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Abstract. UML class diagrams (UCDs) are a widely adopted formalism
for modeling the intensional structure of a software system. Although
UCDs are typically guiding the implementation of a system, it is common
in practice that developers need to recover the class diagram from an
implemented system. This process is known as reverse engineering. A
fundamental property of reverse engineered (or simply re-engineered)
UCDs is consistency, showing that the system is realizable in practice.
In this work, we investigate the consistency of re-engineered UCDs, and
we show is pspace-complete. The upper bound is obtained by exploiting
algorithmic techniques developed for conjunctive query answering under
guarded Datalog+/-, that is, a key member of the Datalog+/- family
of KR languages, while the lower bound is obtained by simulating the
behavior of a polynomial space Turing machine.

1 Introduction

Models play a central role in computer science by providing two fundamen-
tally different representational functions: they can be used to capture interesting
aspects of the real world, and they can also be employed to represent axioms of
abstract theories. System designers use models for representing the requirements
and the architecture of software systems. The urge for model construction, main-
tenance and manipulation becomes evident as soon as systems and data grow in
size and complexity.

1.1 UML Class Diagrams

UML class diagrams (UCDs) are a widely adopted formalism for modeling the
intensional structure of a software system, and are commonly employed in CASE
tools for system design, maintenance and analysis. In fact, UCDs are used to rep-
resent classes (entities) of a domain of interest with their attributes (fields) and
operations (methods). Classes can be related to each other by means of associ-
ations representing relationships among their instances. Due to their simplicity,
UCDs are frequently used also for data modeling, de-facto replacing traditional
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formalisms like the ER model. Although the usual procedure is to go from a
class diagram to a system, it is common that developers need to follow the
opposite route, i.e., to recover the class diagram from an implemented system.
This process is known as reverse engineering [14].

Apart from guiding the implementation of a software system, class diagrams
can be used to verify relevant properties so as to assess the quality of a specifica-
tion to objective criteria. The typical property of interest is consistency, proving
that the system is realizable in practice, namely its classes can be populated
without violating any of the imposed constraints.

1.2 Research Challenges

It is apparent that consistency checking is a key algorithmic task that is relevant
for re-engineered class diagrams. UCDs for complex systems usually become
very large, and the various constraints may interact in an arbitrary way. This
makes the study of the above task urgent, and at the same time very challenging.
While consistency checking has been heavily investigated in the past in different
scenarios (see, e.g., [3,4,8,12]), nothing is known in the case of re-engineered
class diagrams. It is the precise aim of this work to pinpoint the computational
complexity of this problem under re-engineered class diagrams.

Towards this direction, we first need to answer the following key question:
which fragment of UCDs can be recovered by existing reverse engineering tools?
To answer this question, we set up a simple experiment to determine which
constructs appear in re-engineered class diagrams. We observed that the con-
structs that can be recovered are: (1) classes with attributes and operations,
where different classes may have attributes/operations with the same name; (2)
generalization hierarchies but without completeness assertions; and (3) associa-
tions with mandatory or functional participation of classes. This led us to the
formalization of the syntax and the semantics of the fragment of UCDs, dubbed
RevEng, which can be re-engineered.

After formalizing RevEng diagrams, we proceed with the investigation of
the computational complexity of our problem. One may claim that the desired
complexity results can be immediately inherited from existing results on UML
class diagrams, for instance in [4] which shows that consistency of UCDs is
exptime-complete, or results on knowledge representation formalisms such as,
e.g., DL-Lite [9], EL [2] and Horn-FL− [13]. This is not true since always the
candidate formalism is either not expressive enough to capture RevEng class
diagrams, or gives an upper bound which is not optimal. Therefore, RevEng class
diagrams form a totally novel formalism w.r.t. complexity, and novel decision
procedures beyond the state of the art must be developed.

We exploit algorithmic techniques developed for conjunctive query answering
under guarded Datalog±, that is, a key member of the Datalog± family of KR
languages [5,6]. Given a RevEng class diagram C, the problem of deciding whether
C is consistent can be naturally reduced to conjunctive query answering under
a fragment of guarded Datalog±. In particular, we construct the following three
components: a database D, which stores a witness atom for each class of C; a
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set of guarded Datalog± rules Σ, which represents C; and a union of conjunctive
queries Q that encodes the disjointness assertions among classes, which form
the only source of inconsistency occurring in C. The consistency problem of a
diagram is then tantamount to the problem of deciding whether D and Σ do
not entail the query Q, which in turn implies that there are no inconsistencies.
The latter is tackled by exploiting a classical algorithmic tool from the database
literature, in particular the chase algorithm (see, e.g., [11]), and a novel chase-like
decision procedure is proposed.

1.3 Summary of Contributions

Our contribution can be summarized as follows:

1. We set up a simple experiment in Section 2 with the aim of understanding
which UML constructs can be recovered by existing reverse engineering algo-
rithms. In particular, we collect a number of Java open-source software pack-
ages, mostly taken from the literature on the benchmarking of UML reverse
engineering tools. We then consider several prominent CASE tools for soft-
ware engineering, and we reverse engineer the packages in the benchmark
into UCDs. We observe that the UML constructs that can be recovered are:
classes with attributes and operations; generalization hierarchies but without
completeness assertions; and associations with multiplicities 0..1, 1..1, 0..∞
and 1..∞. Based on the above observation, we then provide a formalization
of the syntax and the semantics of the fragment of UCDs, called RevEng,
which can be recovered.

