ; !K) = (�; 2�; : : :; K�)

Then, as for the estimation under model (3.37), we �nd (ÂT ; B̂T ; !̂T ) from equations (3.39),

(3.40), (3.41) and (3.42).

Notice that from Corollary 2 we know that for each k = 1; : : : ; K, !̂k;T is asymp-

totically normal with mean k� and variance

4�c0
f��(!k)

A2
k
+B2

k

(3.48)

Furthermore, the !̂k;T 's are asymptotically mutually independent.

At the next step we can estimate � via the the following regression model:

!̂k = k�+ �k k = 1; :::; K

where the �ks are independent errors with mean 0 and variance de�ned by (3.48). Obtaining

the weighted regression equation estimates leads to:

�̂T =

P
K

k=1 k !̂k;T (Â
2
k;T

+ B̂2
k;T

)=f��(!k)P
K

k=1 k
2(Â2

k;T
+ B̂2

k;T
)=f��(!k)

(3.49)

In practice we will be estimating assuming white noise, in which case this equation reduces

to

�̂T =

P
K

k=1 k !̂k(Â
2
k;T

+ B̂2
k;T

)P
K

k=1 k
2(Â2

k;T
+ B̂2

k;T
)
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From equation (3.49), Corollary 1, and the fact that K is �nite, it is apparent that

lim
T!1

T j�̂T � �j = 0, in probability

Theorem 3 Under the same assumptions as for theorem 2, the vector�
T

1

2 (Â1;T �A1); T
1

2 (B̂1;T � B1); : : : ; T
1

2 (ÂK;T � AK); T
1

2 (B̂K;T �BK); T
3

2 (�̂T � �)
�0

converges in distribution to a multivariate normal with zero mean and variance matrix

4�P
k
k2(A2

k
+ B2

k
)=f��(k�)

0@ D + c�10 EE0 E

E0 c0

1A (3.50)

where the matrices appearing above are de�ned as follows:

D is a 2K � 2K matrix with entries

D =

 X
k

k2(A2
k
+B2

k
)=f��(k�)

!0BBB@
D1 : : : 0

...
. . .

...

0 : : : DK

1CCCA (3.51)

with

Dk =
f��(k�)

b0(A
2
k
+B2

k
)

0@ c1b0A
2
k
+ a1B

2
k

a2AkBk

a2AkBk a1A
2
k
+ c1b0B

2
k

1A (3.52)

and

E = c4 (�B1; A1;�2B2; 2A2; : : : ;�KBK ; KAK)
0 (3.53)

Proof: Let

Y =
�
Â1;T ; B̂1;T ; : : : ; ÂK;T ; B̂K;T ; !̂1; : : : ; !̂T

�0
include the estimates found under the general model (3.37). From Corollary 2 we know

the asymptotic variance matrix of these estimates. To �nd the variance matrix under the

constraints we now use the fact that we �nd the estimates for model (3.47) by employing

the regression model

Y = X� + �
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where the matrices above are de�ned by:

X =

0BBB@
X1 : : : 0
...

. . .
...

0 : : : X1

1X2

...

KX2

1CCCA and � =

0BBBBBBBBBBB@

A1

B1

...

AK

BK

�

1CCCCCCCCCCCA
where � has mean 0 and variance matrix V as in in Corollary 2. The matrices X1 and X2

are de�ned by

X1 =

0BB@
1 0

0 1

0 0

1CCA and X2 =

0BB@
0

0

1

1CCA
Asymptotic normality follows from the fact that the estimates obtained from the

regression are linear combinations of the estimates known to be jointly asymptotically nor-

mal from Corollary 2. To �nd the variance matrix we apply weighted regression and see that

the new estimates have variance matrix equal to (X0V�1X)�1. Computing C = X0V�1X

we obtain a matrix of the form 0@ C1 C2

C0
2

C3

1A
with C1;C3 symmetric matrices. Thus we can use the result, presented for example in Rao

(1973, page 33), that states that when C1;C3 are symmetric matrices such that the inverse

which occur in the expression below exist, we have that0@ C1 C2

C0
2

C3

1A =

0@ C�1
1

+ FE�1F0 �FE�1

�E�1F0 E�1

1A
where E = C3 �C0

2
C�1
1
C2;F = C�1

1
C2. Using this we can directly compute (X0V�1X)�1

to obtain the desired result. �

3.4.1 Variance of the amplitudes

In some instances it might be useful to �nd estimates for the amplitudes of the

harmonic components, the amplitudes being de�ned by

�k =

q
A2
k
+ B2

k
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To estimate the �k's we may use the estimates presented above and set

�̂k =

q
Â2
k
+ B̂2

k

That �(A;B) =
p
A2 +B2 is a continuous function of (A;B) and 6.9.2.i of Rao (1973,

page 124) imply that the �̂k's are consistent. The linear approximation using Taylor expan-

sions

�̂k � �k +
Ak(Âk �Ak) +Bk(B̂k �Bk)q

A2
k
+ B2

K

gives the variance of the asymptotic distribution as

Var[�̂k] �
A2
k
Var[Âk] + B2

k
Var[B̂k] + 2AkBkCov[Âk; B̂k]

T (A2
k
+B2

k
)

(3.54)

Now, using the results of Theorem 3, we reduce this equation to

Var[�̂k] � 4�c1f��(k�)=T (3.55)

where c1 is as in the equations (3.26). In particular, notice that the variance of �̂k is

proportional to f��(k�).

3.4.2 Estimate of the spectrum

Notice that the asymptotic variance depends on the value of the spectrum, f��(k�),

at the harmonic frequencies, k� for k = 1; : : : ; K. If we are to use the asymptotic approx-

imation based on (3.50) to �nd standard errors and con�dence intervals for our estimates,

we need to estimate f��(k�) for k = 1; : : : ; K. We could assume the noise is white with

variance �2, in which case the spectrum is f��(�) = �2=2� for 0 � � � 2�. However, in

the case of music signals, there is evidence to suggest that the spectrum is higher for lower

frequency, as we will see in Chapter 6. If we estimate the spectrum with a constant we

can anticipate obtaining underestimates for the standard errors of the amplitudes of the

lower harmonics and overestimates for the standard errors of the higher harmonics. We can

instead use a smoothed periodogram estimate of the spectrum.

Let

IT (�) =
1

2�T

�����
TX
t=1

expf�i�tg�̂t
�����
2

0 � � � �
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Choose a set of weights wj; j = 0;�1; : : : ;�m where

mX
j=�m

wj = 1

The smoothed periodogram estimate with weights wj ; j = 0;�1; : : : ;�m is

f̂��(�) =

mX
j=�m

wjI
T (�+ 2�j=T ) (3.56)

Notice that di�erent values of m produce di�erent estimates. The larger m the

\smoother" the estimate.

3.4.3 Advantage of the harmonic model

The model de�ned by (2.5) is commonly used in the sound analysis procedures

(Rodet 1997). Notice that in this model the harmonic constraint !k = k� is not used. If

we assume the harmonic model is true, then for each k, both estimators !̂k and k�̂ are

consistent estimates of the frequency related to the k-th partial k�. The advantage of the

latter is that it has smaller asymptotic variance. Observe that

Var(!̂k)

Var(k�̂)
� 1 +

P
l6=j l

2(A2
l
+B2

l
)=f��(l�)

(A2
k
+B2

k
)=f��(k�)

which for practical purposes can be quite di�erent from 1. In table 3.1 we see estimates

of EFRk =

q
Var(!̂k)=Var(k�̂) for the 15 partials �tted to the violin segment analyzed in

section 6.1. In this particular case we obtain estimates of the frequencies that are approxi-

mately between 5 and 250 times more \accurate".

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EFRk 6.4 12 4.8 30 40 33 18 18 45 290 54 120 230 82 220

Table 3.1: Estimated ratios between the standard errors of k�̂ and !̂k .

3.5 More than one fundamental frequency

In some applications we might want to consider a model where more than one

fundamental frequency is present. In this case a pertinent model is

s(t; �) =

JX
j=1

KjX
k=1

fAjk cos(k�jt) + Bjk sin(k�jt)g+ �(t) (3.57)
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where Kj represents the number of partials associated with the j-th fundamental frequency.

If we estimate following the procedure used in Theorem 3 we have the following two results.

Corollary 3 Under the same assumptions as Theorem 1

lim
T!1

Âjk;T = Ajk, lim
T!1

B̂jk;T = Bjk, lim
T!1

T j�̂j;T � �j j = 0

in probability for each j; k:

Corollary 4 Under the same assumptions of Theorem 2 the vectors with k-th entry:�
T

1

2 (Âjk;T �Ajk); T
1

2 (B̂jk;T �Bjk); T
3

2 (�̂j;T � �j)
�

(3.58)

for k = 1; : : : ; Kj with j = 1; : : : ; J converge in distribution to mutually independent normal

vectors with zero mean and variance matrices as in Theorem 3.
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Chapter 4

The Local Harmonic Model

4.1 Introduction

In the case of sound signals, the harmonic structure changes in time as the per-

former changes the sound being produced by the instrument. Examples of changes in the

sound are changes of note or pitch, vibrato, and tremolo, to mention a few. For this reason

the stationary model mentioned in Chapter 3 is not appropriate. Instead a non-stationary

version with parametric functions changing in time needs to be considered.

y(t) = s [t; �(t)] + �(t) t 2 [0; D] (4.1)

Here the process f�(t)g is non-stationary noise, �(t) is a real valued vector of functional

parameters and D is the duration in seconds of the signal. Throughout the work, without

loss of generality, we will assume every signal to have a one time unit duration, D = 1.

The work will always concern a discrete (sampled) version of the signal y(t).

Yn;N = s
h n
N
; �(

n

N
)
i
+ �n;N n = 1; : : : ; N

Here n is time measured in units of �t = 1=N seconds, where N is the number of obser-

vations per second, called the sampling rate in the audio technology literature. Notice that

as N gets bigger the signal Y (t), of �xed duration, is observed on a �ner grid.

In practice this approach appears appropriate since longer signals will not give us

better understanding of the local behavior of the parameter function �(t). On the other

hand a �ner grid will give us more points closer to the estimation point. The goal of this

setup is to develop useful approximations.
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4.2 The locally harmonic model

For the case of sound signals produced by harmonic instruments we propose using

a time-varying model, similar to the one proposed by Serra (1989), shown in equation (2.4).

Two di�erences are that we will impose the constraint that the frequency of the partials are

all multiples of a fundamental frequency and that the stochastic non-sinusoidal part will be

allowed to be locally stationary.

We are interested in obtaining useful estimates of the bias and variance of our

estimates. To do this, we will need a model with \smooth" enough functional parameters

so that we can assume they are constant within \small" estimation window. We will also

need the fundamental frequency to be \large" within the estimation windows so that we

have enough oscillation to permit meaningful estimation of the sinusoidal parameters. The

model we set down and the asymptotic theory we present has that goal. For a given sampling

rate N , we propose the following locally harmonic model

Yn;N = s
h n
N
; �N(

n

N
)
i
+ �n;N for n = 1; : : : ; N (4.2)

Here

s [t; �N(t)] =

KX
k=1

fAk(t) cos(k�N(t)t) + Bk(t) sin(k�N(t)t)g t 2 [0; 1]

with

�N(t) = (A1(t); B1(t); : : : ; AK(t); BK(t); �N(t))
0

where, for each k, Ak(t) and Bk(t) are continuous bounded functions for t 2 [0; 1]. We

assure that the fundamental frequency is large using the following assumption.

Assumption 3 There exist a continuous function �(t) with 0 < �(t) < 2� for t 2 [0; 1],

such that the sequence of functions �N (t)�N�(t) converges uniformly to 0 for t 2 [0; 1].

In practice we have that the sample rate is large and may be chosen by the engineer.

There are many observations per unit time, and the instantaneous fundamental frequency

�N(t) is many cycles per unit time. Notice that if �N(t) = �N is constant in time for each N

then the number of cycles per unit time N�N tends to in�nity with N . The signal s[t; �N(t)]

is di�erent for each N . Therefore, we must not interpret the asymptotics as having a �xed

signal from which we can obtain better estimates as we increase the sample rate N .

A more reasonable interpretation of the asymptotics is that as N increases we

consider smaller estimation window sizes, so that the functional parameter is closer to
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constant, and larger instantaneous fundamental frequency so that within the estimation

window we have a model that approximates the harmonic model of Chapter 3 with many

observations. Consider a small enough estimation window size hN then we can act as if the

functional parameter is constant in time

�N(t) = �N(t0) t 2 (t0 � hN=2; t0 + hN=2)

Letting JN = bhNNc, we have that within the estimation window the signal is approxi-

mately

s(n; �N) =

KX
k=1

fAk cos(k�N(t0)n=JN ) +Bk sin(k�N(t0)n=JN )g n = 1; : : :JN (4.3)

If JN !1 as N !1 , then Assumption 4 suggests that

�N(t0)

JN
� �(t0)

with 0 < �(t0) < 2�. Letting �0 = �(t0) an approximation for (4.3) is

s(n; �) =

KX
k=1

fAk cos(k�0n) + Bk sin(k�0n) n = 1; : : :JN

Within the estimation window we have a model that approximates the harmonic model

of Chapter 3 with a large number of observations JN . Therefore, we should be able to

obtain reasonable estimates of � for large values of N . Notice in particular that we are

not interested in obtaining a consistent estimate of �(t) of equation (4.1), but rather �nd

an estimate such that JN j�̂N(t) � �(t)j is small for all t 2 [0; 1] when N large. In this

chapter we will make this asymptotic theory precise, but �rst we need some de�nitions and

assumptions regarding the functional parameters and the noise processes

f�n;N ; n = 1; : : : ; N ;N � 1g

The functional parameter �N(t) is assumed to be locally approximately constant.

