
A Repository Framework for Self-Growing Robot Software

Hyung-Min Koo, In-Young Ko

Information and Communications University (ICU)

119 Munjiro, Yuseong-gu, Daejeon, 305-732, Korea

{hyungminkoo, iko}@icu.ac.kr

Abstract
Self-growing software is a software system that

grows its functionalities and configurations by
itself based on dynamically monitored situations.
Self-growing software is especially necessary for
intelligent service robots, which monitor their
surrounding environments and provide
appropriate behaviors for human users.
Intelligent service robots often face problems that
cannot be resolved with the conventional software
technology. To support self-growing software for
intelligent service robots, the SemBots project at
ICU is developing a repository framework that
allows robot software to dynamically acquire
software components that are necessary to resolve
a dynamic situation. In this paper, we describe the
requirements and architecture of the repository
system for self-growing software. We also present
a prototype implementation of the repository
system.

Keywords : Self-growing Software, Self-adaptive
Software Intelligent Service Robots, Component
Repositories

1. Introduction
As the complexity and dynamism of computing

grow rapidly, people seek for self-adaptive
software systems that change their behaviors
dynamically based on changing environments and
requirements [1]. Self-growing software is a kind
of self-adaptive software. Self-growing is an
action of improving the software system through
self-evolution and self-expansion, without human
intervention. A similar concept is discussed in the
autonomic computing that defines self-
configuration, self-optimization, self-healing, and
self-protection as the essential functions of self-
managed software [2]. In [2], self-optimization is

defined as “an autonomic system that continually
seeks ways to improve its operation, identifying
and seizing opportunities to make itself more
efficient in aspect of performance or cost” [2].
Therefore, self-growing is tightly related to the
self-optimization issue in autonomic computing.
Self-growing software is especially necessary for

intelligent service robots, which monitor their
surrounding environments and provide
appropriate behaviors for human users. Intelligent
service robots often face problems that cannot be
resolved with the conventional software
technology.
To support self-growing software for intelligent

service robots, the SemBots project at ICU is
developing a repository framework that allows
robot software to dynamically acquire software
components that are necessary to resolve a
dynamic situation. In this paper, we describe the
requirements and architecture of the repository
system for self-growing software. We also present
a prototype implementation of the repository
system.
In section 2, we explain what self-growing

software is, and the differences between self-
growing software and typical software systems.
We also describe what processes are needed to
support self-growing software. In Section 3, we
briefly introduce the SemBots project that is
currently developing self-growing software
technologies. In Section 4, we explain
requirements of the repository system for self-
growing software. In Sections 5 and 6, we explain
our approaches and the prototype implementation
of the repository system respectively. We evaluate
our repository system in Section 7, and discuss
about the related work in Section 8. Finally, we
conclude the paper in Section 9.

2. Self-Growing Software
Self-growing software is a software system that

grows its functionalities and configurations by
itself based on dynamically monitored situations.
A self-growing software system proactively
searches for external modules (objects,
components, and services) when it faces a
situation in which the current software cannot
support functionalities that are necessary to cope
with a problem. By using self-growing software,
we can improve the efficiency of software system
dramatically, especially for the software systems
that require working in a dynamically changing
environment.

2.1 Self-Growing Software vs. Typical
Software
 In a typical software system, to make software
have a new set of functionalities, we need to shut
down the system and reconfigure the software
with a new set of software components. As
depicted in Fig.1, during the system development
(or redesign) time, users’ requirements need to be
explicitly considered by a system administrator to
select a new set of components that are necessary
to reconfigure the software system.

Fig. 1 A Typical Software System

In contrast to the typical software system, in a

self-growing software system, the software can
‘grow’ at runtime. As illustrated in Fig. 2,
developers develop components and register them
into an external environment. Self-growing
software acquires these components dynamically
during runtime if a problem situation is detected
or user requirements are changed.

2.2 The Process of Self-Growing
 To accomplish ‘self-growing’, three steps are
necessary: collecting, learning and growing.
i) Collecting: Contacting external component

repositories to acquire new components that are
needed to enhance the functionality of the
software system to cope with unexpected changes.