2. We consider the problem of deciding the consistency of RevEng diagrams
in Section 3. We reduce our problem to query answering under a fragment
of guarded Datalog±, which in turn is shown to be pspace-complete. The
upper bound is obtained via a novel nondeterministic chase-like algorithm,
while the lower bound is shown by simulating the behavior of a polynomial
space Turing machine by means of a RevEng diagram.

2 Reverse Engineering

We set up a simple experiment to determine which fragment of UCDs, called
RevEng, can be recovered via reverse engineering, and then we provide a formal-
ization of the syntax and the semantics of RevEng.

2.1 Our Experiment

We collected a number of Java open-source software packages, listed in Figure 1,
mostly taken from the DaCapo benchmark1 and the web. We then considered
a list of prominent CASE tools with reverse engineering capabilities, given in

1 http://www.dacapobench.org/

http://www.dacapobench.org/
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Fig. 1. Software packages and CASE tools

Figure 1. We re-engineered the packages in the benchmark into class diagrams
in XMI format for automated processing. Whenever multiple options for reverse
engineering were available, e.g., for fields, we used the option that would result
in the more general diagram. We observed, in fact, that interpreting fields as
attributes leads to simpler diagrams. We noticed that every single re-engineered
class diagram consists of the following: (1) Classes with attributes and oper-
ations, where different classes may have attributes/operations with the same
name; (2) Generalization hierarchies (is-a) but without completeness assertions;
and (3) Associations with multiplicities with one of the following forms: 0..1,
1..1, 0..∞ and 1..∞.

Interestingly, when recovering fields as associations, the tools are often unable
to recover the exact multiplicity of the association. A possible explanation for
this unexpected behavior is that tools tend not to constrain the upper multi-
plicity when collections and arrays are involved. This seems not to affect fields
referencing another class, where a simple check on the assignment of these fields
in either the class constructor or in the field declaration provides enough infor-
mation to determine the correct multiplicity. Another interesting observation is
on the lower bounds of the associations that are often recovered as 1 despite
having no evidence of that happening from the code.

2.2 Formalizing Reverse Engineered UCDs

Based on the above observations, we proceed to formalize the syntax of UCDs,
called RevEng, that can be obtained by reverse engineering, and also give their
formal semantics in terms of first-order logic.

Syntax. A class, possibly with attributes and operations, represents a set of
objects with common features, and is graphically represented as shown in
Figure 2(a); notice that both the middle and the bottom part are optional.
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Fig. 2. RevEng UML class diagram constructs

An attribute assertion of the form a[i..j] : T , where i ∈ {0, 1} and j ∈ {1,∞},
states that the class C has an attribute a of type2 T , where the optional mul-
tiplicity [i..j] specifies that a associates to each instance of C at least i and at
most j instances of T . Notice that attributes are unique within a class. However,
different classes may have attributes with the same name, possibly with differ-
ent types. An operation of a class C is a function from the instances of C (and
possibly additional parameters) to objects and values. An operation assertion
of the form f(T1, . . . , Tn) : V asserts that the class C has an operation f with
n � 0 parameters, where its i-th parameter is of type Ti and its result is of
type V . Let us clarify that the class diagram represents only the signature, that
is, the name of the functions, the number and the types of their parameters,
and the type of their result. Notice that operations are unique within a class.
However, different classes may have operations with the same name, possibly
with different signature but the same number of parameters. One can use class
generalization to assert that each instance of a child class is also an instance of
the parent class. Several generalizations can be grouped together to form a class
hierarchy, as shown in Figure 2(b).

An association is a relation between the instances of two classes, that are said
to participate in the association. Names of associations are unique in the diagram.
An association A between two classes C1 and C2 is graphically represented as in
Figure 2(c). The multiplicity n�..nu, where n� ∈ {0, 1} and nu ∈ {1,∞}, specifies
that each instance of class C1 can participate at least n� times and at most nu

times to A; analogously we have m�..mu for C2.
Sometimes, in UML class diagrams, it is assumed that all classes not in the

same hierarchy are disjoint. In this work, we do not enforce this assumption, and
we allow two classes to have common instances. When needed, disjointness can
be enforced by means of assertions of the form {C1, . . . , Cn}, stating that the
classes C1, . . . , Cn do not have a common instance. Another standard assumption
in UML class diagrams is the most specific class assumption, stating that objects
in a hierarchy must belong to a single most specific class. We do not enforce this

2 For simplicity, data types, i.e., collections of values such as integers, are considered
as classes, i.e., as collections of objects.
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assumption, and two classes in a hierarchy may have common instances, even
though they may not have a common subclass. When needed, the existence of
the most specific class can be enforced by means of disjointness assertions and
most specific class assertions of the form ({C1, . . . , Cn}, Cn+1) stating that, if
C1, . . . , Cn have a common instance c, then c is also an instance of Cn+1, i.e.,
Cn+1 is a most specific class for C1, . . . , Cn.

Let class(C) be the set of classes occurring in the diagram C. A RevEng
specification is a triple (C,DISJ,MSC), where C is a RevEng UML class diagram,
DISJ ⊆ 2class(C) is a set of disjointness assertions, and MSC ⊆ 2class(C) ×class(C)
is a set of most specific class assertions. Notice that DISJ and MSC can be seen
as sets of constraints expressed using the object constraint language (OCL)3.
OCL is an expressive language that allows us to impose additional constraints
which are not diagrammatically expressible in a UCD. Although OCL has its
own syntax, for brevity, we consider the simpler syntax presented above.

Semantics. The formal semantics of RevEng specifications is given in terms of
first-order logic (FOL). Given a RevEng specification S = (C,DISJ,MSC), we
first define the translation τ of S into FOL. The semantics of S is defined as
certain models of the first-order theory τ(S). The formalization adopted here is
based on the one presented in [4,12]. For brevity, let [n] = {1, . . . , n}, for n > 0.

