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Abstract 

This paper describes an operational small computer 
multiprogramming system developed for the control of the 
Stanford Two Mile Linear Accelerator (SLAC). The sys- 
tem has many features of larger systems such as dynamic 
memory allocation and interprocess control, but does not 

:have to handle typical batch type jobs which need large 
arrays and many other system resources. This difference 
results in a drastic reduction in the complexity of both 
design and implementation. The accelerator control 
problem is discussed in terms of what requirements are 
imposed on the system by the environment. Then the 
basic subsystems are described with sufficient examples 
to show the reader other areas where such a system may 
be applicable. 

I. Introduction 

The purpose of this paper is to describe a relatively 
abstract multiprogramming system, called DS for Disk 
System, the implementation of which is proving to be an 
ideal vehicle for a large process control application. 
Such a system must provide for the orderly execution of 
many simple functions such as display of status and analog 
data, and the activation of control buttons. In a non- 
automated control room, these functions are performed, 
independently and potentially in parallel, by operators 
using many separate electronic interface boxes. In order 
to justify itself economically, a computer must do much 
more; it must collect and coordinate the data and functions, 
allowing carefully measured amounts of interaction 
between them and thereby producing higher level data 
acquisition and control processes. This interaction must 
not be permitted to destroy the modularity inherent in 
the old electronic boxes, however, It must be possible to 
program new functions and processes with only minimum 
concern for those already embedded in the system. 
Finally, it is obvious that the computer system must be 
reliable, capable of’running several weeks without 
crashing in the case of the SLAC operation. Through 
multiprogramming, the DS system provides the appear- 
ance of independent and parallel execution of functions. 
Modularity is facilitated by the disk file system for 
programs, each of which is limited to a self-contained 
page size. New programs may be created on-line by use 
of an interactive text editor. Simple and uniform design 
of the DS system itself resulted in a compact, reliable 
implementation, which was a big factor in making the 
system acceptable for accelerator operations. 

The accelerator control room computer is a 
Digital Equipment Corporation PDP-9 with an 8K memory, 
console teletype and a million word fixed head disk. 
There is also a 3 KC synchronous duplex data trans- 
mission link to an SDS 925 computer in another control 
room. The DS system is currently being implemented 
on the SDS 925 as part of a project to consolidate SLAC’ s 
two control rooms using these two machines. 1 9 2 

II. Cperating Environment 

The system on which DS operates is not a typical 
multiprogramming configuration. As indicated above, 
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The DS system consists of a compact resident 
program coupled with a disk file subsystem. The disk 
file structure for the SLAC PDP-9 computer is identical 
to that of DEC’ s Advanced Monitor System3. Binary and 
source sequential files are on the disk, in the form of 
chained blocks, together with a common directory and tag 
bits. The resident program contains code which emulates 
twenty DS primatives--pseudo instructions which will be 
described below--and a subprogram which relocates the 
binary files into core memory pages. The resident pro- . 
gram also controls the dynamic memory allocation and 
the task scheduler. Additional core memory is taken up 
by programs specialized to the SLAC environment, such 
as the interrupt drivers, and associated data buffers. 
Accelerator interface input, data link I/ 0 and TTY output 
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there are few standard peripherals. Instructions that 
start a program can be typed in at the console teletype in 
the usual manner, but the main “user” of the system is the 
accelerator itself. Over 5000 accelerator status bits are 
continuously read into the computer in a long sequeuce, 
spread out over a period of .7 second. These must be 
checked for validity and stored into common data buffers. 
Any status change is cause for the processor to initiate a 
task into the system. The. mechanism by which this is 
done is discussed later in the paper. 