Fig. 2 A Self-Growing Software System

ii) Learning: Considering the history of selecting
components for a certain situation to select the
most appropriate components among the collected
components
iii) Growing: Storing the selected components
into the internal repository
 As shown in Fig. 3, these three steps are
repeated continually, and software grows
gradually.

Fig. 3 The Process of Self-Growing

In this paper, we focus on the repository

structure for intelligent service robot software.
Especially, the rest of the paper focuses on
explaining about the overall system architecture,
and detail mechanism to realize the collecting and
growing steps.

3. The SemBots Project
The SemBots project at ICU is developing a

software framework to support self-growing
software. This software framework allows robots
to deal with unexpected situations by improving
the mechanism of solving problems and by
supporting a high level software configuration
mechanism. As Fig. 4 explains, when

environmental changes, user requirements
changes or exceptional situations are encountered,
the robot software grows itself by gathering
relevant components from external software
component repositories, and by reconfiguring the
software system to utilize the new components.

Fig. 4 Self-Growing Software

In the SemBots project, we are also developing a

component broker for intelligent service robots.
The component broker provides facilities that
allow a robot to choose the most appropriate and
effective components for a situation. An ontology-
based semantic representation model [3] and a
semantic gauging mechanism are the essential
elements of the component broker.

4. Requirements of the Repository
System for Self-Growing Software

4.1 Accuracy
 To support the self-growing capability,
component repositories must maintain accurate
metadata about the software components that
they manage. The repository system must also
provide a mechanism to use the metadata in
searching components that are appropriate to
solve a problematic situation encountered.

4.2 Scalability
 The repository system must be scalable to
seamlessly utilize various software componentst
that are scattered across external network
resources. The efforts of incorporating additional
external resources must be minimized.

4.3 Dynamism
 Runtime software reconfiguration is one of the
key elements of self-growing software. Therefore,
the component repository system must support
functions for dynamically collecting and storing
software components. These activities also have

to be done quickly enough so that the system’s
performance is not degraded significantly by the
actions.

4.4 Accessibility
 The repository system must provide a way to
transparently access information about software
components that are distributed across internal
and external component repositories.

4.5 Changeability
 The capacity of an internal repository is limited.
Therefore, it is necessary have criteria for
changing information stored in internal
repositories. These criteria are used to decide
what information has to be retired from an
internal repository, and what information has to
be added to an internal repository.

5. The Repository Architecture
In this section, we describe our approaches for

the repository framework for self-growing robot
software. We also explain the main architecture of
the repository framework.

5.1 Approaches

· Semantic Matching: To collect components
accurately, we use an ontology-based semantic
matching mechanism. When a robot contacts an
external repository to search for a component, it
firstly collects ontologies of candidate
components from external ontology repositories.
Based on the ontologies collected, the component
broker identifies the most appropriate component
for a situation.

· Ontology Repositories: An ontology repository
stores ontology-based descriptions of software
components. In an ontology repository,
component ontologies are stored in the form of a
graph that represents functionality, input/output
semantics, and other conditions of components
and relationships among ontologies. The
component broker uses the ontology repository to
search for appropriate components.

· Component Repositories: The component
repository stores component URIs (Uniform
Resource Identifiers) and physical component
files. A component instance description in an
ontology repository points to a physical

component file in a component repository.

· A Component Acquisition Engine: A
component acquisition engine provides functions
to collect component ontologies and component
files from external ontology and component
repositories. Based on a query sent by the
component broker, the component acquisition
engine checks if the required component is
available in an internal repository. If there is no
component matched in an internal repository, the
component acquisition engine identifies and
locates an appropriate external repository to
access. As explained earlier, ontologies of
candidate components are firstly collected from
external ontology repositories, and then the
component broker decides a specific component
instance to use. Only the component selected by
the component broker is physically accessed from
an external repository and stored into an internal
repository. This is an important factor to enable
high-performance component acquisition.

· Component Retirement Plan: The self-
growing behavior can not be performed infinitely
because internal resources are limited. Therefore,
a special plan for retiring and alternating
components is essential for internal repositories.
In our repository framework, each component
description includes an access counter and has a
field to record the acquisition date. When a robot
faces resource limitation, it searches the most
unused components and retires them from internal
repositories. Older ones among the most unused
component are retired first. Critical components
that are essential for robot behaviors are not
considered as retirement candidates.