A class C occurring in C is represented by a unary predicate C, while an
attribute a for class C corresponds to a binary predicate a. The attribute asser-
tion a[i..j] : T is translated into:

∀X∀Y (C(X) ∧ a(X,Y ) → T (Y )),
∀X (C(X) → ∃Y a(X,Y )), if i = 1,

∀X∀Y ∀Z (C(X) ∧ a(X,Y ) ∧ a(X,Z) → Y = Z), if j = 1.

The first one asserts that for each instance c of C, an object c′ related to c by
the attribute a is an instance of T . The second and the third assertions state
that for each instance c of C, there exist at least one and at most one different
objects, respectively, related to c by a. An operation f , with m � 0 parameters,
for class C corresponds to an (m+2)-ary predicate f , and the operation assertion
f(T1, . . . , Tm) : T is translated into:

∀X∀Y1 . . . ∀Ym∀Z (C(X) ∧ f(X,Y1, . . . , Ym, Z) → Ti(Yi)), for each i ∈ [m],
∀X∀Y1 . . . ∀Ym∀Z (C(X) ∧ f(X,Y1, . . . , Ym, Z) → T (Z)),
∀X∀Y1 . . . ∀Ym∀Z∀W (C(X) ∧ f(X,Y1, . . . , Ym, Z)

∧f(X,Y1, . . . , Ym,W ) → Z = W ).

The first two impose the correct typing for the parameters and the result, and
the third one asserts that the operation f is a function from the instances of C
and the parameters to the result. A class hierarchy, as the one in Figure 2(b), is
translated into:

∀X (Ci(X) → C(X)), for each i ∈ [n],

3 http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/
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which assert that each instance of Ci is an instance of C. An association A
occurring in C corresponds to a binary predicate A. If A is among classes C1 and
C2 with multiplicities m�..mu and n�..nu, then we have the FOL assertions:

∀X∀Y (A(X,Y ) → C1(X)),
∀X∀Y (A(X,Y ) → C2(Y )),
∀X (C1(X) → ∃Y A(X,Y )), if n� = 1,

∀X∀Y ∀Z (C1(X) ∧ A(X,Y ) ∧ A(X,Z) → Y = Z), if nu = 1,

∀X (C2(X) → ∃Y A(Y,X)), if m� = 1,

∀X∀Y ∀Z (C2(X) ∧ A(Y,X) ∧ A(Z,X) → Y = Z), if mu = 1.

An assertion {C1, . . . , Cn} ∈ DISJ is translated into

∀X (C1(X) ∧ . . . ∧ Cn(X) → ⊥),

where ⊥ denotes the truth constant false, while an assertion ({C1, . . . , Cn},
Cn+1) ∈ MSC is translated into

∀X (C1(X) ∧ . . . ∧ Cn(X) → Cn+1(X)).

We are now ready to define the semantics of RevEng specifications via FOL.
We consider the following pairwise disjoint sets of symbols: a set C of constants
and a set N of labeled nulls (used as placeholders for unknown values, and thus
can be also seen as globally existentially quantified variables). Different constants
represent different values (unique name assumption), while different nulls may
represent the same value. An interpretation I = (Δ,μ) consists of a non-empty
interpretation domain Δ ⊆ C ∪ N, and an interpretation function μ for a first-
order language. Let S = (C,DISJ,MSC) be a RevEng specification. A UML-model
of S is an interpretation I = (Δ,μ) such that (i) I satisfies the first-order theory
τ(S), written I |= τ(S); and (ii) for each C ∈ class(C), μ(C) �= ∅. The first
condition above implies that I is a first-order model (or simply FO-model) of
the theory τ(S), while the second condition indicates that each class in I is
non-empty, i.e., an instance of each class exists without violating any of the
requirements imposed by the specification.

3 Consistency Check of Diagrams

The fact that RevEng specifications can be translated into FOL allows one to
formally check relevant properties so as to assess the quality of a specification
to objective quality criteria. The typical property of interest is consistency: a
RevEng specification S is consistent if there exists at least one UML-model of S.
We proceed to pinpoint the exact complexity of the problem of deciding whether
a RevEng specification is consistent.

Fix a RevEng specification S = (C,DISJ,MSC). To check the consistency
of S it suffices to add to the first-order theory τ(S) a witness for each class of
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class(C), and then check whether the obtained theory has at least one FO-model,
i.e., is satisfiable. In other words, we can reduce our problem to the satisfiability
problem of a first-order theory. Assuming that class(C) = {C1, . . . , Cn}, let WS
be the conjunction of atomic formulas (C1(c1) ∧ . . . ∧ Cn(cn)), where c1, . . . , cn

are arbitrary constants of C, and let ΦS be the sentence (WS ∧ τ(S)). It is not
difficult to show that:

Lemma 1. S is consistent iff ΦS is satisfiable.

In the following, we investigate the satisfiability of ΦS . Observe that, if ΦS is
satisfiable, then it has an FO-model I = (Δ,μ) where μ(f) = ∅, for each oper-
ation f in S, since the absence of an operation atom cannot lead to a violation
of ΦS . This implies that the conjuncts that appear in τ(S) because of an opera-
tion assertion are irrelevant for satisfiability purposes and can be safely ignored;
in the rest of this section, we exclude from τ(S) those formulas. By definition,
τ(S) can be equivalently rewritten (by simply reordering its conjuncts) as the
conjunction (XS ∧ ES ∧ FS), where:

– XS is a conjunction of formulas of the form ∀X (ϕ(X) → ∃Y α(X, Y )) (pos-
sibly without existentially quantified variables);

– ES is a conjunction of formulas of the form ∀X (ϕ(X) → Xi = Xj); and
– FS is a conjunction of formulas of the form ∀X (ϕ(X) → ⊥).