At a rate of 36G/sec, pulse trains of 144 bits are 
selected from memory and delivered through a computer 
data channel to drive various accelerator devices. Occa- 
sionally tasks may be initiated by the operator to alter the 
values of these bits, or to change the selection sequence. 
A large number of relays, about 2000, are available to the 
system, some of which select among several hundred 
slowly changing analog signals. Programs exist to se- 
quence, select, close, timeout and open these relays. 
Tasks which use these programs may be initiated by an 
operator on the teletype or data link, or by the accelerator 
via status changes. The relay interface device is slow 
however and system management of this resource is 
required. A Direct Memory Access (DMA) channel on 
the PDP-9 can be activated to read SO selected values 
digitized from “sample and hold” signals of rapidly 
changing analogs. 

Operation is characterized by a normally quiet 
accelerator (several status changes a minute) punctuated 
by high bursts of changes, which may result in up to 30 
tasks suddenly in the system, Most of these are quickly 
processed or combined, while a few may linger on for a 
while. Other tasks are built into the system to occur 
periodically, or at specified times of day. Operators can 
start specific functions from the TTY such as requests for 
maintenance data summaries and routine calculations. 
There are special tasks when the system overloads-- 
accelerator status changes coming in too fast to be pro- 
cessed. Tasks may involve data acquisition and logging, 
equipment testing, level monitoring, closed loop control 
and other functions. 

From the above description, it can be seen that 
there is a wide spectrum of tasks. However, most are 
simple to program if considered singly: a small amount 
of CPU execution, mixed with real time waits, then 
termination. 

III. Overall System Architecture 



data are buffered by separate circular storage mechanisms 
of fixed lengths. -4 resident program filters accelerator 
status input data, putting the results into fixed common 

These arrays are available to all users of the arrays. 
system. A fixed region on the disk, dedicated for use 
outside the file system, is also available for common stor- 
age, primarily data logging. These blocks are accessed 

- directly by the use of DS primitives. 

IV. Dvnamic Memorv Management 

The dynamic memory management scheme is ex- 
tremely simple. At system load time, what remains of 
core memory is used to create two linear singly linked 
lists. The cell structure is illustrated in Figure 1. The 
small cell list is the free list for all system and user 
requirements (although the user refers to it only through 
DS primitivesj. Because of the pointers, there is only 500/o 
utility of this storage but there are several compensating 
effects. There is no fragmentation, so no garbage collec- 
tion programs are required. Since it is more convenient, 
users will tend only to acquire single cells when needed, 
rather than looking ahead and ordering a block of store 
(although users can also reserve a buffer from the large 
cell list--see below). A less obvious advantage is that the 
critical period, when a cell is transferred between this 
list and some other list, requires only 6 instructions 
(change 3 pointers). As pointed out by Mills5 most smaller 
computers lack context switchi.ng capabilities and therefore 
interrupt driver programs must limit their effect on the 
task queues. Although DS also prohibits task changing 
except at prescribed paints, it could mask off the inter- 
rupts during this short critical period, thereby making it 
possible for interrupl drivers to at least allocate/deallocate 
dynamic store. It will be shown below that this is equivalent 
to allowing task initiation/ termination at the interrupt level. 

The large cell linked list provides a structure for 
data buffers and areas for resident images of program 
pages. The choice of 520 words uer cell was made so that 
two 256 word blocks (the basic unit in the disk file system) 
can be accommodated in one buffer, allowing the file 
oriented tasks to be more efficient. 
for program pages. 

Also, it is a nice size 

it is called loadable. 
If a binary file can fit into a large cell 

After loading, the second word of the 
cell contains the E name i. e. - the file name of the 
binary program. User tasks can also reserve and free 
buffers from the large cell list, by means of DS primitives, 
for array and file processing. In this case, the second 
word contains special marks to denote a reserved or re- 
leased buffer. The third word of the cell contains an inter- 
nal time, representing when the page was last used. This 
number is used to optimize the resident page overlays. The 
large cell list is ordered in decreasing time (except for 
buffers, which may be anywhere in the ordering). Cells 
are never detached from the large cell list; only reshuffling 
by the system is permitted. 