5.2 The Overall Repository Architecture
 Fig. 5 describes the overall repository
architecture. When an unexpected situation is
occurred, the component broker firstly searches
the internal ontology repository. If the component
broker cannot find any component ontologies that
are appropriate for the situation, it requests the
component acquisition engine to contact an
external component repository. The component
acquisition engine searches for proper external
component ontologies, and uploads them into the
internal ontology repository. After loading the
component descriptions, based on the decision
made by the component broker, the component

acquisition engine retrieves a specific component
file from an external component repository and
store it into the internal component repository.

Fig. 5 The Repository Architecture

5.3 Accessing Internal Repositories
 By accessing internal repositories, the
component broker searches for the components
that provide functionalities to handle a situation
detected. It extracts a set of component candidates
by using a semantically-based interoperability
measurement [20], and sends them to a learning
engine. The leaning engine chooses the most
appropriate component based on the history of
utilizing components for a certain set of situations.
Fig. 6 explains the interactions among repository
elements in accessing internal repositories.

Fig. 6 Accessing Internal Repositories

5.4 Accessing External Repositories
 If there is no available or suitable component in
the internal repository, the component broker
sends a request to the component acquisition
engine (see Fig. 7). The component acquisition
engine then collects component ontologies from
various external ontology repositories, and the
component broker measures the semantic
interoperability of them with the existing
components in the software system. After the

learning engine decides the candidate components
to use, the component acquisition engine uploads
a set of ontology-based descriptions of the
components into the internal ontology repository
and acquires the physical component files from
external component repositories. All the acquired
components are stored into the internal
component repository.

Fig. 7 Accessing External Repositories

5.5 Accessing Web Services
 Robots sometimes need functionalities that are
not supported as software components. For
instance, if a robot’s behavior depends on weather,
the robot needs to access weather information
from the Web to accomplish its task. To access
weather information, the robot can access a Web
service that provides weather-related services.
If there is no available service in the local

service registry, the robot accesses Web service
repositories, UDDI (Universal Description,
Discovery and Integration) registries to find
appropriate Web services and sends requests to
the services (see Fig. 8). The robot stores the
retrieved service information into the local
component registry so that the local registry can
grow with a new set of available services.

Fig. 8 Accessing Web Services

6. A Prototype
 In this section, we describe a prototype
implementation of the repository system. Fig. 9
shows the conceptual architecture of the prototype
system. This architecture is being developed in
our project.
The monitor infers robot’s situation based on

data received from sensors (Laser sensors, infra-
red sensors, and vision sensors are available in the
current robot platform). The component broker
finds a strategy to solve the inferred situation, and
searches for candidate components that are
necessary to perform the strategy.
This set of candidates is then transferred to the

learning engine to decide the most appropriate
components based on past experiences. Finally,
the selected component is used for reconfiguring
the robot software.
If there is no available component for solving

the situation, the component broker requests the
component acquisition engine for external
components. The acquisition engine collects
ontologies from external ontology repositories,
updates them into internal ontology repositories,
and responses to the component broker. The
component broker decides an external component
to use with the help of the learning engine.. The
acquisition engine retrieves the actual component
file from an external component repository and
stores it into the internal component repository.
The acquired component is then used for
reconfiguraing the robot software.

Fig. 9 The Conceptual Architecture of the
Prototype System

We are currently implementing the repository
system for self-growing robot software on the
Microsoft Windows XP operating system. We use
the JAVA programming language for
implementing the system. For implementing the
repositories, we use the Protégé tool, Jena2 library,
My-SQL, JDBC, RMI, and FTP. We use Protégé
to make RDF and RDFS files [4]. These files
contain ontologies information in the form of
XML files. Fig. 10 shows ontologies for
intelligent service robots [21].

Fig. 10 Ontologies for Intelligent Service
Robots (Edited with Protégé)

Jena2 provides a set of methods for querying

ontologies from RDF and RDFS files. The Jena2
library provides two ways of handling ontology
models: memory models, and database models. It
provides the “modelRDB” class to store ontology
models into a database. By using the
“modelRDB” class, we can store ontology
hierarchy into a database in forms of tables [5].
Fig. 11 depicts the process of creating the initial

ontology repository, making RDF and RDFS files
with Protégé, integrating the file data with Jena2,
and storing them into a database.