To make this de�nition precise we say that the functional parameters satisfy the following

assumption.

Assumption 4 There exist an M such that for each k,

sup
t2[0;1]

jA0
k
(t)j; sup

t2[0;1]

jB0
k
(t)j; sup

t2[0;1]

j�0N(t)j � M

for all N .
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These assumption will permit us to assume the functional parameters are approx-

imately constant within small enough segments of the signal and then to use the estimation

procedure shown in Chapter 3 for this segment to obtain consistent asymptotically normal

estimates. Intuitively this assumption prevents the local behavior of the function s[t; �N(t)]

from being too di�erent from a sum of sinusoids and thereby preserving some sort of local

harmonic structure known to be present in sound signals. We say that s[t; �N(t)] is locally

approximately sinusoidal.

The statistical models presented in the technological literature usually assume

stationary noise, see for example Serra (1989), Rodet (1997). This assumption does not

seem to hold in general for sound signals. For example, intuitively we would expect the

amplitude of the non-sinusoidal part of the signal produced by a blown instrument to

depend on how hard the instrumentalist is blowing. In this work we assume instead that

the sequence of stochastic processes f�n;N ; n = 1; : : : ; N ;N � 1g is locally stationary as

de�ned by Dahlhaus (1997).

De�nition 1 A sequence of stochastic processes f�n;N ; n = 1; : : : ; N ;N � 1g is called

locally stationary with transfer function A0 if there exists a representation

�n;N =

Z
�

��

expfi�ngA0n;N(�) d�(�)

where �(�) is stochastic processes on [��; �] with �(�) = ��(�) and the cumulants satisfying

cumfd�(�1); : : : ; d�(�k)g = �

0@ kX
j=1

�j

1A hk(�1; : : : ; �k�1) d�1 : : : d�k

where

1. cumfd�(�1); : : : ; d�(�k)g is the cumulant measure of order k, h1 = 0, h2 = 1,

jhk(�1; : : : ; �k�1)j is bounded for each k and �(�) =
P1

j=�1 �(�+ 2�j) is the period

2� extension of the Dirac delta function.

2. There exists a constant K and a 2�-periodic function A : [0; 1] � R ! C with

A(u;��) = A(u; �) and X
n;�

���A0n;N (�)� A(
n

N
; �)
��� � KT�1

for all N . Further A(�; u) is assumed to be continuous in u.
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The smoothness of A in u guarantees that the process has locally a \stationary behavior".

As mentioned above, letting N tend to in�nity no longer means extending the data

to the future. It also does not mean that we sample more densely from �(t), a continuous

process. Notice that if this were the case we would need, for example, that the covariance

Cov(�N=2;N ; �N;N), be the same for each N . This would make the concept of short span

of dependence (Assumption 1) hard to interpret. In practice we have a �xed N , so we

interpret f�n;Ng as a non-stationary process but de�ned in such way that if N is large

enough, approximately unbiased and normal distributed estimates can be obtained using

local estimation. We will de�ne such local estimation in the next section.

In the case of many music signals, we can think of the non-sinusoidal part of the

signal as �ltered stationary noise, but with the �lter changing in time. For example, in a

wind instrument the non-sinusoidal part of the signal can be attributed to the blown air

that is not converted into a harmonic signal. This turbulent air passes through the register

hole which can be thought of as a �lter. Examples of ways that this �lter changes are:

di�erent keys being pressed and spit getting stuck inside and moving around. The local

stationarity assumption for the noise provides a way to model these changing �lters, and

will provide a way to synthesize the non-sinusoidal part of the signal via simulations.

4.3 Estimating parameters

Our purpose is to estimate the function

�(t) � (A1(t); B1(t); : : : ; AK(t); BK(t); �(t))
0

for all t 2 [0; 1], where �(t) is de�ned by Assumption 3. In this section we will describe how

we will �nd an estimate �̂(t0) for any t0 2 [0; 1].

Notice that we don't necessarily observe the signal exactly at time t0. Choose

n0 = n0;N 2 f1; : : : ; Ng such that n0 = bt0 �Nc, b�c being integer part. This implies that

lim
N!1

n0

N
= t0 (4.4)

Now consider a small enough segment, say hN time units long, of the signal around

t0 so that one is able to assume that the signal is approximately sinusoidal within that

segment. We will call the interval (t0 � hN=2; t0 + hN=2) the estimation window.
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Next, de�ne a window function whN
(t) such that observations closest to the �tting

point t0 will receive full weight, observations near the ends t0 � hN=2 receive little weight,

and observations outside the estimation window (t0�hN=2; t0+hN=2) will receive no weight.
Formally, assign weights through the function

whN
(t) = w

�
t

hN

�
where w(t) is a symmetric function about t0 satisfying Assumption 2 and decreasing on the

interval [t0; t0 + hN=2]. Notice that by changing the span of the function, hN , we change

the length of the segment where the approximately sinusoidal assumption is meant to hold,

see Figure 4.1 for an example.

One second span

t

w
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Half second span

t

w
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
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0.2

0.4

0.6

0.8

1.0

Figure 4.1: Tukey triweight window with two di�erent spans

Now assume that the parameters are constant in time within the estimation win-

dow, i.e. �(t) = �(t0) for t 2 [t0 � hN=2; t0 + hN=2]. Assume also that the noise f�n;Ng is
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stationary for n=N 2 [t0 � hN ; t0 + hN ]. Now for the data setn
Yn;N ;

n

N
2 [t0 � hN ; t0 + hN ]

o
use the estimation methods described for the stationary case in Chapter 3.

De�ne the estimates Âk;N(t0), B̂k;N (t0) and �̂N(t0) for k = 1; : : : ; K. Letting

JN = bhN�Nc (without loss of generality assume JN is even), l = n0�JN=2, u = n0+JN=2

and suppressing t0, the estimates are de�ned by

Âk;N = 2

uX
n=l+1

w(
n� l

JN
) yn;N cos[!̂k;N n]=

JNX
n=0

w(
n

JN
)

B̂k;N = 2

uX
n=l+1

w(
n� l

JN
) yn;N sin[!̂k;N n]=

JNX
n=0

w(
n

JN
)

where if we write ! = (!1; : : : ; !K) and !̂N = (!̂1;N ; : : : ; !̂K;N), !̂N is such that

qN (!̂) = max
0�!��

qN (!)

under the constraint (3.44) where qN (!) is de�ned by:

qN (!) =

KX
k=1

�����(JN )�1
JNX
n=1

w(
n

JN
) yn+l;N expfin!kg

�����
2

Now �̂N is de�ned as in (3.49).

�̂N =

P
K

k=1 k !̂k;T (Â
2
k;N

+ B̂2
k;N

)P
K

k=1 k
2(Â2

k;N
+ B̂2

k;N
)

(4.5)

By repeating this procedure for each n0 2 f0; : : : ; Ng we end up with an estimate �̂(t) of

the function �(t) for t 2 � 1
N
; : : : ; N

N

	
. Using linear interpolation, �(t) is estimated for each

t 2 [0; 1] by

�̂ (bt �Nc=N) +
h
�̂ (dt�Ne=N)� �̂ (bt �Nc=N)

i
(Nt� bNtc)

where d�e is the closest integer greater than the number.

4.4 Asymptotics

For this section we will assume the sequence of stochastic processes

f�n;N ; n = 1; : : : ; N ;N � 1g
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is de�ned by

�n;N =

Z
�

��

expfi�ngA( n
N
; �) d�(�)

where �(�) is a stochastic process as in De�nition 1 and A(t; �) is continuous in t. Notice

that setting A0
n;N

(�) = A(n=N; �), the sequence is seen to be locally stationary.

We call

f��(t; �) = jA(t; �)j2 (4.6)

the time-varying spectral density of the process. Dahlhaus (1996) proves that under certain

regularity conditions f��(t; �) is uniquely determined by the processes f�n;Ng.
To prove consistency and asymptotic normality we will need the following two

conditions of the sequences f�n;N ; n = 1; : : : ; N ;N � 1g. This work parallels Theorem 4.4.2

in Brillinger (1981, page 95) and Lemma 2 of Chapter 3. Finding general conditions where

these assumptions hold is left as future work.

Condition 1 The sequence of stochastic processes f�n;N : n = 1; : : : ; N ;N � 1g is such

that for any a sequence hN # 0, with JN = bhN Nc ! 1, the following two conditions hold

for every t0 2 (0; 1), with n0 = bt0 �Nc and l = n0 � JN=2.

(a) The quantity de�ned by

pN(�) =

�����(JN)�(k+1)

JNX
n=1

w(
n

JN
)nk�n+l;N expfi�ng

�����
is such that

lim
N!1

sup
0����

pN (�) = 0, in probability

(b) The vector u de�ned by

u1 = (JN)
� 1

2

JNX
n=1

w(
n

JN
)�n+l;N cos(�n)

u2 = (JN)
� 1

2

JNX
n=1

w(
n

JN
)�n+l;N sin(�n)

u3 = (JN)
�

3

2

JNX
n=1

w(
n

JN
)�n+l;N n cos(�n)

u4 = (JN)
�

3

2

JNX
n=1

w(
n

JN
)�n+l;N n sin(�n)
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is asymptotically multivariate normal with zero mean and covariance matrix

U = �f��(t0; �)

0BBBBB@
U0 0 U1 0

0 U0 0 U1

U1 0 U2 0

0 U1 0 U2

1CCCCCA
with the constants U0; U1; and U2 de�ned as in equation (3.8).

Notice that if we hold the time-varying spectrum constant over time, A(t; �) =

A(�), then each stochastic process f�n;Ng can be thought of as being N observations of a

stationary processes �n with cumulant functions

c�;:::;�(u1; : : : ; uk�1) =Z
�

��

� � �
Z

�

��

exp

8<:i
k�1X
j=1

�juj

9=;
8<:
k�1Y
j=1

A(�j)

9=; hk(�1; : : : ; �k�1) d�1 � � �d�k�1 (4.7)

If the cumulants de�ned by (4.7) satisfy equation (3.1) then Condition 1 holds by Lemma 2,

Theorem 4.4.2 in Brillinger (1981), and the fact that fJNgN�1 is a subsequence of fNgN�1.
Similar to what was done in Chapter 3 we let

�JN

k
(�) =

JNX
n=1

w(
n

JN
)nk expfi�ng (4.8)

Next we develop the equivalent result found in Lemma 1 of Chapter 3 for the quantity in

equation (4.8)

Lemma 3 If JN is a sequence of integers such that JN !1 then

lim
JN!1

J
�(k+1)

N
�JN

k
(�) = Wk; for � = 0; 2� (4.9)

�JN

k
(�) = O(Jk+1

N
); for 0 < � < 2� (4.10)

with Wk de�ned by 3.8 for k = 0; 1; 2.

This follows by noticing that

�JN

k
(�) =

JNX
n=1

w(
n

JN
)nk expfi�ng
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is a subsequence of
NX
n=1

w(
n

N
)nk expfi�ng

Then from the proof of Lemma 1 of Chapter 3, (4.9) and (4.10) hold.

We are now ready to prove the following Theorem.

Theorem 4 Let the of sequence stochastic processes f�n;N ; n = 1; : : : ; N ;N � 1g be such

that Condition 1 holds. Let the sequence of window sizes fhN , N > 1g be such that hN # 0
and JN = bhN �Nc ! 1 as N !1. Then if Assumption 4 holds we have

lim
N!1

Âk;N (t0) = Ak(t0), lim
N!1

B̂k;N (t0) = Bk(t0), lim
N!1

JN j�̂N(t0)� �(t0)j = 0

in probability for each k and each t0 2 (0; 1)

Proof: We will prove this result for K = 1. The more general case follows in the same way

that Corollary 1 followed from Theorem 1.

For this proof we will assume all the sums are over 1; : : : ; JN , unless otherwise

speci�ed. Without loss of generality assume that JN is even. Notice that

qN (�) =

����J�1N

X
w(

n

JN
) �n+l;N expfin�g

����2
+

����J�1N

X
w(

n

JN
) s

�
n+ l

N
; �N(

n+ l

N
)

�
expfin�g

����2
+2<

��
J�1
N

X
w(

n

JN
) �n+l;N expfin�g

�
��

J�1
N

X
w(

n

JN
) s

�
n+ l

N
; �N(

n+ l

N
)

�
expfin�g

��
(4.11)

Condition 1 requires that the �rst expression on the right goes to 0 in probability.

