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Abstract. This paper explores how to implement an iteratively staged
domain-specific language (DSL) by embedding into a functional lan-
guage. The domain is modelling and simulation of physical systems where
models are expressed in terms of non-causal differential-algebraic equa-
tions; i.e., sets of constraints solved through numerical simulation. What
sets our language apart is that the equational constraints are first class
entities allowing for an evolving model structure characterised by re-
peated generation of updated constraints. Hence iteratively staged. Our
DSL can thus be seen as a combined functional and constraint pro-
gramming language, albeit a two-level one, with the functional language
chiefly serving as a meta language. However, the two levels do inter-
act throughout the simulation. The embedding strategy we pursue is a
mixture of deep and shallow, with the deep embedding enabling just-
in-time (JIT) compilation of the constraints as they are generated for
efficiency, while the shallow embedding is used for the remainder for
maximum leverage of the host language. The paper is organised around
a specific DSL, but our implementation strategy should be applicable for
iteratively staged languages in general. Our DSL itself is further a novel
variation of a declarative constraint programming language.

1 Introduction

Embedding is a powerful and popular way to implement domain-specific lan-
guages (DSLs) [8]. Compared with implementing a language from scratch, ex-
tending a suitable general-purpose programming language, the host language,
with notions and vocabulary addressing a particular application or problem do-
main tends to save a lot of design and implementation effort.

There are two basic approaches to language embeddings: shallow and deep.
In a shallow embedding, domain-specific notions are expressed directly in host-
language terms, typically through a higher-order combinator library. This is a
light-weight approach that makes it easy to leverage the facilities of the host
language. However, the syntactic freedom is limited, and the static semantics of
the embedded language must be relatively close to that of the host language for
an embedding to be successful. In contrast, a deep embedding is centred around



a representation of embedded language terms that then are given meaning by
interpretation or compilation. This is a more heavy-weight approach, but also
more flexible. In particular, for optimisation or compilation, it is often necessary
to inspect terms, suggesting a deep embedding. The two approaches can be com-
bined to draw on the advantages of each. This leads to mixed-level embedding.

In this paper, we explore how to embed a language, Hydra [13], for non-causal
modelling and simulation of physical systems into a functional programming
language. In this application domain, systems are modelled by constraints ex-
pressed as undirected Differential Algebraic Equations (DAEs). These equations
are solved by specialised combined symbolic and numerical simulation meth-
ods. A defining aspect of Hydra is that the equations are first-class entities in
a functional language layer, providing very flexible means for expressing model
composition and evolving model structure. Specifically, in response to events,
which occur at discrete points in time, the simulation is stopped and, depending
on results thus far, (partly) new equations are generated describing a (partly)
new problem to be solved. We refer to this kind of DSL as iteratively staged
to emphasise that the domain is characterised by repeated program generation
and execution. Iterative staging makes it possible to model classes of systems in
Hydra that current main-stream non-causal modelling and simulation languages
cannot handle [6]. Section 2 exemplifies one such system.

Hydra can be seen as a functional and constraint or logical programming
language in that it combines a functional and relational approach to program-
ming. However, the integration of the two approaches is less profound than in,
say, functional logic languages based on residuation or narrowing [7]. Hydra is a
two-level language, where the functional part to a large extent serves as a meta
language. However, the two layers do interact throughout the simulation.

We have chosen Haskell as the host language, or, more precisely, Haskell with
Glasgow Haskell Compiler (GHC) extensions, GHC’s quasiquoting facility [10,
11] being one reason for this choice. Because performance is a primary concern
in the domain, the simulation code corresponding to the current equations has
to be compiled. As this code is determined dynamically, this necessitates just-in-
time (JIT) compilation. We use a deep embedding for this part of the language
along with the Low-Level Virtual Machine (LLVM)1: a language-independent,
portable, optimising, compiler back-end with JIT support. In contrast, we re-
tain a shallow embedding for the parts of the embedded language concerned with
high-level, symbolic computations to get maximum leverage from the host lan-
guage. Note that we are not concerned with (hard) real-time performance here:
we are prepared to pay the price of brief “pauses” for symbolic processing and
compilation in the interest of minimising the computational cost of the actual
simulation that typically dominates the overall costs by a wide margin.

An alternative might have been to use a multi-staged host language like
MetaOCaml [15]. The built-in run-time code generation capabilities of the host
language would then have been used instead of relying on an external code gen-
eration framework. We have so far not explored this approach as we wanted to

1 http://llvm.org/



have tight control over the generated code. Also, not predicating our approach
on a multi-staged host language means that some of our ideas and implementa-
tion techniques can be more readily deployed in other contexts, for example to
enhance the capabilities of existing implementations of non-causal languages.