V. Tasks and Programming 

A basic unit of DS is the +&. It is a linear linked 
list of varying length, made up of cells detached from the 
small cell list. This is the %eed”, containing all system 
and problem related information necessary for the task 
function to execute properly. The system controls the 
first four cells of the task, and the remainder is completely 
under user control. The user portion of the task is called 
the ar.gument list. Convenient, fast system primitives 
permit the user to select, 
of the argument list. 

insert, delete and change cells 
Two of the four system cells contain 

the current location of the task--page name and a number 
giving relative location within the page. The other system 
cells contain the scheduled execution time tj, in which case 
it is an active task, or an event name, in ASCI characters, 
if the task is blocked. It is important to note that a task 
does not include a program. No distinction is made in this 

paper between a task and what is usually referred to as its 
Task Control Block (TCBj. The collection of all loadable 
binary files on the disk make up the program data base, and 
is available to all tasks. This is true even though each page _ - 
is a separate assembler output containing no external label 
definitions other than the file name. 

At any point in time, each task is either: 
1. On the active task queue, (time driven) 
2. On the blocked task queue, (event driven) 
3. Executing. 

At most, one task may be executing, in which case. 
the system is in user mode. -During this time the task has 
full control of cells in its argument list, as well as any 
local variables in its page, and the common data buffers. 
Flow proceeds sequentially as dictated by the executing 
program except for the interrupt drivers. These latter 
programs are small and limited for the most part, func- 
tionally little more than sophisticated channels, putting data 
into and out of fixed buffers. Control is always returned to 
the interrupted task. Since there is no provision (other than 
a system timeout trap) for the system to unilaterally suspend 
user mode, the programmer must do this frequently to pre- 
vent input buffer overflow and output buffer underflow due tc 
unprocessed I/O. There are several system primitives 
available which do this. Each of these provide a system 
break -- a point where each task is on one of the two queues. 
The system break-causing primitives also allow manipula- 
tion of the four system cells of the task, such as branching 
(with or without return linkage) to another page, forcing a 
wait for a specified real time interval or a specified event 
name, and termination. 

The strategy of the programmer in this system is as 
follows: between any two consecutive breaks all locations in 
his page are ‘safe’ and re-entrant code is not necessary. 
These locations are called local variables. However, across 
any break all important temporary values must be put into 
the user’s argument list because local variables may be 
altered by another task using the same program page, or be- 
cause the program page itself may be reloaded into a dif- 
ferent large cell by the system task scheduler (see Section 
VI below). This means that breaks should be programmed 
at “good stopping places”, i. e., where there are relatively 
few temporary variables to be protected, The result is that 
all program pages are automatically re-entrant since inter- 
ference by other tasks can occur only at the programmed 
system breaks. This strategy puts a premium on “thin” pro- 
grams - - those having a minimum of parameters at selected 
points not too far apart in time. For large applications codes 
such as occur in numerical analysis, thin programs probably 
are difficult to write. Creating a compiler which generates 
thin object code would be a real challenge! But there are 
areas where this can be done and the simple accelerator 
tasks described earlier certainly are included. The DEC 
keyboardText Editor4 was rewritten into DS with system 
breaks no more than 25 msec apart, and a maximum arg-u- 
ment list of 16 variables plus two file records. Most file 
oriented programs encountered in business applications are 
probably comparable to the editor in this regard. 