The following technical result follows immediately:

Lemma 2. ΦS is satisfiable iff the following hold:

1. (WS ∧ XS ∧ ES) is satisfiable; and
2. there exists an FO-model I of (WS ∧ XS ∧ ES) such that I |= FS .

3.1 A Database-Theoretic Approach

Interestingly, the two decision problems stated in Lemma 2 can be tackled fol-
lowing a database-theoretic approach:

– The conjunction WS = (α1 ∧ . . .∧αn) can be seen as the relational database
DS = {α1, . . . , αn};

– The conjunction XS = (σ1 ∧ . . . ∧ σm) can be conceived as the set TS =
{σ1, . . . , σm} of tuple-generating dependencies (TGDs);

– The conjunction ES = (η1∧ . . .∧ηk) can be seen as the set ES = {η1, . . . , ηk}
of equality-generating dependencies (EGDs); and

– The conjunction FS = (ν1 ∧ . . . ∧ ν�) can be conceived as the union of
conjunctive queries (UCQs) QS = (qν1 ∨ . . . ∨ qν�

), where, assuming that ν
is of the form ∀X (ϕ(X) → ⊥), qν is the conjunctive query ∃X (ϕ(X)).

Tuple- and equality-generating dependencies are well-known in the database
world as a unifying framework for classical database dependencies such as inclu-
sion and functional dependencies [1], and form the basis of the Datalog± family
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of KR languages [7]. Conjunctive queries correspond to the select-project-join
fragment of relational algebra, and form one of the most natural and commonly
used languages for querying relational databases [1].

An FO-model of (WS ∧ XS ∧ ES) can be equivalently defined as a relational
instance I, called a model of DS w.r.t. TS ∪ ES , such that I ⊇ DS and I satis-
fies TS ∪ ES (written as I |= TS ∪ ES); I satisfies ∀X (ϕ(X) → ∃Y α(X, Y ))
if, whenever there exists a homomorphism h such that h(ϕ(X)) ⊆ I, then
there exists an extension h′ of h such that h(α(X, Y )) ⊆ I, while I satisfies
∀X (ϕ(X) → Xi = Xj) if the existence of h such that h(ϕ(X)) ⊆ I implies
h(Xi) = h(Xj). Let mods(DS , TS ∪ES) be the set of models of DS w.r.t. TS ∪ES .
It is clear that (WS∧XS∧ES) is satisfiable iff mods(DS , TS∪ES) �= ∅. A conjunc-
tive query ∃X (ϕ(X)) is entailed by an instance I if there exists a homomorphism
h such that h(ϕ(X)) ⊆ I. QS is entailed by I, written I |= QS , if at least one of
its disjuncts is entailed by I. It is easy to show that there exists an FO-model
of (WS ∧ XS ∧ ES) that satisfies FS iff the following does not hold: for every
I ∈ mods(DS , TS ∪ ES), I |= QS .

In general, mods(DS , TS ∪ES) is infinite, and thus not explicitly computable.
To overcome this difficulty, we employ a classical algorithmic tool from the
database literature called the chase procedure, which repairs DS w.r.t. TS ∪ ES
so that the result, denoted chase(DS , TS ∪ES), satisfies TS ∪ES . It works on DS
through the ∃-chase step, which aims at satisfying TGDs by adding atoms, and
the =-chase step, which aims at satisfying EGDs by unifying terms; if constants
of C must be unified, then we have a hard violation of an EGD and the chase
fails; for details, see, e.g., [6]. It is implicit in [10] that mods(DS , TS ∪ ES) �= ∅

iff chase(DS , TS ∪ ES) does not fail. Moreover, if chase(DS , TS ∪ ES) does not
fail, then chase(DS , TS ∪ ES) is a universal model of DS w.r.t. TS ∪ ES , i.e.,
for each I ∈ mods(DS , TS ∪ ES), there exists a homomorphism h such that
h(chase(DS , TS ∪ ES)) ⊆ I. The next technical result can be established.

Lemma 3. It holds that:

1. (WS ∧ XS ∧ ES) is satisfiable iff chase(DS , TS ∪ ES) does not fail; and
2. there exists an FO-model I of (WS ∧ XS ∧ ES) such that I |= FS iff

chase(DS , TS ∪ ES) �|= QS .

Thus, the above lemma, combined with Lemmas 1 and 2, suggests the fol-
lowing:

Corollary 1. S is consistent iff the following hold:

1. chase(DS , TS ∪ ES) does not fail; and
2. chase(DS , TS ∪ ES) �|= QS .

3.2 Chase Failure

It can be shown that ES can be safely ignored and proceed only with TS . In par-
ticular, we can show that the initial segment of chase(DS , TS) obtained starting
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from DS and applying the ∃-chase step i times, satisfies ES , for each i � 0;
this can be established by induction on i. Therefore, during the construction of
chase(DS , TS ∪ES) the =-chase step is not applied, and the next lemma follows:

Lemma 4. chase(DS , TS ∪ ES) = chase(DS , TS).

As an immediate consequence we get that:

Proposition 1. chase(DS , TS ∪ ES) does not fail.