Fig. 11 The Process of Creating an Ontology
Repository

We used My-SQL to build databases for
ontology and component repositories. An
ontology repository includes a RDF triple model
[5] of ontologies, and a component repository
contains URIs of components and locations of
component files. To connect Jena with the
database, we used a JDBC driver. RMI is used for
accessing external repositories for collecting
external ontologies. The component acquisition
engine makes a remote procedure call to the
remote method that is running on an external
repository server. After accessing component
ontologies by using RMI, the component
acquisition engine uses FTP to actually download
external components.
Fig. 12 shows an implemented architecture of

the repository system. The RMI handler calls a
remote method with a component schema for
collecting external ontologies from external
ontology repository. This RMI handler supports
the scalability and accessibility requirements.
The external ontology manager searches for

proper component ontologies in external ontology
repositories and measures semantic
interoperability among them. It then returns
candidates components to the component
acquisition engine in the internal system. This
manager satisfies accuracy requirement.
By searching proper locations of the candidate

components, the ontology updater uploads the
component instance descriptions into the internal
ontology repository. Based on the feedback from
the learning engine, the most appropriate
component is selected.
Finally, the component receiver accesses the

FTP server of the external component repository,
retrieves the component file by referring to the
component’s location, and uploads the component
file into the internal component repository. The
activities of updating ontologies by the ontology
updater, and uploading component files by the
component receiver are performed during run
time. This satisfies the dynamism requirement.
When internal repositories meet their capacity

limitations, the retirement planner searches for
the most unused and/or oldest components to be
retired. After the decision, the retirement planner
retires them from internal repositories. This
planner supports the changeability requirement.

Fig. 12 The Implemented Architecture

7. Evaluation

· Accuracy: We use the semantic matching
mechanism. We develop ontology-based
component repositories, and this makes the
component broker collect enough and accurate
information about components. Therefore, our
framework provides a mechanism for supporting
‘accuracy’.

· Scalability: We divide the repositories into
internal and external repositories. Based on this
repository structure, a robot can utilize many
external repositories and external computing
resources. By making the internal repositories
small and efficient, and by making it extensible
by accessing external repositories, we achieve the
scalability and extensibility requirements.

· Dynamism: The self-growing process is done
during runtime, and components can be collected
and utilized dynamically. In addition, the updates
of ontologies and components are performed
during runtime.

· Accessibility: In addition to the storage space,
external repositories provide the functions to
process queries and to compare between
components. Robots can collect external
ontologies by calling the remote method in
external repositories. This repository architecture
makes robots access various external repositories
easily and efficiently.

· Changeability: When a robot meets the
limitation of resources, it actuates the component
retirement process. We use two kinds of

retirement plan as explained earlier. This
retirement plan satisfies the changeability
requirement.

8. Related Work
 There have been several researches about
component repositories and self-growing software.
Most of the repositories use keyword-based
matching, indexing and browsing mechanisms
[13].

· Ontology-based Repositories: There are some
researches of ontology-based repositories.
Semantic Web languages such as RDF and OWL
can represent metadata of information, and can
deal with ontologies and their repository [8,18].
To access distributed ontology repositories, APIs
such as OKBC [19] are also available.

· Component Repositories: There are many
researches about component repositories to
provide component retrieval: CRPS [9], universal
repository [14], some commercial repositories
[17], knowledge-based repository [12],
repositories to support reusability [6, 7, 16], and
active and effective repositories [10, 11, 15].
However, they mostly focus on description,
reusability, publication, and reliability of
components, and do not consider mechanisms for
self-growing.

· Self-Growing Software: In the viewpoint of
autonomic computing [2], self-growing can be
characterized as a high performance and low cost
optimization method.