By the mean value theorem we have

s[t; �N(t)] = [A(t0) +M1(t� t0)] cos ([�N(t0) +M3(t� t0)]t)

+ [B(t0) +M2(t� t0)] sin ([�N(t0) +M3(t� t0)]t) (4.12)

By assumption 4, the constants M1;M2 and M3 are bounded. Since sin(t) and cos(t) are

bounded functions we can write (4.12) as

s[t; �N(t)] = A(t0) cos(�N(t0)t+M3t(t� t0))+B(t0) sin(�N(t0)t+M3t(t� t0))+M4(t� t0)
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where M4 is a bounded constant. Notice that by Assumption 3 and applying the mean

value theorem for the �rst term on the right of equation (4.4) we have

cos(�N(t0)t+M3t(t � t0)) = cos(N�(t0)t + o(1) t+M3(t� t0))

= cos(N�(t0)t) +M5[o(1) t+M3(t� t0)]

where M5 is a bounded constant. Similarly for the second term on the right of equation

(4.4).

sin(�N(t0)t+M3t(t � t0)) = sin(N�(t0)t) +M5[o(1) t+M3(t� t0)]

Let A0 = A(t0), B0 = B(t0), �0 = �(t0) and suppressing the N , �0 = �N(t0). Then since

jtj < 1 we have that by (4.4) and the continuity of A(t), B(t), and �(t).

s
h n
N
; �N(

n

N
)
i
= r(n; �0) +M

n � n0

N
+ o(1)

with M bounded and

r(n; �0) = A0 cos(�0n) +B0 sin(�0n)

Now let M = supt w(t), then����J�1N

X n� JN=2

N
expfi�ng

���� � M(N JN )
�1
X

jn� JN=2j

� 2M(N JN)
�1

JN=2X
n=1

n

= M(N JN )
�1JN

2
(
JN

2
+ 1)

= M
JN + 2

4N
= o(1)

By a summation by parts argument like that in the proof of Lemma 1 in Chapter 3, we

have ����J�1N

X
w(

n

JN
)
n� JN=2

N
expfi�ng

���� = o(1)

Now we can write the second term in equation (4.11) as����J�1N

X
w(

n

JN
) s

�
n + l

N
; �N(

n+ l

N
)

�
expfi�ng

���� =����J�1N

X
w(

n

JN
) r(n+ l; �0) expfi�ng+ o(1)

����
and

r(n+ l; �0) =
�
D0 expfi�0ng+D0 expf�i�0ng

�
expfi�0lg
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where D0 =
1
2
(A0 � iB0) as before. Next notice that

J�1
N

X
whN

(
n

N
) r(

n+ l

N
; �0) expfi�ng = J�1

N
[D0�

JN

0 (�0 + �) +D0�
JN

0 (�0 � �)] expfi�0lg

By Lemma 3 we have that for 0 < � < �

J�1
N

�JN

0 (�0 + �) = o(1)

and that

J�1
N

�JN

0 (�0 � �) =

8<: W0 : � = �0

o(1) : otherwise

Using this fact and Condition 1 we have that the third term in (4.11) converges to 0 in

probability and that we can write

qN (�) =
���J�1
N

[D0�
JN

0 (�0 + �) +D0�
JN

0 (�0 � �)] expfi�0lg+ op(1)
���+ op(1)

=
1

4
(A2

0 +B2
0)jJ�1N

�JN

0 (�� �0)j2 + op(1)

and therefore

qN (�0) =
1

4
(A2

0 + B2
0)W

2
0 + op(1) (4.13)

Finally, for any b > 0, de�ne

PN(b) = f� : JN j�� �0j � bg (4.14)

Notice that as in the proof of Theorem 2

Pr
�
JN j�̂N(t0)� �(t0)j � b

�
� Pr

 
sup

�2PN(b)

qN(�) � qN (�0)

!

= Pr

 
sup

�2PN(b)

j(JN)�1�JN

0 (�0 � �)j � W0 + op(1)

!
and that

J�1
N

�JN

0 (�� �0) = J�1
N

JNX
n=1

w(
n

JN
)n expfi(�� �0)ng

=

JNX
n=1

w(
n

JN
)(

n

JN
) expfiJN(�� �0)

n

JN
g

The arguments of proposition B.1.3 in Wang (1991) now provide that

sup
�2PN(b)

jJ�1
N

�
JN

0 (�� �0)j = sup
�2PN (b)

����Z 1

0

w(s) expfiJN(�� �0)sg ds
����+ o(1)
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Following the steps of equations (3.17) through (3.21) in the proof of Theorem 1 we have

lim
N!1

Pr
�
JN j�̂N(t0)� �(t0)j � b

�
= 0

Now we will prove consistency for ÂN (t0) and B̂N (t0). As above let �0 = �N(t0),

A0 = A(t0) and B0 = B(t0). Then we have that

ÂN(t0) = 2(W JN

0 )�1
uX

n=l+1

w(
n� l

JN
)
h
s
h n
N
; �(

n

N
)
i
+ �n;N

i
cos[�̂N n]

with l = n0 � JN=2, u = n0 + JN=2 and

W JN

0 =

JNX
n=1

w(
n

JN
)

As before we use the mean value theorem to obtain

(W JN

0 )�1
uX

n=l+1

w(
n� l

JN
) s
h n
N
; �(

n

N
)
i
cos[�̂N n] =

(W JN

0 )�1
uX

n=l+1

w(
n� l

JN
) r(n; �0) cos[�̂N n] + o(1)

So we have that

ÂN (t0) = (W JN

0 )�1
uX

n=l+1

w(
n� l

JN
) [r(n; �0) + �n;N ] cos[�̂N n] + o(1)

In the same way we obtain

B̂N (t0) = (W JN

0 )�1
uX

n=l+1

w(
n� l

JN
) [r(n; �0) + �n;N ] sin[�̂N n] + o(1)

Since the parameter �0 is constant over time the result now follows as the proof of Theorem

1. �

Theorem 5 Under the same assumptions of Theorem 4 we have that for each t0 2 (0; 1)

the vector 0BBBBBBBBBBBB@

J
1

2

N
(Â1;T (t0)� A1(t0))

J
1

2

N
(B̂1;T (t0)� B1(t0))

...

J
1

2

N
(ÂK;T (t0)� AK(t0))

J
1

2

N
(B̂K;T (t0)� BK(t0))

J
3

2

N
(�̂T (t0)� �0(t0))

1CCCCCCCCCCCCA
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converges in distribution to a normal vector with zero mean and covariance matrix given by

equations (3.50),(3.51),(3.52) and (3.53) in Theorem 3 as N !1.

Proof: Expanding q0
N
(�) in the �rst two terms of its Taylor series, about �(t0) we can

write.

J
�

1

2

N
q0
N
(�(t0)) = �J

3

2

N
(�̂N(t0)� �(t0))J

�2
N
q00
N
(~�N(t0))

for some j~�N(t0)j such that j~�T (t0)� �(t0)j � j�̂N(t0)� �(t0)j.
Using the result of equation (4.13), Lemma 3 and Condition 1 we can proceed as

in the proof of Theorems 2 and Theorem 3 to arrive at the desired result. �
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Chapter 5

Choosing the Window Size and the

Number of Harmonics

5.1 Introduction

For a particular sound signal a variety of deterministic factors may a�ect the

smoothness of the parameter function �(t). A change in note creates a discontinuity in the

fundamental frequency function �(t). A sudden change from playing softly to playing loudly

produces a rapid change in all the amplitudes of the partials �k(t) =
p
Ak(t)2 +Bk(t)2.

Such phenomena suggest that hN should not remain �xed for all t 2 [0; 1]. Say there are

two values t0 and t1, the approximately constant assumption might be appropriate within

the interval (t0 � hN=2; t0+ hN=2), but not within (t1 � hN=2; t1+ hN=2). For each t0 one

needs to make a decision on the size of the span hN of the smoothing window. Also, it

has been noted how for di�erent sound signals the number of partials that seem meaningful

varies.

We want a criteria that will permit us to choose amongst di�erent possible esti-

mates. Ideally, the estimates derived from using this criteria will be optimal/e�cient in

some sense. We will not deal with this matter now in any detail but leave it as future work.

We will present intuitive arguments that lead to a useful criteria for practical estimates.

In this chapter we present three di�erent criteria each based on existing methods

of model selection. In general, we are given a set of N observations which we assume

to be an outcome of some multivariate random variable whose probability distribution is
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unknown to us but of which we have some knowledge. From the information provided by

the data, we are to choose the number of partials K used in our model, the size hN of

the estimation window, and then estimate the parameters of the speci�ed model. Since we

are using weighted least squares, we might think of choosing K and hN as the values that

minimize the weighted residual mean-square error. The problem with this method is that

larger values of K and smaller values of hN will tend to have smaller weighted residual

mean-square, regardless of the true model.

Mallows (1973) presents a criteria that is based on estimating the mean squared

error. Akaike (1973) presents a criteria based on estimating the Kullback-Leibler Infor-

mation Quantity. Akaike (1979), Schwarz (1978) and others present a Bayesian version

of the latter. All these criteria were derived for the unweighted case and are used to

choose among the competing models. In the case of linear regression they all come down

to a criterion of mean squared error type but somehow penalizing for a large number

of parameters. Some work has been done to �nd similar criteria when weights are used

(Ronchetti 1985, Linhart and Zucchini 1986, Hampel et al. 1986, Machado 1993, Ronchetti

and Staudte 1994, Hurvich 1997), but we need a criteria not only for the number of pa-

rameters but for window size also. In what follows we derive such criteria for the case of

weighted linear regression. We will then see how this relates to the musical sound situation.

5.2 Weighted linear regression

Similar models to the one presented for musical sound signals in Chapter 4 can be

found in the literature of general additive models and local likelihood estimation. See, for

example, Hastie and Tibshirani (1990), Tibshirani and Hastie (1987). If we think of time

as the predictor variables xn and the sampled signal y as the dependent variable, the local

harmonic model �ts into the context of general additive models in which we have

yn =

pX
j=1

gj(xn) + �n

where the functions gj are considered to be \smooth" functions and �n is noise.

In Chapter 4 we modeled the discrete part of the signal as a non-linear parametric

function of time, where the parameters were also functions, but not parametric, of time.

We can make a linear approximation of our model, as described in detail in section 5.6.
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For this reason the concepts presented in this chapter are based on those of local weighted

regression (Clevland 1979, Clevland and Devlin 1988). In this particular case we model the

dependent variable as

yn = x0
n
�(xn) + �n (5.1)

where the x0
n
are the 1� p rows of a N � p regression matrix X and �(xn) is a \smooth"

P � 1 functional vector.

Say we have N observations y1; : : : ; yN and, at the moment, we are interested in

estimating only � = �(xN=2). Because �(x) is assumed to be \smooth" we hope that all

the data Y contain information about �. To estimate �, as in local weighted regression,

we consider the weighted least squares estimate

�̂ = HY = X0WX
�1
X0WY

with W a diagonal matrix de�ned by W = diagfwng and w1; : : : ; wN a set of weight

coe�cients de�ned by some window function

wn = w
� n
N

�
where w(u) satis�es Assumption 2 of Chapter 3. Because we have limited knowledge of the

global behavior of the function �(x), we might want to consider di�erent window matrices,

each one using di�erent weight coe�cients depending on how much importance we want

to give to certain parts of the data. In any case, it seems appropriate to weigh the central

values more heavily.

By assuming that � is constant we are then able to obtain an estimate for �(xN=2).

To derive useful criteria we will make some further assumptions: as in the context of linear

regression, assume y = (y1; : : : ; yN)
0 is a vector of mutually independent random variables.

In the usual regression notation we can write

y = X� + �

where the components of the N � 1 vector � are i.i.d. random variables with mean 0 and

variance �2. The distribution of y can be expressed as

f(ynjxn;�) = g(yn � x0n�) = g(�n) (5.2)

where g(�) is the error probability density function.
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We are interested in estimating � and also in choosing from amongst P competing

models that are generated by simply restricting the general parameter vector �. In terms

of the parameters, we represent the full model with P parameters as:

Model(P): f(�jx;�P );�P = (�1; : : : ; �p; �p+1; : : : ; �P )
0

We denote the true value of the parameter vector � by �� with �� 2 RP . Akaike (1973) for-

mulates the problem of statistical model identi�cation as one of selecting a model f(�jx;�p)
based on N observations from that distribution, where the particular restricted model is

de�ned by the constraint �p+1 = �p+2 = : : : = �P = 0, or the model with p parameters,

Model(p): f(�jx;�p);�p = (�1; : : : ; �p; 0; : : : ; 0)
0 (5.3)

We will refer to p as the actual number of parameters.

By assuming model(p) to estimate the non-zero components of the vector �� we

can now de�ne an estimate �̂p using weighted least squares, namely

�̂p = HpY = (X0
pWXp)

�1XpW
0Y

whereXp = (x1; : : : ;xp) is the matrix formed by the �rst p columns of the regression matrix

X.

As mentioned earlier, we might want to consider di�erent window matrices

W1; : : : ;WQ. A convenient way to do so is by considering the Jq nearest points to N=2

when estimating �. We refer to hq = Jq=N as the span of the estimation window and de�ne

the diagonal matrix Wq = diagfwq;ng, n = 1; : : : ; N with

wq;n = w

�
n

Jq

�
where w(u) is a symmetric function about 1=2 satisfying Assumption 2 and decreasing on

the interval [1=2; 1].

We can now de�ne an estimate, assuming model(p) and using Wq, by

�̂p;q = Hp;qY = (X0
pWqXp)

�1X0
pWqY

In this chapter we are concerned with the problem of how to choose between the

P � Q competing estimates of ��. We present three criteria that will be used to choose p

and q.
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5.3 Weighted Mallow's Cp

Mallow's Cp is a technique for model selection in regression, (Mallows 1973). The

Cp statistic is de�ned as a criteria to assess �ts when models with di�erent numbers of

parameters are being compared. It is given by

Cp =
RSS(p)

�2
�N + 2p (5.4)

If model(p) is correct then Cp will tend to be close to or smaller than p. Therefore a simple

plot of Cp versus p can be used to decide amongst models.