3.3 Query Entailment

Although the problem of deciding whether the chase fails is trivial, the problem of
deciding whether chase(DS , TS ∪ ES) �|= QS is rather challenging. By Lemma 4,
we can focus on the problem of deciding whether chase(DS , TS) �|= QS . It turned
out that it is more convenient to study the complement of the problem under con-
sideration. We present a novel nondeterministic algorithm which decides whether
chase(DS , TS) |= QS . Before we proceed further, let us give some auxiliary ter-
minology. We denote by I〈σ, h〉I ′ a single ∃-chase step, which means that during
the chase we apply the TGD σ of the form ∀X (ϕ(X) → ∃Y α(X, Y )) due to the
existence of a homomorphism h such that h(ϕ(X)) ⊆ I, and I ′ = I∪h′(α(X, Y )),
where h′ is an extension of h, and h′(Y ) is a “fresh” null of N. Interestingly, the
TGDs of TS enjoy a crucial syntactic property: for each σ ∈ TS , the left-hand
side of σ, denoted body(σ), has a guard atom, denoted guard(σ), that contains
all the universally quantified variables of σ; such TGDs are known as guarded
TGDs [6]. The guarded chase forest is a tree-like representation of the instance
constructed by the chase; the formal definition follows:

Definition 1. The guarded chase forest of DS and TS , denoted gcf(DS , TS),
is a labeled directed forest (N,E, λ), where λ : N → chase(DS , TS), defined as
follows: (i) for each α ∈ DS , there exists exactly one v ∈ N with λ1(v) = α;
(ii) for each step I〈σ, h〉I ′ applied during the construction of chase(DS , TS): for
every atom α ∈ {h(guard(σ))}∪(I ′\I), there exists exactly one node v ∈ N such
that λ(v) = α, and for every α ∈ I ′ \ I, there exists an edge (v, u) ∈ E, where
λ(v) = h(guard(σ)) and λ(u) = α; and (iii) no other nodes and edges occur in
N and E, respectively. Let gcfk(DS , TS) be the initial part of gcf(DS , TS) up to
depth k � 0.

Based on gcf(DS , TS) we define the notion of the guarded chase of DS and
TS up to a certain depth:

Definition 2. The guarded chase of DS and TS of depth up to k � 0 is
the instance gchasek(DS , TS) = {λ(v)}v∈Nk assuming that gcfk(DS , TS) =
(Nk, E, λ).

Interestingly, for our purposes, we can focus on an initial part of the guarded
chase; the following is implicit in [6]:
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Fig. 3. Proof of a disjunct of QS

Lemma 5. There exists γ(n) ∈ O(2n), where n is the number of predicates in
TS , such that chase(DS , TS) |= QS iff gchaseγ(n)(DS , TS) |= QS .

Therefore, one can simply build gchaseγ(n)(DS , TS), and then check whether
there exists a homomorphism that maps at least one disjunct of QS to it. This
naive approach shows that our problem is in 2exptime. However, this upper
bound is not optimal. A more clever procedure, which needs only polynomial
space, can be designed. Let us first give an informal description of this procedure.

An Informal Description. Assume that QS is entailed by chase(DS , TS). By
Lemma 5, there exists a disjunct q of QS that can be mapped via a homomor-
phism h to gchaseγ(n)(DS , TS). Let P be the subforest of gcfγ(n)(DS , TS) that
is obtained by keeping only the paths from the root nodes to the nodes which
are labeled by the atoms of h(q); in other words, P is the proof of q w.r.t. DS
and TS . Observe that, for each 0 � i � γ(n), the number of nodes occurring at
the i-th level of P is at most |q|, i.e., the number of conjuncts in q. An abstract
example is depicted in Figure 3 — the general shape of the subforest P is given
in (a), while its actual structure is shown in (b). It is clear that at each level of
P , at most |q| atoms may appear; e.g., in the third level (see shaded nodes) there
are exactly |q| atoms. The key idea underlying our algorithm is to nondetermin-
istically construct, in a level-by-level fashion, the atoms of each level of P until
we reach h(q). In other words, our intention is to generate, by applying some
∃-chase steps, the (i + 1)-th level of P from the i-th level of P , and thus we do
not need to store more than 2 · |q| atoms at each step. A crucial notion, necessary
for this construction, is the type of an atom which is defined as follows:

Definition 3. The type of an atom α ∈ chase(DS , TS), denoted type(α,DS , TS)
(or simply type(α)), is the set of atoms of the form C(t), where C ∈ class(S)4,
occurring in chase(DS , TS) such that t appears in α.
4 By abuse of notation, we refer to the set of classes occurring in the UCD of the spec-

ification S by class(S).
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Let us explain the importance of the notion of type. Consider a node v
occurring at the i-th level of P which is labeled by the atom α. Assume now that
there exists a TGD σ ∈ TS such that guard(σ) is mapped via a homomorphism μ
to α, and also μ maps the rest of the body of σ, denoted ϕσ, to chase(DS , TS).
This implies that v has a child node u at the (i + 1)-th level of P which is
labeled by the atom obtained after applying σ. Since the TGD σ is guarded, all
the variables occurring in guard(σ) appear also in ϕσ, and thus μ necessarily
maps ϕσ to type(α). From the above informal discussion, we conclude that the
level-by-level construction proposed above is feasible, providing that we are also
able to construct the type of the generated atoms. Notice that, at each step of
the procedure, apart from the 2 · |q| atoms, we also need to store their types.
However, the size of the type of an atom is at most the cardinality of class(S),
and thus overall we need only polynomial space. In what follows, we discuss in
depth how the type of an atom can be effectively computed, and we formalize
the level-by-level construction sketched above.