9. Conclusions and Future Work
Self-growing software is important to support

self-adaptiveness and autonomic computing. To
realize self-growing software, the repository
technology does an important role. We described
a repository framework for self-growing robot
software. To support self-growing, we provide the
semantically-based component brokering
mechanism, ontology repositories, component
repositories, component acquisition engine, and
component retirement plan. Our framework meets
the requirements of accuracy, scalability,
dynamism, accessibility, and changeability that
are essential properties of software for intelligent
service robots.
We are currently working on optimizing the

process of acquiring external software
components and improving the overall
performance of the repository system. In addition,
we are currently applying our framework to a
silver-mate robot platform. We are also working
on utilizing Web services in composing and
reconfiguring robot software.

10. Acknowledgement
This research was performed for the Intelligent

Robotics Development Program, one of the 21st
Century Frontier R&D Programs funded by the
Ministry of Commerce, Industry and Energy of
Korea.
The authors also would like to thank Hyun-il

Shin, Yu-sik Park, Beom-jun Jeon, and Ki-hyeon
Kim for their comments and insights.

References

[1] Peyman Oreizy and et al., “An Architecture-
Based Approach to Self-Adaptive Software”,
IEEE Intelligent System, 1999.
[2] Jeffrey O. Kephart and et al., “Vision of
Autonomic Computing”, IEEE Computer Society,
2003.
[3] Vijayan S. and et al., “A Semantic-Based
Approach to Component Retrieval”, ACM,
SIGMIS Database, Vol. 34. No. 3, 2003.
[4] What is Protégé?.
http://protege.stanford.edu/overview
[5] Shelly Powers, “Practical RDF”, P.16-P.22,
O’Reilly publication, July, 2003.
[6] Yunwen Ye et al., “An Active and Adaptive
Reuse Repository System”, IEEE, 2001.
[7] Jose Luis Barros Justo et al., “A Repository to
support Specifications Reuse”, IEEE, 1996.
[8] Regina M. M. Braga et al., “The Use of
Mediation and Ontology Technologies for
Software Component Information Retrieval”,
ACM, 2001.
[9] Jung-eun Cha et al., “Design and
Implementation of Component Repository for
Supporting Component Based Development
Process” Software Engineering Department of
ETRI, IEEE, 2001.
[10] Heinrich Jasper, “Active Databases for
Active Repositories”, IEEE, 1994.
[11] Scott Henninger, “Supporting the
Construction and Evolution of Component
Repositories”, Proceedings of ICSE, IEEE, 1996.
[12] Padmal Vitharana et al., “Knowledge-Based

Repository Scheme for Storing and Retrieving
Business Components: A Theoretical Design and
an Empirical Analysis”, IEEE transactions on
Software Engineering, Vol. 29, NO. 7, July 2003.
[13] Luqi and Jiang Guo, “Toward Automated
Retrieval for Software Component Repository”,
Dept. of computer science, Naval Postgraduate
School.
[14] Sridhar Iyengar, “A Universal Repository
Architecture using the OMG UML and MOF”,
IEEE, 1998.
[15] Kurt Schneider et al., “Effective Experience
Repositories for Software Engineering”,
Proceeding of the 25th ICSE’ 03, IEEE, 2003.
[16] Jihyungg Lee et al., “Facilitating Reuse of
Software Component using Repository
Technology”, Proceeding of the Tenth Asia-
Pacific Software Engineering Conference, IEEE,
2003.
[17] Luqi and Jiang Guo, “A Survey of Software
Reuse Repository”, Research Associate US
national Research Council.
[18] Natalya F. Noy and et al., “Making
Biomedical Ontologies and Ontology
Repositories Work”, IEEE Intelligent Systems,
2004.
[19] Richard Fikes and et al., “Distributed
Repositories of High Expressive Reusable
Ontologies”, IEEE Intelligent Systems, 1999.
[20] In-Young Ko, Robert Neches, and Ke-Thia
Yao, “A Semantic Model and Composition
Mechanism for Active Document Collection
Templates in Web-based Information
Management Systems”, Electronic Transactions
on Artificial Intelligence (ETAI), Vol. 5, Section
D, pp.55-77, 2001.
[21] Hwayoun Lee, Ho-Jin Choi, In-Young Ko.

“A Semantically-Based Software Component
Selection Mechanism for Intelligent Service
Robots”, To appear in Proceedings of 4th
Mexican International Conference on Artificial
Intelligence (MICAI2005), Monterrey, Mexico,
November 2005.