VI. Task Scheduling 

Current time, counted in units of l/360 set since 
initial system load time, is used in the scheduling of tasks. 
The active task queue is always ordered as to increasing 
scheduled execution times t; of the task: 

tp,:... <tN 

Tasks Tk put onto the queue with no special dealy 
requirements (such as would happen with a jump to a new 
page) are assigned tk=current time. When the system is * 
ready to enter user mode, tl is compared with current 
time t. If t < tI the system is idle, otherwise an attempt 
is made to enter the location of the first task. If the task’s 
current page is resident, control is transferred to the 
location and user mode begins. Otherwise a page roll in is 
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initiated and the task is reinserted at time (tl + At) back 
into the queue. Keeping track of absolute time rather than 
having a hardware timer(s) clocking time between active 
tasks is different than most operating system&, 6. Func- 
tionally, the two schemes are identical so long as the 
scheduler “keeps up with its work. ‘I However, in peak load 
times it can occur that, say 

tl<-t2 <- . . . F tj”t’t. j,.l 5 . * . 5 tN 

The quantity L(t)=(t-tl) is a real time measure of system 
load and can be used in scheduling new tasks. In some 
systems where priority information is known about a task, 
L(t) and the priority could be used to compute an amount 
of extra time At added to the nominal scheduled time ‘q~ 
the sum being the actual scheduled time. This means that 
higher priority tasks have a good chance of slipping ahead 
of lower priority tasks at each system break, but once 
current time becomes greater than the actual scheduled 
time of any task, that task’ s position in the active queue 
becomes fixed, guaranteeing that even low priority jobs 
eventually execute. 

VII. Inter-Process Communication 

Inter-process communication means that two tasks, 
instead of being programmed to act separately, must now 
be made to consider each other’ s existence. A degenerate 
form is when one task initiates another, and there is a DS 
primitive to do this. The primitive converts a specified 
array of local variables of the executing program page 
into a list and puts it onto the active or blocked queue, 
thereby defining a new task. Because of this identification 
of a task with its list, inter-process communication is 
simply a mechanism for exchanging information between 
the list representing the executing task, and some other 
list on the queues. Since, it is difficult to single out a task 
on the active queue, DS limits communication to the tasks 
on the blocked queue where the executing task can make 
the specification by referring to the event name of the 
blocked task. The currently implemented forms of task 
communication involve different calls of the . EVNT primi- 
tive: 

. EVNT (Q;O) 

JMP NONE 
unblock--unblock the first 
-task with event name 
Q. i.e. - put this task onto the 
active queue. If there is such 
a task, (the ’ communication 
successful’ case) indicate 
this to the executing task by 
skipping the next instruction 
on return to the calling pro- 
gram. If there is no such 
task on the blocked queue (the 
’ communication unsuccessful’ 
case) do not skip the next 
instruction on return. 

.EVNT (B;n, ~~,...a) 

JMP NONE 

. EVNT Q;-n, x1.. . xn) 

JMP NONE 

unblock and copy from caller- 
Do as above, and in addition 
insert n new cells, with 
values x1, x2. . . xi, at the head 
of the argument list of the 
newly activated task. 
Xl, x2... xn are local varia- 
bles in the same page as the 
. EVNT primitive. 

unblock and copy to caller- 
If the blocked task has n cells 
in its argument list, then do 
as first case above, and in 
addition put into local varia- 
bles xi... xn the values of 

the first n cells of the newly 
activated task. 

Otherwise, the communication 
is not successful; do not 
activate any task and do not skip 
an instruction on return. 

It is also possible for the system itself to call these primi- 
tives during a system break. In this case, there is no 
executing task and the variables x1. . . xn are resident lo- 
cations in DS rather than local variables. 

A simple example of communication is given in 
Figure 2 where a task A unblocks a common process P 
known to be blocked on event name 1, and waits for a 
result from it. Here . U is a DS primitive which calculates 
an event name unique to the calling task, in this case task A. 
It does this by simply returning the absolute core location 
of the first svstem cell of the list defining the task. The 
primitive . ‘iAT puts the executing task onto the blocked 
queue, waiting for event name 1. It is possible to put tasks 
at either the head or tail of the blocked queue, giving the 
queue a FIFO or FILO capability witln respect to blocking 
and unblocking tasks with the same event name. Of course, 
this is important only when more than one task is blocked 
on the same event name. 