In the case of ordinary linear regression, Mallow's method is based on estimating

the mean squared error (MSE) of the estimator �̂p = (X0
p
Xp)

�1X0
p
Y,

E[�̂p � �]2

via a quantity based on the residual sum of squares (RSS)

RSS(p) =

NX
n=1

(yn � xn�̂p)
2

= (Y �Xp�̂p)
0(Y �Xp�̂p)

= Y0(IN �Xp(X
0
pXp)

�1X0
p)Y

Here IN is an N �N identity matrix. By using a result for quadratic forms, presented for

example as Theorem 1.17 in Seber (1977, page 13), namely

E[Y0AY] = E[Y0]AE[Y] + tr[�A]

� being the variance matrix of Y, we �nd that

E[RSS(p)] = E[Y0(IN �Xp(X
0
p
Xp)

�1X0
p
)Y]

= E[�̂p � �]2 + tr
�
IN �Xp(X

0
pXp)

�1X0
p

�
�2

= E[�̂p � �]2 + �2
�
N � tr

�
(X0

pXp)(X
0
pXp)

�1
��

= E[�̂p � �]2 + �2(N � p)

where N is the number of observations and p is the number of parameters. Notice that

when the true model has p parameters E[Cp] = p. This shows why, if model(p) is correct,

Cp will tend to be close to p.
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In the case of weighted regression it seems appropriate to base our estimate of the

MSE of the estimate

�̂p;q = Hp;qY = (X0
p
WqXp)

�1X0
p
WqY

on the weighted residual sum of squares (wRSS)

wRSS(p; q) =

NX
n=1

wq;n(yn � x0
n
�̂p;q)

2 (5.5)

= Y0(Wq �WqHp;q)
0Y (5.6)

Since we assume that E[yn] � xn� and Var[yn] � �2, the weighted residual sum of squares

has expected value:

E[wRSS(p; q)] � E[�̂p;q � �]2 + tr(Wq �WqH)�2

= E[�̂p;q � �]2 + �2tr [Wq]� �2tr
�
Wq(X

0
p
WqXp)

�1X0
p
Wq

�
= E[�̂p;q � �]2 + �2tr [Wq]� �2tr

�
X0
pWqXp)

�1(X0
pWqWqXp)

�
= E[�̂p;q � �]2 + �2(Wq � Vp;q)

where Wq = tr[Wq] and Vp;q = tr[(X0
pWhXp)

�1(X0
pWhWhXp)]. De�ning the weighted

version of Cp as

wCp;q =
wRSS(p; q)

�2
�Wq + 2Vp;q (5.7)

we have that when the true model has p parameters and the span of the weights being used

hq is appropriate we will have that E[wCp;q] � Vp;q. As in the unweighted case a simple

plot of wCp;q versus Vp;q can be used to decide amongst models and window sizes.

Notice that if we use equal weights, W = I, then Wq = N (the number of obser-

vations), Vp;q = p (the number of parameters) and wCp;q is equivalent to the Cp de�ned

in (5.4). For this reason we call Wq and Vp;q the equivalent number of observations and

equivalent number of parameters, respectively, for the weighted case.

The problem with the Cp and wCp;q criteria is that we have to �nd an appropriate

estimate of �2 to use for all values of p and q. An alternative method that does not present

this problem is the next one presented.

5.4 Weighted AIC

Suppose Y is characterized by a probability function f(yjX;�) as in (5.2), which

is assumed known apart from the P dimensional vector �. Assume that there exists a true
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parameter vector �� de�ning a true probability density denoted by f(yjX;��). Within

this setup we wish to select �, from one of the models de�ned by (5.3), \nearest" to the

true parameter �� based on the observed data. The principle behind Akaike's Information

Criterion (AIC) is to de�ne \nearest" as the model that minimizes the Kullback-Leibler

Information Quantity (Kullback 1959)

I(��;�) = E [log f(yjX;��)� log f(yjX;�)] (5.8)

with the expectation taken over the true model. Since the �rst term on the right hand

side of (5.8) is constant over all considered models we may consider only the expected log

likelihood of the estimated model

H(��;�) = E [log f(yjX;�)] (5.9)

where again the expectation is taken over the true model. Akaike's procedure is based on

estimating this quantity for each competing model and then choosing the one that minimizes

it. Following Bickel and Doksum (1977), Lehmann (1983), if we assume f(yjX;�) is regular
to its �rst and second partial derivatives with respect to �, then we have

H 0(��;�) = 0

H 00(��;�) = �J(��)

where J(��) is the Fisher's information matrix. The analytical properties of the Kullback-

Leibler Information Quantity are discussed in detail in Kullback (1959). Two important

properties for Akaike's criterion are

1. I(��;�) > 0 if f(yjX;��) 6= f(yjX;�)

2. I(��;�) = 0 if and only if f(yjX;��) = f(yjX;�)

almost everywhere on the range of y. The properties mentioned suggest that �nding the

model that minimizes the Kullback-Leibler Information Quantity is an appropriate way to

choose the \closest" model. Equivalently, we can minimize �2N H(��;�).

Suppose that the observation Y1; : : : ; YN are described as coming from the model

de�ned by the parameter �. The log likelihood function l(�) is de�ned by

l(�) =

NX
n=1

log f(Ynjxn;�)
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The mean log likelihood, which is simply 1
N
l(�), can also be interpreted as an estimator

of the distance between the true probability density f(yjX;��) and f(yjX;�). In fact, we

have that the mean log likelihood is a natural estimator of H(��;�) since

E

�
1

N
l(�)

�
=

1

N

NX
n=1

E[log f(Ynjxn;�)]

= E[log f(yjX;�)]
= H(��;�)

Notice that � is unobservable, and therefore so is 1
N
l(�). A natural estimate of H(��;�)

is 1
N
l(�̂), where �̂ is the maximum likelihood estimate of �. Akaike notices that in general

1
N
l(�̂) will overestimate H(��;�).

Let �p be the parameter vector of the best �tting or approximating model under

the constraint of Model(p), de�ned in equation (5.3). We are interested in �nding the p that

minimizes �2N H(��;�p). As above, �p is unobservable. We �nd the maximum likelihood

estimate �̂p of �p by describing the data with Model(p). Akaike's method is based on the

fact that larger values of p will result in smaller values l(�̂p) or a \better" �t, regardless of

the true model. We need to \penalize" for larger values of p. Akaike �nds that

E
h
�2l(�̂p)

i
� �2N H(��;�p) + 2p

This fact leads to the Akaike Information Criteria which is a bias corrected estimate

of the loglikelihood given by

AIC(p) = �2l(�̂p) + 2p (5.10)

See, for example, Akaike (1973), Akaike (1974), Bozdogan (1987) for the details.

We now generalize this criteria to the weighted case. Here we have that functional

parameter de�ning the distribution of yn depends on the regression variable xn. Assume

that for each xn there is a true parameter ��(xn) and that the distribution of yn is as de�ned

by (5.1). At the moment we are interested only in estimating �
� = �(xN=2) and for the

estimation we assume the functional parameter is �xed �(xn) = �. The Kullback-Leibler

Information Quantity is then

I(��;�) =

NX
n=1

In(�
�(xn);�)

where

In(�
�(xn);�) = E [log f(ynjxn;��(xn))� log f(ynjxn;�)] n = 1; : : : ; N
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where for each n the expectation here is taken under the true model de�ned for yn above.

In this case, to obtain a useful criteria, it seems appropriate to keep the true

distribution constant by assuming �
�(xn) = �

� and by de�ning a weighted information

quantity

wI(��;�) =
1

Wq

NX
n=1

wq;nIn(�
�;�)

with

In =

Z
[log f(ynjxn;��)� log f(ynjxn;�)] f(ynjxn; �) dyn

We want to choose the estimate �̂p;q that minimizes

E[wI(��; �̂p;q)]

We justify this model selection method by intuitive reasoning, namely since we consider

�(x) to be \smooth", it seems reasonable to consider a weighted version of the original

method as is done in local likelihood estimation. A Bayesian justi�cation could be possible

but we leave that as future work.

As before the larger p, the smaller wl(�̂p;q) will be regardless of the model. Fur-

thermore, generally the smaller the span of the weight coe�cients hq, the smaller wl(�̂p;q)

will tend to be. To see this, consider the case where hq is made small enough such that the

number of observations receiving positive weight is less than or equal to p. The estimates

in this case would probably be unreasonable, yet we would have a \perfect �t". We will

derive a weighted version of AIC, for the case of weighted regression presented in section

5.2, that penalizes for both large values of p and small values of hq .

To be able to obtain a speci�c criteria, consider the case where f is the normal

density. Then we have that

wI(��;�) =
1

2�2Wq

X
wq;n(x

0
n� � xn�

�)2

=
1

2�2Wq

(� � �
�)0(X0WX)(� � �

�)

If �̂p;q is the weighted least squares estimate (X0
pWqXp)

�1X0
pWqY then it has variance

matrix

� = �2(X0
p
WqXp)

�1X0
p
WqWqXp(X

0
p
WqXp)

�1
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and we have that

2E[wI(��; �̂p;q)] = 2E[(�̂p;q � �
�)0(X0

p
WqXp)(�̂p;q � �

�)]

= � +
1

�2Wq

tr
�
(X0

p
WqXp)�

�
= � +

1

Wq

tr
�
(X0

p
WqXp)

�1(X0
p
WqWqXp)

�
= � + Vp;q=Wq

with

Vp;q = tr[(X0
pWqXp)

�1(X0
pWqWqXp)]

the equivalent number of parameters, as de�ned above , �
p;q

= E[�̂p;q] and,

� =
1

�2Wq

(�p;q � �
�)0(X0

pWqXp)(�p;q � �
�)

We are interested in estimating 2E[wI(��; �̂p;q)]. Consider the weighted likelihood ratio

statistic

wLR(Y) = � 2

Wq

NX
n=1

wq;n log
f(ynjxn; �̂p;q)

f(ynjxn; �̂P;q)

For the normal case we have that

E[wLR(Y)] = � + (VP;q � Vp;q)=Wq

This suggest that an estimate of 2E[wI(��; �̂p;q)] to consider is

wLR + (2Vp;q � VP;q)=Wq (5.11)

Now we can choose the values of p and q that minimize (5.11). By eliminating the constant

terms for each model being compared, we �nd that a procedure to choose the number of

parameters and the appropriate window matrix is to minimize the criterion

wAIC(p; q) = � 2

Wq

NX
n=1

wq;n log f(Ynjxn; �̂p;q) + 2Vp;q=Wq

as a function of p and q.

In the case that f is the normal density we have

wAIC(p; q) =
2

Wq

NX
n=1

wq;n

�
1

2
log 2� +

1

2
log �2 +

1

2�2
(Yn � xn�̂p;q)

2

�
+ 2Vp;q=Wq
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= log 2� + log �2 +
1

�2Wq

NX
n=1

wq;n(Yn � xn�̂p;q)
2 + 2Vp;q=Wq

� log 2� + log �̂2 +
1

�̂2Wq

NX
n=1

wq;n(Yn � xn�̂p;q)
2 + 2Vp;q=Wq

Using the weighted residual mean-square estimate of the variance

�̂2
p;q

=

NX
n=1

wq;n(Yn � xn�̂p;q)
2=(Wq � Vp;q) (5.12)

and removing the constants, the criteria reduces to

wAIC(p; q) = log �̂2p;q + Vp;q=Wq

5.5 Weighted BIC

As we saw in the derivation of both the AIC and the wAIC, an important char-

acteristic of the criteria is the penalty term they contain for too many parameters and in

the case of the wAIC, for a small equivalent number of observations. This penalty permits

us to choose between estimates without �tting too many parameters or using estimation

windows that are too small. In the case of AIC a problem is that minimizing AIC does not

produce an asymptotically consistent estimate of the model order, see for example Schwarz

(1978).

Bhansali and Downsham (1977) also discuss this problem and consider using a

constant other than 2 for the penalty factor in equation (5.10). The di�erent constants

are compared via simulation. Although this method seems arbitrary, it might prove to be

practical.

Schwarz (1978), Akaike (1979), and Kashyap (1982) use a Bayesian approach to de-

rive a criteria that is consistent. The criteria is asymptotically independent of the particular

prior speci�cation. This approach to model selection is based on the posterior probabilities

of the alternative models, given the observations (Sclove 1994). The criterion is

BIC(p) = �2l(�̂p) + 2p(logN + 1) (5.13)

Bozdogan (1987) points out that when the mean log likelihood is used to estimate

the Kullback-Leibler information quantity, the bias introduced by the maximum likelihood

estimates of the parameters needs to be corrected for. In the derivation of AIC, this bias
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comes out as a noncentrality parameter �, which is an unknown but deterministic constant.

It depends not only on the number of observations, but also on the speci�c estimation

method. Moreover, the change in � over di�erent sample sizes is also important in order to

justify the correction of the bias further. That is, we do not want to have a very large �,

since it varies with the basic model. As is well known, noncentrality parameters determine

the power of test procedures, and the estimation of � on the basis of preliminary data may

be necessary to choose among competing models.

We note from equation (5.11) that one such correction in � is already given in

deriving the wAIC, that is, � � wLR� (VP;q � Vp;q)=Wq. Also, we note that the correction

factor (VP;q � Vp;q)=Wq is independent of the sample size N . However, in testing a null

hypothesis (or a model) distinguishing from the alternative hypothesis by the value of a

parameter, if the test statistic has a non-central chi-square distribution, which is the case in

the non-weighted case, then the degrees of freedom is an increasing function of the sample

size N , see Kendal and Stuart (1967). This suggest that to make wAIC consistent, the

multiplier of the number of free parameters in the penalty term must be made to depend

on the sample size, e.g. by setting the penalty to

a(N)(VP;q � Vp;q)

where a(N) is an increasing function of N . In wAIC, we note that a(N) = 1. As discussed

in Davis and Vinter (1985), the selection of the function a(N) is important, and it should

be chosen so that it has various desirable properties for the corresponding estimates. One

of the choices suggested is a(N) = logN . Notice that in equation (5.13) a(N) = logN + 1.