Computing the Type of an Atom. In general, the problem of comput-
ing the type of an atom is not easier than the problem of query entailment
itself. However, in our case, it is possible to construct the type of an atom
α ∈ chase(DS , TS) by exploiting α and the type of its parent in the guarded
chase forest. Let us first formally define what we mean by saying the type of the
parent of an atom in the guarded chase forest. To this end, we need the notion
of the parent-type function defined as follows:

Definition 4. The parent-type function pt from chase(DS , TS) to 2chase(DS ,TS)

is defined as follows:

pt(α) =

⎧
⎨

⎩

∅, α ∈ DS ,

type(h(guard(σ))), I〈σ, h〉(I ∪ {α}).

Let also pt+(α) = {α} ∪ pt(α).

We also need the notion of the distinguished term of an atom α ∈
chase(DS , TS), which is crucial for the computation of type(α). In fact, to com-
pute type(α), it suffices to add to the common part between the type of α and
the type of its parent the atoms of chase(DS , TS) which contain only the distin-
guished term of α.

Definition 5. The distinguished term of an atom α ∈ chase(DS , TS), denoted
d(α), is defined as follows: if α = C(t), where C ∈ class(S), then d(α) = t;
otherwise, d(α) is the null of N invented in α.

Finally, we define the so-called projection set of TS , which will allows us to
complete the common part between the type of α and the type of its parent, and
thus computing type(α), by starting from pt+(α). Let A[i], where i ∈ {1, 2}, be
an auxiliary predicate which is used to store the projection to the i-th argument
of the predicate A.
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Input: An atom α, an instance I, a term t, a specification S.
Output: A finite instance.

1. J := ∅.
2. K := chase(({α} ∪ I)↓, T π

S ).

3. For each C ∈ class(S): if C(t)↓ ∈ K, then J := J ∪ {C(t)}.
4. If α = C(t), where C ∈ class(S), then return J ; otherwise, return (I|t′ ∪ J), where t′ �= t

and t′ occurs in α.

Fig. 4. The Procedure Type

Definition 6. Consider a TGD σ ∈ TS of the form ϕ → α, and an atom β
occurring in σ. If β = A(X,Y ), where A is an association class, and the variable
X (resp., Y ) occurs in both ϕ and α, then τπ(β, σ) = A[1](X) (resp., A[2](Y ));
otherwise, τπ(β, σ) = β. The projection set of TS , denoted Tπ

S , is obtained as
follows: for each σ ∈ TS of the form ϕ → α where the predicate of α is either a
class or an association, and for each atom β in σ, replace β by τπ(β, σ).

An example of a projection set follows:

Example 1. Let S = (C, ∅, ∅), where C is the diagram in Figure 2(c) with
n�..nu = m�..mu = 1..∞, expressing that there is an association A between
the classes C1 and C2, and each instance of C1 and C2 participates at least once
in A. Tπ

S is as follows:

∀X (C1(X) → ∃Y τπ(A(X,Y ))) = ∀X (C1(X) → A[1](X)),
∀X (C2(X) → ∃Y τπ(A(Y,X))) = ∀X (C2(X) → A[2](X)),
∀X∀Y (τπ(A(X,Y )) → C1(X)) = ∀X (A[1](X) → C1(X)),
∀X∀Y (τπ(A(X,Y )) → C2(Y )) = ∀Y (A[2](Y ) → C2(Y )).

For brevity, the second parameter of τπ is omitted.

We are now ready to give our key technical lemma. Henceforth, given an
atom α, we denote by α↓ the atom obtained by freezing α, i.e., replacing each
null z ∈ N occurring in α with a new constant cz ∈ C; this notation naturally
extends to sets of atoms.

Lemma 6. For each atom α ∈ chase(DS , TS), and for each class C ∈ class(S),
C(d(α)) ∈ chase(DS , TS) iff C(d(α))↓ ∈ chase(pt+(α)↓, Tπ

S ).

The crucial observation in the proof of the above lemma is that in a
chase derivation from an atom α ∈ chase(DS , TS) to an atom C(d(α)) ∈
chase(DS , TS), it is not possible to lose and reintroduce the term d(α); this
is because of the fact that the TGDs of TS are guarded. Therefore, the TGDs
that are involved in such a chase derivation are neither of the form ∀X (C ′(X) →
∃Y a(X,Y )) nor of the form ∀X∀Y (C ′(X) ∧ a(X,Y ) → T (Y )); otherwise, we
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immediately get a contradiction. Moreover, these TGDs are contributing in such
a chase derivation only by projecting out the term d(α); this justifies the def-
inition of Tπ

S . Based on Lemma 6, we design the procedure Type, depicted in
Figure 4, which computes the type of an atom α by adding to the part of pt(α)
that contains only the non-distinguished term t′ of α, denoted as pt(α)|t′ , the set
of atoms J = {C(d(α)) | C ∈ class(S) and C(d(α)) ∈ chase(DS , TS)}; clearly,
(pt|t′ ∪ J) = type(α). Since each TGD of Tπ

S does not contain an existentially
quantified variable, and also its size is fixed, chase(pt+(α)↓, Tπ

S ) is finite and can
be constructed in polynomial time in the size of pt+(α)↓. The instance pt+(α)↓
is of polynomial size, and thus chase(pt+(α)↓, Tπ

S ) can be constructed in poly-
nomial time; hence, the second step of Type terminates after polynomially steps.