A somewhat more interesting case is the maiIbox 
scheme used to illustrate the IPC Facility of MULTICS7. 
A generating task A is asyncronously sending single word 
messages to a receiving task B, both understanding that 
there is a buffering task M blocked on eventname f M I . 
The calling sequences are given in Figure 3. The buffering 
task is the “mailbox” which accepts messages from 
sender(s) and gives them on demand to a (presumably 
unique) receiver. The mailbox task is normally on the 
blocked queue, waiting for eventname ’ M f . Its argument 
list is in the canonica! form shown at left of Figure 4, 
namely an integer N L 0 followed by N messages. Either 
a sender or a receiver can activate ’ M’ , and on execution 
the mailbox reduces itself back to canonical form, adjusting 
its argument list to reflect the message absorption or 
emission which occurred when it was activated. The pro- 
gram to do this is given in Figure 5. The Boolean expres- 
sion integer rx] is used in the program to distinguish 
messages from integers. INSERT and DELETE are exam- 
ples of list manipulating DS primitives mentioned in Section 
V above, allowing cell exchanges between the argument list 
of the executing task and the small cell (free) list. Occa- 
sionally, either task A or B may fail to find the mailbox 
on the blocked queue because the other asyncronous process 
has just activated it. In this case, the communication is 
unsuccessful and the caller should wait until M becomes 
available (eventname ’ ME ’ in Figures 3 and 5). The real 
time between the activation of M and the corresponding 
event ’ ME ’ is the mailbox’ s dead time. It is interesting 
to note that absence of M from the blocked queue is equiva- 
lent to a raised semaphore variable s(P), in the sense of 
Dijkstra*, signaling that’a queue of asyncronous processes 
exists, each waiting enter a critical section P of program. 

More elaborate communication situations can be 
handled.without significant change to the sender and receiv- 
er prog-ramming,by extending the mailbox program. Such 
situations include : management of a critical resource, 
such as the accelerator control relay output interface in 
the SLAC system mentioned in Section II above, the imple- 
mentation of a many pronged, JOIN primitive, or even 
communication involving controlled access data retrieval. 

VIII. Conclusion 

Small computer multiprogramming systems can be 
very effective in applications areas where the dynamic data 
can be grouped into many relatively small lists, such as 



those encountered naturally in message switching and line 
concentrator functions5. The paper shows that a large 
process control problem can be fit into this model by ex- 
tending the communication between users and system 
through primitives. Once any system has been cast into 
this mold, the resulting message-like (i.e., linear) quality 
of the data structures can be utilized in a variety of ways. 

. One interesting possibility would be to apply tools of the 
data communications field to these messages in a multi- 
processing situation. 
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FIG. l--Dynamic storage list structures. 
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executing task code: activated task code: 

II+--.U 

. EVNT (1; 2, u, x) 

JMP NONE 

,WAT (u) 

PROC: . WAT (I) 
. 
. 
. 

. 
(calcuIate f(x)) 

. 

. 

. 

. EVNT (u; 1, f(x)) 
JMP NONE 1 

JMP PROC 

FIG. 2--Simple inter- process communication. 
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FIG. 3--Activation of mailbox. 
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. . CODE FOR THE MAILBOX TASK 
c 

. 
(conditional and assignment statements in ALGOL): 

Ml: . WAT(M); 

if integer [argl] then begin comment-receiver activated mailbox; 

argl t argl - 1 ; 

(DELETE arg2) end 7 

else begin comment - sender act2vated mailbox ; 

9- a%1 
. , comment argl =message; 

arg,t arg2+1 ; comment arg2=count; 

nc- arg2 . , 

(INSERT AFTER arg,: NEW CELL, VALUE y); 

(DELETE argl ) ; 

. EVNT -(‘ME’; 0) ; comment--declares that the mailbox is ready, 

NOP , ; 
JMP Ml ; 

FIG. %-Mailbox facility in DS system. 