We therefore suggest the following criteria

wBIC = � 2

Wq

NX
n=1

wq;n log f(Ynjxn; �̂p;q) + Vp;q(logN + 1) (5.14)

In the normal case it reduces to

wBIC = log �̂2 + (Vp;q=Wq) logN

5.6 Linear approximation

We have presented three criteria for the case of linear regression. Now we will

show how these criteria can be used in the case of the local harmonic model.
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In the context of Chapter 4, we will �x the sample rate N and the estimation point

t0. Say that we chose a maximum span H such that we are not willing to consider any

interval bigger than (t0 � H=2; t0 + H=2) as appropriate for the approximately sinusoidal

assumption for the signal. Assume that the parameter function is constant within that

interval, say

�(t) = � , for t 2 (t0 �H=2; t0 +H=2)

This implies that we are willing to assume that there is a �xed subset of the data YH

fYj;N ; j = n0 � JN=2; : : : ; n0 + JN=2g

with expected value

E[Yj;N ] = sj;N = s(
j

N
;�)

Here JN = bH �Nc and n0 = bt0Nc.
De�ne the vector s = fsj = sj;Ng for j = 1; : : : ; JN . By considering a linear

approximation of the signal, we can now express the model as linear regression. The linear

approximation will be

YH � X� + �

Where X is the gradient matrix de�ned by

X =
@s

@�

Say we are considering di�erent spans h1; : : : ; hQ < H and di�erent numbers of

partials k = 1; : : : ; K. We can decide on which hq and k to use in the estimation of � using

the criteria de�ned above.

5.6.1 Simpli�cation of Vp;q

Notice that to compute the value Vp;q we need to perform matrix multiplications

and inversions. When N and p are large this can be computationally expensive. It is useful

to �nd an approximation that saves some computational work.

For the case where the function s(t;�) is as de�ned by (3.47) we can compute the

derivatives and use Lemma 1 from Chapter 3 to obtain a useful approximation of Vp;q when

N is su�ciently large, namely

Vp;q � p
U0

W0

+
2W1[W1U0=W0 � U1] +W0U2 �W2U2

W2W0 �W 2
1

(5.15)
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where the constants,Wn and Un for n = 0; 1; 2, are de�ned in equation (3.8) for the function

w(u=hq) and the number of parameters by p = 2K + 1, where K is the number of partials.

Notice that when we use the square window w(t) = 1 this approximation reduces to p, the

number of parameters, as expected.

5.7 Simulations

The lack of a precise theoretical justi�cation and the fact that generally we are

dealing with relatively small values of N motivates the use of simulations to check the

e�ectiveness of the model selection methods presented above. In this section, we illustrate

some simulation results for the determination of the number of partials and appropriate

window sizes. It must be remembered that the simulations results are approximations for

particular parameter values, yet they often prove helpful in studying complex procedures.

For the simulation we want to use a signal that is representative of some musical

sound. We try to imitate a 50 millisecond stretch of the sound signal of a clarinet playing

A4. In Figure 5.1 we see that it appears to be approximately sinusoidal, leading to a model

of the form

yn =

KX
k=1

�k cos(k�n+ �n)

We \synthesize" the simulation signal in the following way: Based on the number of clear

peaks appearing in the periodogram of the clarinet signal, seen in Figure 2.4, we choose

K = 15 as the number of partials in the simulation signal yn. Next, we �nd the weighted

estimates of the harmonic model for the stretch of the original signal following the procedure

of Chapter 3. The amplitude estimates found are then chosen as the true amplitudes �k of

the simulated signal. The phases �k of the simulated signal are chosen at random from a

uniform distribution on [0; 2�]. The resulting model for the simulation signal is

yn = 122 cos(�n+ 2:65) + 20:3 cos(2�n+ 3:11) + 18:8 cos(3�n+ 4:56)

+5:97 cos(4�n+ 0:452)+ 4:09 cos(5�n+ 1:76) + 5:37 cos(6�n+ 6:13)

+2:96 cos(7�n+ 3:2) + 1:52 cos(8�n+ 4:85) + 0:66 cos(9�n+ 6:16)

+0:25 cos(10�n+ 4:49)+ 0:564 cos(11�n+ 2:96) + 0:63 cos(12�n+ 0:753)

+0:27 cos(13�n+ 4:5) + 0:36 cos(14�n+ 1:91) + 0:28 cos(15�n+ 4:87)

n = 1; : : : ; N (5.16)
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Here the �t are i.i.d normal with mean 0 and variance 1. The amplitudes have been rescaled

so that the overall signal to noise ratio, de�ned by

SNR =

 
1

2

KX
k=1

�2
k

!
=Var(yt)

is the same as the estimated signal to noise ratio for the original signal, namely ^SNR = 7896.

We are now ready to create simulation signals by generating �n's. In Figure 5.1 we see a

comparison of the original stretch of signal and a simulation signal.
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Figure 5.1: Comparison of original and synthetic clarinet signals.

5.7.1 Choosing the number of partials

To study the e�ectiveness of our criteria at estimating the number of partials K

we did the following: For a given value of N (number of observations) we simulated 1000

signals yn using model (5.16). Since the original signal was of a clarinet playing concert
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pitch A we let � = 440 Hz. For each yn we �t a harmonic model with K = 1; : : : ; 48 partials

using Tukey's triweight window w(t) = (1� j2t � 1j3)3+. For each p = 2K + 1 we used the

weighted residual mean-squares estimate �̂2p to compute the criteria

log �̂2p + a(N)(Vp;q=Wq)

with a(N) the penalty factor. Notice that for a(N) = 1 the criteria is equivalent to the

wAIC and when a(N) = logN it is equivalent to the wBIC. We compared the hit rate

(percentage of time the criteria was minimized at K = 15) for a(N) = 0, 1, 2, 4, logN ,

2 logN and 4 logN . We repeated this experiment for N = 440, 880, 2200, and 4400. Notice

that if we sample a sound signal at 44.1 kHz, the number of data points in 10, 20, 50 and

100 milliseconds are approximately N = 440, 880, 2200, and 4400 respectively. The results

are seen in Table 5.1.

Penalty Number of observations

Factor N=440 N=880 N=2200 N=4400

0 46.6% 34.8% 35.3% 25.0%

1 79.2% 81.0% 80.4% 64.9%

2 80.1% 93.8% 93.5% 88.4%

4 53.4% 97.4% 99.4% 98.9%

logN 30.4% 92.4% 100.0% 100.0%

2 logN 0.5% 45.1% 99.0% 100.0%

4 logN 0.0% 0.1% 59.2% 100.0%

Table 5.1: Hit rate for the estimated number of partials.

Notice that for larger values ofN the wBIC performs better than the other criteria.

In fact, for N = 2200 and N = 4400 the wBIC achieved a perfect hit rate. The wAIC seems

to be performing better for the smaller N . Further simulation for other cases, e.g. other

fundamental frequencies, are left as future work.

5.7.2 Choosing the window size

In this section we will study the e�ectiveness of our criteria in estimating ap-

propriate window sizes when the parameters of the simulation model are not constant in

time.

yn = s(n; �n) + �n; n = 1; : : : ; N (5.17)
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We use a similar model for s(n; �n) to that of equation (5.16) speci�cally let

s(n; �n) = an f122 cos(�nn + 2:65) + 20:3 cos(2�nn+ 3:11)+ 18:8 cos(3�nn + 4:56)

+ 5:97 cos(4�nn+ 0:452)+ 4:09 cos(5�nn + 1:76) + 5:37 cos(6�nn+ 6:13)

+ 2:96 cos(7�nn+ 3:2) + 1:52 cos(8�nn+ 4:85)+ 0:66 cos(9�nn + 6:16)

+ 0:25 cos(10�nn+ 4:49) + 0:564 cos(11�nn+ 2:96) + 0:63 cos(12�nn+ 0:75)

+ 0:27 cos(13�nn+ 4:5) + 0:36 cos(14�nn + 1:9) + 0:28 cos(15�nn+ 4:9)g+ �n

Again the �t are i.i.d normal with mean 0 and variance 1.
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Figure 5.2: A simulated decay signal.

Given a deterministic signal sn = s(n; �n), for example Figure 5.2, we hope that

our criteria will choose the window size for which the mean squared error (MSE) of the

estimate ŷN=2 is minimized (since we are simulating �n as Gaussian, this is equivalent to

minimizing the Kullback-Leibler Information Criteria). To test this we do the following:

We simulate 1000 signals yn using model (5.17). For each yn we �t a harmonic model with
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15 partials using Tukey's window w(t) = (1 � j2t=hq � 1j3)3+ with di�erent spans hq . For

each q we use the weighted residual mean-square (wRMS) �̂2
q
to compute the wAIC(q) and

the wBIC(q). We then compute the average over all simulation of the quantities wRMS(q),

wAIC(q), and wBIC(q). We consider a criteria to be working well if the q that minimizes

it is close to the q that minimizes the MSE.

In the three following examples we see that the wBIC performs as well or better

than the other two criteria.

Case of a stable note

The �rst example is simply a stable note with an = 1 and �n = 440 Hz. for all n.

In this case the signal being consider is the same as that of equation (5.16). In Figure 5.3

we plot the MSE and the average values of the wRMS, wAIC and wBIC against the span

hq. We see that the wAIC and wBIC, on average, choose the \correct" window size.

h in miliseconds

0 20 40 60 80

MSE
wRMS
wAIC
wBIC

Figure 5.3: Comparison of wRMS, wAIC and wBIC in the case of a stable note.
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Change of pitch

The second example tries to imitate a change of pitch. The amplitude is held

constant, an = 1, but the fundamental frequency function �n is de�ned in the following way

�n =

8<: �1 : 0 < n <= N 0

�2 : N 0 < n < N

We ran the simulation with �1 = 440 Hz., �2 = 466:1638, N = 2161 and N 0 =

2053. The musical interpretation of this is that a clarinet starts playing concert pitch A

for about 47 milliseconds and then changes to A] (a semitone above the previous note).

In Figure 5.4 we plot the MSE and the average values of the wRMS, wAIC and wBIC as

before. The symbols �, 4, � and � denote the location of the value that minimizes the

MSE, wRMS,wAIC and wBIC respectively. In average, the wAIC and wBIC perform better

at choosing a window size than the wRMS.

h in miliseconds
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Figure 5.4: Comparison of weighted RMS, AIC and BIC for a change of pitch.
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Decaying amplitude

Finally, we construct signals keeping the frequency constant, �n = 440 Hz, but

letting an be a decaying exponential.

an = expf��ng

To construct the signals choose N = 8055 and � = 0:5=44100. The musical interpretation

is that we have a signal with similar characteristics to the part of the signal corresponding

to the decay. In �gure 5.2 we see the simulated signal yn used for the simulation. In �gure

5.5 we see the result of the simulation. The symbols �, 4, � and � denote the location of

the value that minimizes the MSE, wRMS,wAIC and wBIC respectively. Notice that the

wBIC performs the best.

h in miliseconds

0 50 100 150

MSE
wRMS
wAIC
wBIC

Figure 5.5: Comparison of weighted RMS, AIC, and BIC for a decay.
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Chapter 6

Finale: Examples and Possible

Compositional Uses

6.1 Introduction

A variety of sound signals were recorded in a recording studio at the Center for

New Music and Audio Technology (CNMAT). These recordings were converted into digital

signals using an Analog to Digital Converter (ADC). Software synthesis programs generated

a sound �le as their output (a sound �le is simply a data �le stored on a disk). After all the

samples for a composition are calculated the sound �le can be played and heard through

a Digital to Analog Converter (DAC). For the details on how sound can be recorded into

computer sound �les see Roads (1996), Wagner (1978).

Many di�erent sound �le formats exist. The di�erences between such formats are

mainly the sample rate at which the sound signal was sampled and the number of bits per

stored sample. This information is usually contained in the header of such �les. The sound

�les used in this work were sampled at 44.1 kHz. and used 16-bit words. The particular

format used by the SGI computers, at CNMAT, is the Audio Interface File Format (ai�).

The CNMAT ai� �les are in stereo (two channels are recorded). For this chapter's work

only the left channel was used and for these �les the left and right channels were practically

equal. The ai� sound �les used in this work, are available via ftp from the CNMAT server

cnmat.berkeley.edu.

The sound �les can be converted into text �les readable to Splus using the sound
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exchange program sox (free software available for UNIX and MS-DOS on the Internet).

Similarly, any data set contained in a text �le can be converted into a sound signal.

An Splus program performing the estimation procedure described in Chapters 3

and 4 was used to analyze sound signals. In practice the procedure worked very well at

separating the harmonic signal from the non-sinusoidal signal. In this chapter we will review

some of the examples that we found most interesting.

The procedure was tested with many sound signals including examples produced

by a clarinet, guitar, oboe, pipe organ, tenor saxophone, shakuhachi ute, trumpet, and

violin. In each one of these cases the sound produced by the estimated harmonic part of

the signal sounds very much like the original signal. The sound produced by the residuals

is what we might expect the non-sinusoidal part of the signal to sound like. For example,

in the case of a saxophone, the sound produced by the ampli�ed residuals is similar to the

sound of air and spit going through a tube (track 15 on accompanying CD). The estimates

of the functional parameters and non-sinusoidal part of the signal provide ways to create

new sounds based on the original.

We also incorporated into the Splus program a dynamic window selection pro-

cedure that uses the wBIC criteria, described in Chapter 5, to choose amongst di�erent

window sizes for each estimation time. In practice the procedure worked very well at se-

lecting smaller window sizes in parts of the signal where the functional parameter appeared

not to be near constant.

The two fundamental model, described in Chapter 6, proved to be useful in the

case of a sound signal with reverberation. By �tting a local harmonic model to each tone

included in the sound signal we were able to obtain estimates that appear to provide a

separation of the two tones from each other and from the non-sinusoidal part of the signal.

6.2 Appropriateness of local �tting

A basic goal of our analysis is to estimate the functional parameter �(t) of Chapter

4. First we need to check if the locally approximately constant assumption is sensible for

sound signals. We illustrate appropriateness of local �tting with an example.