Proposition 2. For each atom α ∈ chase(DS , TS),

1. Type(α, pt(α), d(α),S) = type(α); and
2. Type(α, pt(α), d(α),S) terminates after polynomially many steps.

The Level-by-level Construction. We have now all the necessary ingre-
dients in order to proceed with our novel algorithm for deciding whether
chase(DS , TS) |= QS . The main idea, as sketchily described above, is
to nondeterministically construct, in a level-by-level fashion, a segment of
gchaseγ(n)(DS , TS), which contains at most as many atoms as the biggest dis-
junct q of QS , and then check whether there exists a homomorphism that maps
q to it. During this procedure, we can compute the children of a node v by
exploiting the instance type(α), where α is the label of v, and then forget v
and its type. Moreover, the type of an atom α can be constructed by exploiting
pt+(α) and the procedure Type. The formal algorithm, called Ent (which stands
for entailment), is depicted in Figure 5. Note that D and D′ are vectors that hold
integer numbers and are used to store the depth of the generated atoms, while
P and P ′ are vectors that hold sets of atoms and are used to store the types of
the generated atoms. Moreover, γ(n) is the bound on the depth of gcf(DS , TS)
provided by Lemma 5. A simple example of the execution of Ent follows:

Example 2. Let S = (C, {T1, T3}, ∅), where C is the RevEng UCD in Figure 6.
The forest gcf(DS , TS) is depicted in Figure 6 (for brevity, the atoms
T1(c4), T2(c5) and T2(c6) are not shown). A possible execution of Ent(S), which
explores in a level-by-level fashion the shaded nodes of gcf(DS , TS), is as follows:

– We choose (S1,≺1) to be ({C3(c3)}, ∅), and the type of C3(c3) is stored in
P1;

– We construct (S2,≺2) = ({a(c3, z3)}, ∅) from C3(c3) by applying
∀X (C3(X) → ∃Y a(X,Y )), and the type of a(c3, z3) is stored in P ′

1;
– We assign (S2,≺2) to (S1,≺1) and P ′

1 to P1 — this means that we forget
the atom C3(c3) and its type;

– We construct (S2,≺2) = ({T1(z3), T3(z3)}, T1(z3) ≺2 T3(z3)) from the atom
a(c3, z3) by applying the TGDs ∀X∀Y (C1(X) ∧ a(X,Y ) → T1(Y )) and
∀X∀Y (C3(X) ∧ a(X,Y ) → T3(Y )) (notice that the crucial atoms C1(c3)
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Input: A RevEng specification S.
Output: yes if chase(DS , TS) |= QS ; otherwise, no.

1. Guess a disjunct q of QS .
2. Image := ∅ and L := {z1, . . . , zk} ⊂ N, where k = 2 · |q|.
3. Guess a totally ordered set (S1, ≺1), where S1 ⊆ DS and |S1| ∈ {1, . . . , |q|}; assume that

α1 ≺1 . . . ≺1 αm.
4. For each i ∈ [|S1|]: D[i] := 0 and P [i] := Type(αi, ∅, c, S), where c is the constant in αi.
5. Guess a set of atoms I ⊆ S1; Image := Image ∪ I.

6. If |Image| = |q|, then goto 15.
7. Guess to proceed with the next step or goto 15.
8. Construct a totally ordered set (S2, ≺2) as follows:

a. (S2, ≺2) := (∅, ∅) and ctr := 1.
b. Guess σ = (ϕ → ∃Y α) ∈ TS for which there exists i ∈ [|S1|] and a homomorphism h

such that
– h(guard(σ)) = αi,
– D[i] < γ(n), and
– h(body(σ) \ {guard(σ)}) ⊆ Pi;
if there is no such σ, then σ := ε.

c. If σ �= ε, then do the following:
– βctr := h′(α), where h′ := h ∪ {Y → t | t ∈ L and t does not occur in S1 ∪ S2}.
– S2 := S2 ∪ {βctr}.
– If ctr > 1, then βctr−1 ≺2 βctr .
– D′[ctr ] := D[i] + 1.
– P ′[ctr ] := Type(βctr , P [i], h′(Y ), S).
– ctr := ctr + 1.

d. If |S2| = |q| or σ = ε, then goto 9.
e. Guess to proceed to the next step or goto 8b.

9. Guess a set I ⊆ S2; Image := Image ∪ I.
10. If |Image| = |q|, then goto 15.
11. Guess to proceed to the next step or goto 15.
12. (S1, ≺1) := (S2, ≺2); assume that α1 ≺1 . . . ≺1 αm.
13. D := D′ and P := P ′.
14. Goto 8.
15. If there exists h such that h(q) ⊆ Image, then return yes; otherwise, return no.

Fig. 5. The Nondeterministic Algorithm Ent

and C3(c3) occur in type(a(c3, z3))), and the type of T1(z3) and T3(z3) are
stored in P ′

1 and P ′
2, respectively; and

– Finally, we choose to assign {T1(z3), T3(z3)} to Image, and then check
whether there exists a homomorphism that maps QS to Image.

Clearly, since such a homomorphism exists, the algorithm returns yes, which in
turn implies that chase(DS , TS) |= QS .

By construction, Ent(S) = yes iff gchaseγ(n)(DS , TS) |= QS , where γ(n) is
the bound provided by Lemma 5, which in turn is equivalent to chase(DS , TS) |=
QS . Let us now analyze the space complexity of our algorithm. During the
execution of Ent(S) we need to maintain the following:
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Fig. 6. Execution of the Algorithm Ent

1. The totally ordered sets (S1,≺1) and (S2,≺2);
2. The vectors D, D′, P and P ′; and
3. The set of atoms Image.

It is possible to show that the above structures need O(m3 · log m) space, where
m = |class(S)|. By Proposition 2, the computation of the types at steps 4 and 8
is feasible in polynomial time, and thus in polynomial space. Finally, since the
problem of deciding whether there exists a homomorphism from a query to an
instance is feasible in np (and thus a fortiori in pspace), we get that step 15 is
feasible in polynomial space. The next result follows:

Proposition 3. It holds that,

1. Ent(S) = yes iff chase(DS , TS) |= QS ; and
2. Each step of the computation of Ent(S) uses polynomial space.

3.4 Pinpointing the Complexity

By using the results established in the previous section, we can now pinpoint the
computational complexity of the problem of deciding whether S is consistent.

Upper Bound. By Corollary 1 and Proposition 1, we conclude that S is consis-
tent iff chase(DS , TS) �|= QS . Since Ent describes a nondeterministic algorithm,
Proposition 3 implies that the problem of deciding whether chase(DS , TS) |= QS ,
that is, the complement of the problem under consideration, is in npspace, and
thus in pspace since npspace = pspace. But pspace = copspace, and therefore:

Theorem 1. The problem of deciding whether S is consistent is in pspace.

Lower Bound. We show that the upper bound established above is tight. This
is done by simulating a polynomial space Turing machine (TM) by means of a
RevEng specification. Consider a TM M = (S,Λ, δ, s0, F ), where S is the set of
states, Λ is the tape alphabet, δ : S \F ×Λ → S ×Λ×{−1, 0, 1} is the transition
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Fig. 7. Simulating a polynomial space TM

function, s0 is the initial state, and F ⊆ S is the set of final or accepting
states. We assume w.l.o.g. that M has exactly one accepting state, denoted as
sacc . We also assume that Λ = {0, 1}, and that each input string has an 1 as the
rightmost bit. Consider the computation of M on an input string I = a1a2 . . . an,
and suppose that it halts using m = nk cells, where k > 0. We shall construct
a RevEng specification S = (C,DISJ,MSC) such that M accepts I iff S is not
consistent; this shows that the complement of our problem is pspace-hard, and
thus also our problem is pspace-hard.

The initial configuration of M is reflected by the class diagram Cinit/config

in Figure 7(a). Roughly, Initial(c) states that c is the initial configuration,
State[s](c) asserts that the state of the configuration c is s, and Cell [i, x, y](c)
says that in the configuration c the i-th cell contains x, and the cursor is on the
i-th cell iff y = 1.

The auxiliary classes Cell [s, i, x, y], where (s, i, x, y) ∈ S × {0, . . . , m − 1} ×
{0, 1} × {0, 1}, are needed in order to describe the configuration transition via a
RevEng class diagram. Roughly,
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Cell [i, x, y](c) ∧ State[s](c) → Cell [s, i, x, y](c),

which is formally defined using the set MSCstate of most specific class assertions
consisting of: for each (s, i, x, y) ∈ S × {0, . . . , m − 1} × {0, 1} × {0, 1},

({Cell [i, x, y],State[s]},Cell [s, i, x, y]).

The fact that each configuration has a valid configuration as a successor is
captured by the diagram Cinit/config , shown in Figure 7(a); Config(c) expresses
that c is a valid configuration, while succ(c, c′) states that c′ is derived from c.

We now show how the configuration transition can be simulated. Consider an
arbitrary pair (s, a) ∈ S \F ×{0, 1}, and assume that δ((s, a)) = (s′, a′, d′). The
state transition, as well as the updating of the tape, is reflected by the diagram
C(s,a), shown in Figure 7(b); notice that f(0) = 1 and f(−1) = f(1) = 0.
Eventually, the configuration transition is achieved by the diagram Ctrans , which
is obtained by merging the diagrams {C(s,a)}(s,a)∈S\F×{0,1}. It should not be
forgotten that those cells which are not changed during the transition keep their
old values. This can be ensured by a RevEng UCD, and a set of most specific
class constraints. Finally, with the diagram Cacc , shown in Figure 7(c), we say
that M accepts if it reaches the accepting state.

We define S to be the specification (C,DISJ,MSC), where C is the UCD
obtained by merging the diagrams introduced above, DISJ consists of the single
assertion {Initial ,Accept}, and MSC consists of the most specific class assertions
introduced above. It is easy to verify that S is a RevEng specification, and that
can be constructed in polynomial time. By providing an inductive argument, we
can show that M accepts I iff chase(DS , TS) |= QS iff S is inconsistent, and the
next result follows:

Theorem 2. The problem of deciding whether S is consistent is pspace-hard5.

The following complexity characterization follows from Theorems 1 and 2:

Corollary 2. The problem of deciding whether S is consistent is pspace-
complete.

4 Conclusions

In this work, we focus on the fragment of UML class diagrams that can be
recovered from an implemented system. We study the problem of consistency of
such diagrams, and we show that is pspace-complete. Interestingly, the upper
bound is obtained by exploiting algorithmic techniques developed for conjunctive
5 An alternative way to establish this result is by adapting the construction in the

proof of an analogous result for the description logic Horn-FL− [13]. However, the
resulting diagram is counterintuitive, and does not give any insights about the inher-
ent difficulty of RevEng UCDs. For this reason, and also for self-containedness, we
provide a new proof from first principles.
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query answering under guarded Datalog±, that is, a key member of the Datalog±

family of KR languages. Although the proposed consistency algorithm is theoret-
ically interesting, and allows us to establish a worst-case optimal upper bound
for the problem under investigation, it is not very well-suited for a practical
implementation. It is unlikely that it will lead to procedures that guarantee the
required level of scalability, especially in the presence of very large diagrams. The
designing of a more practical consistency algorithm, which will exploit existing
database technology, will be the subject of future research.
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