For the sound signal of a violin, sampled at 44.1 kHz. (N = 44100), playing

the note C4 we consider a 50 millisecond stretch (2200 observations) around t0 = 1:145

seconds. Notice in Figure 6.1 how the signal, within the considered segment, does seem
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Figure 6.1: Local �t for the sound signal of a violin playing C4 and corresponding residuals.

to be approximately a sum of sinusoids, i.e. that the parameter function �(t) seems to be

usefully constant.

We �t a harmonic model, like that of equation (3.47), with 15 partials (K=15) to

the stretch of data presented in Figure 2.7 and obtain a reasonable �t. The weighted residual

mean-square is �̂2 = 0:0003. Comparing this to the weighted estimate of the variance of the

original signal
P

N

n=1 w(n=N)y2n=
P

N

n=1 w(n=N) = 0:26 shows that the �tted model explains

a large amount of the variation of the original signal.

The residual plot, also seen in Figure 6.1, suggests that the noise could be con-

sidered stationary in the given stretch. The periodogram of the residuals and a smoothed

periodogram estimate of the spectrum f�� are shown in Figure 6.2. The value of m in

equation (3.56) for the smooth periodogram estimate is 12.

Using the asymptotic approximation for the variance of the estimated parameters,
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Figure 6.2: Smoothed periodogram estimates for the spectrum of the noise for the sound

signal of a violin playing C4.

given by equation (3.50), and the smoothed periodogram estimate of the spectrum, shown

in Figure 6.2, we can give estimated standard errors for the estimates. In Table 6.1 we see

the estimates for all the components of � and their respective estimated standard errors.

The estimate of the fundamental frequency is 262.795 Hz. The note being played

is C4. If the instrument is tuned to A 440 Hz. concert pitch then C4 is equivalent to

261.6256 Hz. Notice that our estimate is not included in the approximate 99% con�dence

interval around the frequency corresponding to C4, [261:6590; 261:5921]. Is the violin out

of tune? In section 6.4 we discuss possible musical interpretations of standard errors.
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Estimate Value bse Estimate Value bse
Â1 0.246 0.00121 B̂1 0.0999 0.00126

Â2 -0.294 0.00249 B̂2 0.0344 0.00267

Â3 0.546 0.00212 B̂3 -0.137 0.00338

Â4 0.0218 0.00128 B̂4 0.0554 0.00124

Â5 -0.0642 0.00196 B̂5 0.0246 0.00202

Â6 0.0194 0.000846 B̂6 0.0284 0.00082

Â7 -0.0198 0.00134 B̂7 0.0718 0.00108

Â8 -0.0637 0.00239 B̂8 -0.119 0.00198

Â9 -0.0189 0.00164 B̂9 -0.0422 0.00154

Â10 -0.00115 0.000503 B̂10 -0.00235 0.000502

Â11 -0.00487 0.000444 B̂11 -0.00768 0.00043

Â12 -0.00964 0.000889 B̂12 -1.56e-05 0.000909

Â13 -0.00138 0.000421 B̂13 -0.00152 0.00042

Â14 -0.00508 0.000546 B̂14 -0.00557 0.000543

Â15 -0.00363 0.000579 B̂15 -0.000779 0.000586

�̂ 262.796 0.010578

Table 6.1: Parameter and standard error estimates for the local harmonic model.

6.2.1 Heuristic window size and number of partials selection

For our estimation procedure to make sense we need to consider appropriate

stretches of sound signals. For each local �t we need to �nd a stretch of signal that is

appropriate for the approximately sinusoidal assumption. Rodet and Depalle (1992) use

stretches of 256 data points. When the sample rate is 44.1 kHz. this is equivalent to about

5.8 milliseconds of sound. Since we are �tting a model with up to hundreds of parameters

( 2 � number partials + 1) it seems appropriate to use longer stretches of data. In fact, if

we are interested in estimating the parameter function at t0, it is convenient to �nd long

stretches of signal around that point where the approximately sinusoidal assumption seems

appropriate. To do this we may examine plots of such stretches to determine which is more

appropriate.

In Figure 6.3 we see two stretches of the signal of a violin playing C4 around time

t0 = 0:17 seconds, one with a duration of 20 milliseconds and the other with a duration of

50 milliseconds. Notice that in the second plot the functional parameter doesn't appear to

be approximately constant, but rather that the amplitude is growing with time. Looking

at the residuals, also seen in Figure 6.3, produced from �tting a harmonic model with 15
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Figure 6.3: Comparison of two stretches of di�erent duration of the sound signal of a violin

playing C4.

partials, we see that they do not appear to be stationary for the 50 millisecond stretch. In

this case we would pick the 20 millisecond stretch over the 50 millisecond one.

Another decision that we need to make is how many partials K to consider in our

model. Previous estimation procedures, (Serra 1989, Depalle et al. 1993a), usually �t many

partials. If the sample rate is N Hz. and the fundamental frequency is � Hz. at least N=2�

partials (frequencies above N=2 are aliased) are considered. Fitting too many parameters

may result in estimates that are hard to interpret. We need to decide how many partials to

include in our model.

The number of \peaks" in the periodogram plot may be used to obtain a general

idea of how many partials to consider. As we saw in Figure 2.4, the clarinet seems to have

less \signi�cant" harmonics than the trumpet. We may also use the estimation procedure

described in Chapter 3 in the following way.
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Figure 6.4: Stretches of 50 millisecond duration of the sound signals of a trumpet and a

clarinet playing concert pitch A and estimated amplitudes

We examine stretches of about 50 millisecond durations of a clarinet and a trumpet

playing concert pitch A (440 Hz.). The plots in Figure 6.4 suggest that the approximately

sinusoidal assumption is appropriate in these stretches. We �t a harmonic model with 48

partials to each one. In Figure 6.4, we also see the estimated amplitudes for each partial of

the harmonic model. Notice that the amplitudes estimated for the higher partials are close

to 0, relative to the amplitude estimated for the lower partials.

In Figure 6.5 we see the estimates of the higher amplitudes surrounded by 99%

con�dence intervals. The con�dence intervals are constructed using the asymptotic approx-

imation for the variance of the estimates given by equation (3.54). Notice that in some

cases 0 is included in such intervals. As we expected the clarinet has fewer amplitudes that

appear statistically signi�cant.

We may test the hypothesis that the amplitude estimates are 0. Using the asymp-
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Figure 6.5: Estimated amplitudes of higher partials with estimated 99% con�dence intervals.

totic normality result of equation (3.55) we obtain an estimate for the standard error of

�̂k bse(�̂k) =q4�c1f̂��(k�̂)=T

Using this, we construct a z-test by de�ning the z-statistic for each k by

zk =
(�̂k � 0)bse(�̂k)

The results of Chapter 4 suggest that under the assumption that pk is 0, the zk 's are

approximately normal. In Table 6.2 we present the p-values obtained from the z-statistics

for k = 21; : : : ; 48 when estimating using di�erent window sizes. The p-values that are

higher than 0:01 are in bold-faced. Notice that for the smaller window size N = 256, we

obtain that for 17 out of the 27 partials the hypothesis is not rejected at the 1% level. In the

case of the larger window sizes N = 1024 and N = 2048, we obtain 8 and 10 respectively.

A problem with this z-test is that the amplitudes �k are non-negative and that
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Partial p-value Partial p-value

number N=256 N=1024 N=2048 number N=256 N=1024 N=2048

21 0.091 0.000 0.000 35 0.011 0.010 0.014

22 0.202 0.007 0.055 36 0.248 0.001 0.005

23 0.000 0.000 0.000 37 0.065 0.191 0.020

24 0.206 0.010 0.005 38 0.000 0.000 0.000

25 0.017 0.009 0.005 39 0.019 0.029 0.035

26 0.007 0.034 0.033 40 0.000 0.000 0.000

27 0.006 0.000 0.000 41 0.015 0.234 0.104

28 0.004 0.135 0.015 42 0.000 0.000 0.000

29 0.102 0.000 0.000 43 0.020 0.002 0.000

30 0.001 0.000 0.001 44 0.013 0.004 0.036

31 0.002 0.000 0.000 45 0.151 0.029 0.002

32 0.058 0.000 0.000 46 0.015 0.034 0.025

33 0.236 0.082 0.014 47 0.006 0.000 0.000

34 0.001 0.000 0.002 48 0.097 0.000 0.003

Table 6.2: P-values when testing if an amplitude estimate is 0.

they could be correlated. We do not intend to use hypothesis testing as a tool to choose how

many partials to include in our model, but rather as a descriptive illustration of why we

need to consider di�erent values for di�erent sound signals. In the next section we present

the wBIC as a criteria to decide among di�erent choices.

6.2.2 Using the wBIC

We have presented heuristic ways of determining appropriate window sizes and

number of partials to consider when performing estimation. In Chapter 5, we introduced

a criteria that can help. In the examples presented in this section, the wBIC of equation

(5.5) is used to automatically decide how many partials to use in our model and how big a

window size to consider for the estimation.

In the previous section we saw how for a clarinet signal the assumption that the

parameter is locally constant appeared reasonable within a 50 millisecond temporal window

around t0 = 1:15 seconds. Thus, for the sound signal stretch of a clarinet playing A4

(presented in Figure 6.4) we �t 48 di�erent models, one for each of the vales K = 1; : : : ; 48.

We pick 48 as the maximum number of partials because the fundamental frequency is

around 440 Hz. and 48 � 440 Hz. = 21120 Hz. which is close to the Nyquist frequency
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22050 Hz. Notice that 50 is the highest possible number of partials that we may consider

without the partials exceeding 22050 when the fundamental frequency is 440 Hz., but since

the fundamental frequency estimate may be a bit higher than 440 Hz. we are safe by

considering 48 as the maximum. The resulting wBIC criteria for each one of the competing

models are shown in Figure 6.6. Notice that the model with 15 partials minimizes the

criteria.
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Figure 6.6: wBIC values attained by �tting models with di�erent number of partials and

using di�erent window sizes to a sound signal stretch of a clarinet playing A4.

This information may be useful in practice. Existing additive synthesis methods

track many partials. Fitting only 15 will make estimation procedures faster and might

possibly even provide more accurate estimates.

Now, assuming that our model has 15 partials, we can use the wBIC criteria

to automatically choose a window size. We �t the harmonic model with 15 partials using

di�erent window sizes around t0 = 1:15 and for each �t we calculate the wBIC. In Figure 6.6,
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we see the resulting values of the wBIC for window sizes ranging from 1 to 100 milliseconds.

Notice that the wBIC is minimized for spans around 20 milliseconds.
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Figure 6.7: Contour plots of the wBIC when �tting with di�erent numbers of partials and

di�erent window sizes for sound signal stretches of a clarinet playing A4 around t0 = 1:15

seconds.

In Figure 6.6 we minimize the wBIC over p while leaving hq constant at what we

believe to be reasonable values, and vice versa. In Figure 6.7, we present a contour plot

of the value of the wBIC for di�erent pairs of values (p; q) for the number of partials and

window sizes. Notice that the pairs that seem to minimizes the wBIC are around 15 partials

and window sizes of about 20 milliseconds.

When the same instrument plays di�erent notes the number of \signi�cant" par-

tials in the signal might change. A harmonic instrument playing C7 (2093.005Hz.) will have

as many as 10 harmonics that are below 22050 Hz. If the instrument plays C5 (523.2511Hz.)

it will may have as many as 41 harmonics that are below 22050 Hz. In general, we expect
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lower pitch notes to have more partials. In Figure 6.8 we see the contour plot of the value of

the wBIC for a violin playing C5 and C7. Notice that for C5 the wBIC chooses 17 partials

and for C7 it chooses 6. In Chapter 2 we saw how for the case of a guitar sound higher

harmonics \die o�" more rapidly as time progresses, see Figure 2.6. This might suggest

that we consider a harmonic model with less partials during the later part of the signal. In

Figure 6.8 we see the contour plot of the value of the wBIC for two sets of stretches of the

same guitar signal. The �rst set is taken from the beginning of the note (stretches around

t0 = 0:40 seconds), the second is taken from the end (stretches around t0 = 3:4 seconds).

Notice how in the �rst case 12 partials are chosen and in the second only 6.
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Figure 6.8: Contour plots of the wBIC for sound signal stretches of violin playing C5 and

of a violin playing C7. Also for stretches at the beginning and end of the sound signal of a

guitar playing D3.
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6.3 Estimating the functional parameter

Given that local �tting appears to be a sensible way of estimating parameters

of a harmonic model we can use the procedure of Chapter 4 to estimate the functional

parameter �(t) for all t 2 [0; 1]. As an example we run the analysis on the sound signal of

an oboe playing C4 (261.6256 Hz.) for a duration of 3 seconds. We obtain an estimate �̂(t)

by keeping the number of partials in the model and estimation window sizes constant in

time, at 15 partials and 20 milliseconds respectively. In Figure 6.9 we see the estimate �̂(t)

and the estimates for the amplitudes �̂k(t) =

q
Â2
k
+ B̂2

k
for k = 1; : : : ; 5. The estimated

fundamental frequency is between 258 Hz. and 260.5 Hz, close to the frequency related to

C4, (261.6256 Hz.). The oboist might be playing a bit out of tune. The dotted lines in

Figure 6.9 are 3 cents away from the average fundamental frequency (259.25 Hz.).
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Figure 6.9: Estimated fundamental frequency and amplitude of �rst �ve partials for the

sound signal of a violin playing C4.

The �gure seems to suggest that there are variations in pitch perceivable to the
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ear. This is in agreement with what we hear; the oboist is playing a vibrato, slight and

rapid variations in pitch. Figure 6.9 also suggests that there are variation in the amplitudes

of the �rst �ve partials. This is in agreement with what we hear; the oboist is playing a

tremolo, slight and rapid variations in amplitude.

Once we �nd an estimate �̂(t) we can construct estimates for the harmonic part

of the signal,

ŷ(t) =

K̂X
k=1

fÂk(t) cos(k�̂(t)t) + B̂k(t) sin(k�̂(t)t)g (6.1)

The estimate of the non-sinusoidal signal, represented in our model by the noise �(t), is

provided by the residuals

�̂(t) = ŷ(t)� y(t) (6.2)

In many of the cases studied, the sounds of the signals y(t) and ŷ(t) were almost indistin-

guishable. When ampli�ed, the sound of residuals sounded much as we expected: speci�cally

a sound like that of air and spit going through a tube for the saxophone, clarinet and trum-

pet, a screechy metallic sound for a violin, a pluck with no tone for the guitar, etc.. (tracks

16{30 on accompanying CD) We can assess the �t further by studying the residuals.

6.3.1 Residual analysis

We need a way to assess our estimation procedure. We may use spectrum and

time-varying spectrum estimates based on the residuals to do so. Two types of residuals

are available for the estimation of such quantities.

First we de�ne the global residuals as the residuals obtained from subtracting the

�tted signal from the original.

�̂n = Yn � Ŷn = Yn � s[
n

N
; �̂(

n

N
)] for n = 1; : : : ; N

In Figure 6.10 we see the global residuals for the �t of a 0.20 second sound signal of a trumpet

playing D]4 (329.6276 Hz.). Notice that these residuals don't appear to be stationary.

Acting as if the series f�ng is stationary, we can estimate the spectrum f��(�) via

a smoothed periodogram based on the series f�̂ng.
If instead we assume that f�ng is locally stationary, we may use the spectrogram

de�ned in (4.6) as a basic estimate for the time-varying spectrum f��(t; �).
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Figure 6.10: Global residuals and �tted signal for the sound signal of a trumpet playing

D4.

The other type of residuals we can consider are the residuals obtained in the local

�t for each n0 = 1; : : : ; N . De�ne the local residuals as

�̂j;n0 = Yj � s[
j

N
; �̂(

n0

N
)] for j = n0 � JN ; : : : ; n0 + JN

Notice that we obtain a set of local residuals for each estimation time n0=N . Note also that,

in practice, we might be using di�erent JN 's for each n0 as described in Chapter 5.

Acting as if the series f�ng is stationary, we can estimate the spectrum f��(�) using

the local residuals via the averaged periodogram. By letting

IJN (�;n) =
1

2�JN

������
X
jjj�JN

expf�i�jg�̂j;n

������
2

, 0 � � � �



97

the averaged periodogram estimate of the spectrum of the noise is

f̂��(�) =
1

N

NX
n=1

IJN (�;n)

If instead we assume that f�ng is locally stationary, we may construct an estimate

of the time-varying spectral density by estimating f(t; �) with the smoothed periodogram

estimate of local residuals of the �t at estimation time n=N � t.

In Figure 6.11 we present the two spectrum estimates and in Figure 6.12 we present

the two time-varying spectral density estimates for the trumpet residuals of Figure 6.10.

Both time-varying spectral density estimates suggest that the non-sinusoidal part of the

signal is not stationary. Notice that the residuals seem to have sporadic spikes. This shows

up in the local residual time-varying spectral density estimate as dark vertical lines. This

seems to be a characteristic of the non-sinusoidal part of trumpet signals. The spectrogram

of the global residuals seems to have \smoothed" out this characteristic.

In Figures 6.13 through 6.17 we present the plots of the global residuals and their

spectrograms for a clarinet, guitar, oboe, and a violin. Figures 6.10 through 6.17 show that

the power of the noise is stronger during the beginning of the note or the attack. This is in

agreement with the physical theory discussed in Chapter 2. The horizontal dark lines seen in

the spectrograms and the peaks in the spectrum estimates seem to suggest that the residuals

have some sort of frequency components at the harmonic frequencies. This might suggest

that the non-sinusoidal stochastic component is signal related in some way. The stochastic

part of the signal might not be additive. In the case of many instruments it might not make

sense to assume that the noise is additive (Maganza and Causs�e 1986, Chafe 1990, Cook

et al. 1990). The frequency components seen in the �gures might also be the result of lack

of �t, and the underlying periodic functions might not be sinusoids. Further assessment of

the residuals is left as future work.
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Figure 6.11: Averaged periodogram of the local residuals and smoothed periodogram of the

global residuals for the sound signal of a trumpet playing D]3.
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Figure 6.12: Smoothed periodograms of local residual for each sampled time and spectro-

gram of the global residuals for the sound signal of a trumpet playing D3.
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Figure 6.13: Global residuals and spectrogram for the sound signal of a clarinet playing A4.
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Residuals for guitar
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Figure 6.14: Global residuals and spectrogram for the sound signal of a guitar playing D3.
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Residuals for oboe

Time in seconds

R
es

id
ua

ls

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Spectrogram

Time in Seconds

F
re

qu
en

cy
 in

 k
H

z.

0.0 0.5 1.0 1.5

0

5

10

15

20

Figure 6.15: Global residuals and spectrogram for the sound signal of an oboe playing C4.
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Residuals for sax

Time in seconds

R
es

id
ua

ls

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Spectrogram

Time in Seconds

F
re

qu
en

cy
 in

 k
H

z.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5

10

15

20

Figure 6.16: Global residuals and spectrogram for the sound signal of a tenor saxophone

playing C5.
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Residuals for violin
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Figure 6.17: Global residuals and spectrogram for the sound signal of a violin playing C4.
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6.3.2 Dynamic window selection

As described in Chapter 5, when performing the estimation for each t 2 (0; 1) we

might need to consider di�erent window sizes. In our algorithm, for each t0, we calculated

�̂p;q(t0) for various windows sizes hq via the procedure described in Chapter 4. We then

choose amongst the �̂p;q(t0)'s using the wBIC criteria, given by equation (5.5). We next

illustrate that dynamic window selection can improve our procedure via an example.
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Figure 6.18: Periodogram for a 256 data points segment of the sound signal of a shakuhachi

ute.

The shakuhachi ute is a Japanese instrument characterized as being \noisy". The

sound of the performer blowing is one of its distinguishing characteristics. By listening to

the sound signal studied in this example (track 31 on accompanying CD), we notice that it

is characterized by a rapid change of pitch for the �rst half second, then the pitch is held

steady for about 3.5 seconds, then a vibrato is played for about half a second after which

the pitch is held �xed again.
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Figure 6.19: Location of peaks of periodograms for non-overlapping segments of a 5.8

milliseconds of the sound signal of a shakuhachi ute.
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This particular sound is interesting to study for two reasons. First, the noisy char-

acter of the sound makes the partial tracking techniques, described in Chapter 2, di�cult

to implement because peaks in the periodogram are hard to interpret with small amounts

of data. The power of the non-sinusoidal part of the signal is high and this makes the peaks

in the periodogram unclear, seen in Figures 6.18 and 6.19. The size of the points in the

�gure represents the amplitude of the local maxima.
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Figure 6.20: Estimated pitch when using a �xed window size and the residuals of the �t.

Second, the di�erent behavior of the pitch function in di�erent parts of the signal

suggests that a �xed, large window size is inappropriate and thus that di�erent window

sizes should be used in di�erent parts of the signal. The shakuhachi ute example provides

a test for our window size selection criteria.

We �tted a local harmonic model with 15 partials to the shakuhachi ute using a

�xed window size of about 20 milliseconds. In Figure 6.20, we see the estimated fundamental

frequency and a residual plot (tracks 32 and 33 on accompanying CD).We notice that during
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the vibrato part, i.e. the part where the signal is not near constant, the �t is not as good

(the residuals are bigger).
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Figure 6.21: Estimated pitch when using a dynamic window size and the average window

size (in milliseconds) used in four di�erent sections.

The dynamic window procedure, using the wBIC to choose between windows,

provides a solution to this problem. We �tted a local harmonic model with 15 partials to

the shakuhachi ute and choosing between various possible window sizes. In Figure 6.21

we see how the procedure, on average, chooses smaller window sizes during the parts of the

signal where the parameter function is not near constant, as we would expect.

Finally, we notice the improvement of the dynamic window method by comparing

the residual plots, seen in Figure 6.22, of the �xed window and dynamic window procedures

(tracks 33 and 34 on accompanying CD).
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Residuals for fixed window estimate
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Figure 6.22: Comparison of the two residual plots on the same scales.

6.4 Standard errors

In the music technology literature a variety of pitch estimators are presented

(Harris and Weiss 1963, Martin 1982, Junhar 1997). When such procedures are used to

estimate the fundamental frequency of sound signals produced by one instrument playing

one note, the movement of these estimates are sometimes explained with deterministic fac-

tors. Conclusions like: \an instrumentalist can never play at exactly the concert pitch A

frequency of 440 Hz. and can never hold the exact frequency for extended periods of time"

are drawn from such estimates. Some recent sound analysis procedures (Rodet 1997) as-

sume that signals contain a stochastic element, mainly the non-sinusoidal part of the signal.

The stochastic assumption is not made for the functional parameter, which is assumed to

be deterministic. If we assume the presence of such a stochastic element, the possibility

exists that the variation over time of the pitch estimates can be explained by chance as
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opposed to deterministic reasons.

In current sound analysis research it is common to give estimates of sinusoidal

parameters without indications of their uncertainties. The asymptotic variances of the esti-

mates resulting from the models provides a way to obtain standard errors and to construct

con�dence intervals for our estimates. It is interesting to speculate on the meaning of these

quantities in a musical context. In the following section we discuss a possible interpretation

of these statistical variation measures.

6.4.1 Statistically signi�cant out of \tuneness"

As mentioned in Chapter 2, it is convenient to measure pitch in a logarithmic scale.

Given a base frequency f1 we can transform any frequency f2 into semitones using equation

(2.1). For example, the Musical Instrument Digital Interface (MIDI) standard (Loy 1989)

assigns the number 69 to concert pitch A (440 Hz.) and then using formula (2.1) assigns a

MIDI note number to any frequency � via

MIDI number of � = 69+ 12 log2(�=440)

Apparently the trained ear can distinguish two notes if they are 3 cents (a hundredth of a

tone) or more apart.

We �t a local harmonic model to a signal produced by a trumpet playing (or trying

to play) concert pitch A (440 Hz). The recording was made by a professional trumpet player

and the trumpet was tuned to A 440 Hz. concert pitch using a commercial tuner. In Figure

6.23 we see that the estimated pitch found by our procedure is closer than 3 cents from

concert pitch A for most of the signal. Figure 6.23 also shows approximate 99% con�dence

intervals around 440 Hz. The �gure suggest that for most of the signal the trumpet player

is statistically signi�cantly out of tune. Is it reasonable that the statistical variation of our

estimates is \small"? One possible interpretation is the following.

In general, the human ear/brain is quite accurate at determining pitch. Suppose

that the stochastic part of the signal made the variation in this \pitch estimate" large.

Changes in pitch might then be detected even when hearing a sound with deterministic

constant pitch.

If we consider the estimated pitch found by our procedure ignoring its statistical

variability one could conclude that at the beginning and end of the trumpet signal, the

trumpet player is more out of tune than during the middle. However, we must also notice
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Figure 6.23: Pitch estimate for trumpet sound and con�dence interval around 440 Hz.

that during these sections the standard error is also bigger reecting the possibility that the

larger deviation is due to chance. In Figure 6.24 we see the distance between the estimated

fundamental frequency from 440 Hz. in standard units

�̂� 440bse[�̂]
Notice that the variability in the estimated pitch function at the beginning and end of the

trumpet sound signal doesn't appear to be high anymore. In �gure 6.24 we also see the

distance between the estimated fundamental frequency of the oboe sound signal, presented

in Figure 6.9, and 259.25 Hz in standard units. The �gure suggests that the oboist is playing

a statistically signi�cant vibrato.
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Figure 6.24: Estimated fundamental frequency in standard units for trumpet and oboe

signals.

6.4.2 Problems

Con�dence intervals estimates are constructed using the asymptotic approxima-

tion. In our case N is usually between 800 and 2000 observations. Thus there is a possibility

that the variance of our estimates might be quite di�erent from the approximation used.

Simulation and bootstrap methods can be used to check this. This is left as future work.

Furthermore, we obtain variance estimates under the assumption of additive noise. For

many instruments this assumption appears inappropriate. The noise seems to be signal

related and possible not additive (Maganza and Causs�e 1986). Finding variance structures

under assumptions like these is also left as future work.
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6.5 Creating new sounds

Our analysis method provides estimates of the fundamental frequency �̂(t), of the

amplitude of each partial

�̂(t) =

q
Â2
k
(t) + B̂2

k
(t)

and of the phase of each partial

�̂k(t) = arctan

(
�B̂k(t)

Âk(t)

)
The estimate of the harmonic signal given in equation (6.1) can now be written as

ŷ(t) =

K̂X
k=1

�̂k(t) cos(k �̂(t)t+ �̂k(t))

As mentioned in Chapter 2, it is believed that the human ear is unable to notice the

di�erence when the phase function �k(t) changes. To study this we construct an estimate

of the signal ignoring the phase

~y(t) =

K̂X
k=1

�̂k(t) cos(k�̂(t)t) (6.3)

In many cases, the sounds of the signal y(t) and ~y(t) were almost indistinguishable

from each other (tracks 25 and 26 on accompanying CD). Although to the human ear these

two signals sound very similar, analytically (because of the di�erence in phase) they are

quite di�erent. Therefore ~�(t) = ~y(t) � y(t) can't be a expected to be a useful estimate of

the non-sinusoidal part of the signal.

We can create new sounds by altering the parameter function in di�erent ways.

In general, we can create a new signal based on the estimates of the original

z(t) =

K̂X
k=1

rk(t)�̂k(t) cos(k l(t)�̂(t)t) (6.4)

where rk(t) and l(k) are functions that will permit us to control the change we wish to

perform on the original sound. We can now

� Change pitch through the function l(t) (Pitch Modi�cation)

� Change duration of certain parts of the signal by using z(d(t))where d is a time substi-

tution function (Wessel 1987). For example, if d(t)=2t, the signal lasts half as long as

the original. (Time scale modi�cation)

� Change the energy of a speci�c harmonic through the functions rk(t).
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6.5.1 The hidden soprano

It is said that if one listens to an oboe very closely one can hear the voice of a

soprano singing at an octave above the fundamental frequency of the oboe signal. Our

analysis provides a way of bringing the hidden soprano out.

The signal produced by ~y(t) as de�ned in (6.3) sounds practically the same as the

original. As mentioned above, the soprano sound is heard at an octave above the original

oboe sound. This implies that the soprano sound will have fundamental frequency twice

that of the original. Assuming that the sound of the soprano is harmonic, the harmonics of

the hidden soprano sound will be at frequencies corresponding to the even partials of the

original oboe sound. This leads us to believe that if we recreate a sound containing only

the even partials of an oboe, it should sound like a soprano.

It is known to musicians that an instrumentalist or singer can use vibrato to make

her/his part stand out. We hope that by creating a sound with the even partial components

sounding as a vibrato we can make the hidden soprano \come out". By letting

rk(t) =

8<: 1 : k odd

1 + ak cos(�t) : k even

with � the vibrato frequency and ak the maximum deviation from k�, we can create the de-

sired signal z(t) with equation (6.4). We produce the signal z(t) by letting � = 10 Hz. and

a = 20 Hz. Listening to the signal produced by converting z(t) into sound the hidden so-

prano is clearly heard by the author and other trained musicians (track 35 on accompanying

CD).

6.5.2 Beginner's violin sound

As mentioned in Chapter 2, the non-sinusoidal component is thought of as an

important characteristic of the sound signal. Equations (6.1) and (6.2) provide estimates of

the harmonic and non-sinusoidal parts of the signal. The separation of the the noise from

the discrete part of the signal has many applications. In this section we provide a simple

example.

The sound produced by a beginner on a violin may have a \screechy" quality.

This is the sound of the bowing that is not converted into a harmonic signal. In this case

the noise characterizes the sound as that of a beginner playing the violin as opposed to a
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professional. This leads us to believe that if we \amplify" the non-sinusoidal part of the

sound signal played by a professional violin player (track 28 on accompanying CD), it should

sound like a beginner's violin sound.

We hope that we can create the beginner's violin sound by letting

z(t) = ŷ(t) +M �̂(t)

Here M > 1 controls how much we amplify the non-sinusoidal part. We produce the signal

z(t) by letting M = 10. Listening to the signal produced by converting z(t) into sound the

beginner's violin sound is heard by the author (track 46 on accompanying CD).

6.6 Two fundamental frequencies

Sometimes sounds produced by a previous note can be heard because of an echo.

The auditory term for this type of echo is reverberation. To a certain extent this e�ect is

pleasing to the human ear (this is the reason people like to sing in the shower). When there

is reverberation, the existence of harmonic components related to a second fundamental

frequency unrelated to the present note, the local harmonic model with one fundamental

frequency is inappropriate. Other analysis methods will also have problems analyzing the

sound. For example, analysis methods using sinusoidal tracking will be unable to distinguish

between the partials of the two signals. The solution is to �t a local harmonic model with

more than one fundamental.

6.6.1 Removing reverberation in pipe organ sounds

The sound studied in this example is a pipe organ playing two consecutive notes.

The room where the recording was made, Hertz Hall in UC Berkeley, is a concert hall

characterized as having quite a bit of echo. When the second note is played, the �rst note

can still be heard. This is reverberation. If we look at the spectrogram of the signal, see

Figure 6.25, we can see that after 1.2 seconds or so the second note begins (track 36 on

accompanying CD). The vertical line is at the note change. In this �gure we can see the

frequency component related to the main fundamental frequency change to a smaller value

after 1.2 seconds, from about 368 Hz. to about 325 Hz. The vertical line is at the note

change. This is due to the note change from F]4 to E4. We also notice that frequency

components of the �rst note remain during the playing of the second note. This is due to
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the reverberation e�ect. Although this can be seen clearly in the spectrogram it requires

close attention to be heard. This is an example of how statistical plots can be be useful in

the analysis of sound.
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Figure 6.25: Spectrogram for the sound signal with reverberation of a pipe organ playing

F]4 and E4.

In Figure 6.26 we see the location of the periodogram maxima for a stretch of the

organ signal around the time where the new note starts. The vertical line is at the note

change. Notice that partial tracking procedure, as those described in Chapter 2, will be able

to distinguish partials with periodicities around the two fundamental frequencies, however

they will not be able to identify them as fundamental frequencies.

A solution is to �t a local harmonic model with two fundamental frequencies.

Figure 6.27 shows the estimate of the fundamental frequency function when a harmonic

model with one fundamental and 15 partials is �tted. Notice than during the second note

the estimate seems to be varying more that during the �rst. This could be a bad �t due to
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Figure 6.26: Location of periodogram maxima near the fundamental frequencies of the

sound signal with reverberation of a pipe organ playing F]4 and E4.

the inappropriateness of the model (track 37 on accompanying CD).

In Figure 6.27 we show a spectrogram for the residuals obtained by �tting the one

fundamental model. Notice that during the part of the spectrogram corresponding to the

part of the signal where the reverberation was occurring, the harmonic structure produced

by the echo of the previous note can be seen (track 38 on accompanying CD).

The estimation procedure is greatly improved by �tting a two-fundamental model

to the second part of the signal (track 39 on accompanying CD). We �tted a two funda-

mental local harmonic model with 10 and 5 partials related to the E4 and F]4 fundamental

frequencies respectively. In Figure 6.28 we see the estimates for the fundamental frequencies

obtained (tracks 40 and 41 on accompanying CD). The size of the lines reect the strength

of the overall amplitude of the signal related to that fundamental. Notice that this estimate

seems more \stable" than the one seen in Figure 6.27. By looking at the residual spec-
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trogram in Figure 6.28 we see that the harmonic structure due to reverberation has been

substantially removed (track 42 on accompanying CD).
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Figure 6.27: Frequency estimate for the sound signal of the pipe organ sound using one

fundamental model and spectrum for the residuals.

Another interesting observation is that the residuals seem to have a strong fre-
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Figure 6.28: Estimates of the two fundamental frequencies for the sound signal of the pipe

organ sound using a two fundamental model and residual spectrogram.
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quency component at a low frequency, approximately 50 Hz. This can be seen not only in

the spectrograms of the residuals, but also in an overall spectrum estimate, see Figure 6.29.

This might be a characteristic of the sound of the wind going through the pipes.
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Figure 6.29: Smooth periodogram estimate (m=22) of the spectrum using the residuals of

the two fundamental model.
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Chapter 7

Coda: Future Work

Some general projects that are suggested as future research include: a) examining

e�ciency of the weighted estimates in the stationary case, b) deriving model selection

criteria under more general assumptions as done in Konishi and Kitagawa (1996), c) �nding

a Bayesian justi�cation for the wBIC, d) further simulations to test the criteria of Chapter 5,

e) performing bootstrap simulations to obtain alternate variance estimates to compare with

the variance obtained via asymptotic approximation, f) incorporating techniques similar to

those used in nonparamteric estimation, for example those used in Fan and Gijbles (1995).

The following sections discuss �ve speci�c examples of possible future work.

7.1 Other assumptions on the local behavior

In the current analysis we have assumed that the parameter function �(t) is ap-

proximately constant. The approach of likelihood-based local regression methods, see for

example Staniswalis (1989) and Tibshirani and Hastie (1987), is to assume approximate lin-

earity. Although this adds more parameters, in certain cases it allows for the examination

of longer stretches of data.

For the signal of a note played on a blown \harmonic" instrument the pitch is

usually stable, but the amplitude is constantly changing because of uctuations in air pres-

sure. We could assume that the amplitude of the partials are locally linear by assuming

that locally the model is

s(t; �) =

KX
k=1

(ak + bkt) cos(k�t+ �)
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for t near t0. Notice that this is the same model as before except for the fact that locally

the amplitude of each harmonic is changing linearly in time

�k(t) = ak + bkt

Because the new parameters, �k, appear linearly, preparing a program for their estimation

should not prove di�cult.

In the case of instruments, like the guitar, where after the note starts the sound

just \decays", we could model the amplitude of the harmonics with a decaying exponential

as done in Bolt and Brillinger (1979), Dahlen (1981), Hasan (1979), Hassan (1982), Hasan

(1983):

�k(t) = �k + �k expf�ktg

In this case we could probably consider much larger time windows given that the pitch is

stable enough. The asymptotic properties of these new estimates would be studied.

7.2 Other assumptions on the harmonic structure

Another possibility for future work is to consider the case where the signal is not

exactly harmonic. Some instruments, for example the piano, have partials at frequencies

that are not quite multiples of the fundamental frequency but are relatively close. We

could then consider a local quasi-harmonic model where we impose the following type of

constraint on the frequencies of the partials

!k(t) = k�(t) + �k

Here the �k 's are assumed to be constant in time, throughout the signal. We could use the

estimates !̂N(n=N) of equation (3.41), n = 1; : : : ; N to estimate the fundamental frequency

function �(t) and the constants �k. Furthermore, we could examine the possibility of �k

being random.

7.3 Further study of the noise and residuals

Further theoretical development for the non-stationary case is needed. Finding al-

ternative, more general assumptions, under which Condition 1 hold is of particular interest.
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For the model presented in Chapter 4 we assumed the noise processes f�n;Ng to

be locally stationary. Using techniques similar to those presented by Dahlhaus (1997) could

provide a way to represent the noise parametrically. In turn, this would provide a way

to synthesize the non-sinusoidal part of the signal by simulating noise with the structure

estimated using the local stationarity techniques.

Assessment of the procedure, in particular via the study of the residuals is possi-

ble. The non-stationary structure of the noise is something that interests computer music

researchers. Residual analysis would not only serve as an assessment procedure, but would

also provide insight into the nature of the non-sinusoidal signals produced by instruments.

Ideally we would want to �nd possible ways of synthesizing the non-sinusoidal signal. In

particular, a comparison of the global and local residuals is of interest.

In Chapter 2 we mentioned how some procedures assume that sound signals are

the output of passing some simple waveform through a linear time-varying �lter. There is

really no physically based explanation for this assumption. In fact, recently researchers have

become interested in studying the third- and higher- order moments in sound signals (Wilson

et al. 1992, Dubnov and Tishby 1996, Dubnov and Rodet 1997). The techniques used in

Brillinger (1965), Brillinger and Rosenblatt (1967) could be used to analyze the residuals

obtained from our analysis. Furthermore we can study the possibility of the stochastic part

not being additive.

7.4 Optimal estimates

In Wang (1991) an AIC type estimator of K (the number of harmonics) was found

to be consistent under the assumption that the error process f�tg is ergodic. An interesting

problem is to �nd conditions under which a criteria like the wBIC produces consistent

estimates of the number of harmonics. Furthermore, conditions could be found for the local

stationary process f�n;Ng so that an optimal window function and window size exists for

each t0, i.e. that the estimates found using such window function are e�cient. It would

be interesting to investigate if the estimates found using the wBIC are equivalent to such

e�cient estimates.
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7.5 Other loss functions

We are considering least squares estimates. By doing this, in a sense we are acting

as if the best estimates are the estimates that minimize the residual sum of squares. But

what our ears consider the best estimate might not be the same. A possibility for future work

is to consider minimizing other loss functions. For example, we could consider estimates

that minimize the \harmonic" structure of the periodogram of the residuals. We would

search the general literature for work on psychological aspects.

7.6 Residual Analysis

Throughout the work done for this thesis residual analysis \by ear" was used as

a way to assess �ts, i.e.. residuals were converted into sound signals. It turned out to be

very useful to �nd, for example, some signal in the noise amongst other characteristics.

Can trained musicians distinguish between the sounds produced by di�erent sta-

tistical processes? Can they distinguish between white noise and an AR processes? If we

construct signals with the estimated deterministic signal plus its SE multiplied by some con-

stant M , what is the smallest value of M that would make the di�erence audible? These

and other similar questions are interesting psychoacoustics problems to consider as future

work.

7.7 More e�cient computational tools

It is important to carry out the estimation procedures on many di�erent sound

signals so as to assess the model and also corroborate its e�ectiveness. Some of the ways the

algorithm created in Splus and the existing partially linear algorithm, (Bates and Lindstrom

1986), can be improved include:

� The current estimation tool could be written using the C language in order to make

it faster and more e�cient.

� An e�ective algorithm can be created to �nd starting values for the fundamental

frequency. This is known in the computer music literature as a pitch estimator. The

fact that the partials for the fundamental frequency of k� are included in those with

fundamental frequency � makes this a non-trivial problem.
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� Using the current program, we do not have the option of specifying the covariance

structure of the errors. Therefore, all the estimation is performed under the assump-

tion of independent Gaussian errors. In a new program this could be made an option.

We might include prewhitening as part of this.

� An interesting statistical computing problem arises from this estimation procedure. In

the current procedure we run the estimation procedure with the data points Yj ; : : : ; Yk

and then run the same procedure on the data points Yj+1; : : : ; Yk+1. We observe that

these two data sets di�er only in two points. Currently the only information obtained

from the �rst data set to estimate the second are the starting values. An interesting

task would be to �nd a way to make the algorithm faster through the use of this

information.
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