Compilation of Embedded DSLs (EDSLs) is today a standard tool in the
DSL-implementer’s tool chest. The seminal example is the work by Elliott et al.
on compiling embedded languages, specifically the image synthesis and manipu-
lation language Pan [3]. Pan, like our language, provides for program generation
by leveraging the host language combined with compilation to speed up the re-
sulting performance-critical computations. However, the program to be compiled
is generated once and for all, meaning the host language acts as a powerful but
fundamentally conventional macro language: program generation, compilation,
and execution is a process with a fixed number of stages.

As Hydra is iteratively staged, the problems we are facing are in many ways
different. Also, rather than acting merely as a powerful meta language that is
out of the picture once the generated program is ready for execution, the host
language is in our case part of the dynamic semantics of the embedded language
through the shallow parts of the embedding. With this paper, we thus add further
tools to the DSL tool chest for embedding a class of languages that hitherto has
not been studied much. Specifically, our contributions are:

– a case study of mixed-level embedding of iteratively staged DSLs;
– using JIT compilation to implement an iteratively staged EDSL efficiently.

Additionally, we consider static type checking in the context of iterative staging
and quasiquoting-based embedding. While Hydra is specialised, we believe the
ideas underlying the implementation are of general interest, and that Hydra
itself should be of interest to programming language researchers interested in
languages that combine functional and relational approaches to programming.
The implementation is available on-line2 under the open source BSD license.

The rest of the paper is organised as follows. In Section 2, we introduce non-
causal modelling and our language Hydra in more detail. Section 3 explains the
Haskell embedding of Hydra and Section 4 then describes how iteratively staged
programs are executed. Related work is discussed in Section 5. Finally, Section
6 gives conclusions.

2 Background

This section provides an introduction to Functional Hybrid Modelling (FHM)
[13] and to our specific instance Hydra [5, 6]. We focus on aspects that are par-
ticularly pertinent to the present setting. The reader is referred to the earlier
papers on FHM and Hydra for a more general treatment.

2 http://cs.nott.ac.uk/~ggg/



2.1 Functional Hybrid Modelling

Functional Hybrid Modelling (FHM) [13] is a new approach to designing non-
causal modelling languages [2] supporting hybrid systems: systems that exhibit
both continuous and discrete dynamic semantics. This class of languages is in-
tended for modelling and simulation of systems that can be described by Dif-
ferential Algebraic Equations (DAEs). Examples include electrical, mechanical,
hydraulic, and other physical systems, as well as their combinations. Non-causal3

in this context refers to treating the equations as being undirected : an equation
can be used to solve any of the variables occurring in it. This is in contrast to
causal modelling languages where equations are restricted to be directed : only
“known” variables on one side of the equal sign, and only “unknown” variables
on the other. Note that the domain of the variables are time-varying values or
signals: functions of continuous time.

The advantages of non-causal languages over causal ones include that models
are more reusable (the equations can be used in many ways) and more declarative
(the modeller can focus on what to model, worrying less about how to model it to
enable simulation) [2]. These are crucial advantages in many modelling domains.
As a result, a number of successful non-causal modelling languages have been
developed. Modelica4 is a prominent, state-of-the-art example.

However, one well-known weakness of current non-causal languages is that
their support for modelling structurally dynamic systems, systems where the
equations that describe the dynamic behaviour change at discrete points in time,
usually is limited. There are a number of reasons for this. A fundamental one is
that languages like Modelica, to facilitate efficient simulation, are designed on
the assumption that the model is translated into simulation code once and for
all, before simulation starts.

The idea of FHM is to enrich a purely functional language with a few key
abstractions for supporting hybrid, non-causal modelling. In particular, first-
class signal relations, relations on signals described by undirected DAEs, provide
support for non-causal modelling, and dynamic switching among signal relations
that are computed at the point when they are being “switched in” provides
support for describing highly structurally dynamic systems [13].

Our hypothesis is that the FHM approach will result in non-causal modelling
languages that are more expressive than the current ones, yet have relatively sim-
ple, declarative semantics. Results so far have been promising. The capability
to compute and use new signal relations during simulation has already allowed
us to non-causally model and simulate some systems that e.g. Modelica cannot
handle [6]. We present one such example in the following. The dynamic com-
putation of and switching among signal relations is, of course, also what makes
FHM iteratively staged.

3 Do not confuse this with temporal causality. A system is temporally causal if its
output only depends on present and past input, and temporally non-causal if the
output depends on future input.

4 http://www.modelica.org/
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Fig. 1. A pendulum subject to gravity.

2.2 Hydra by Example: The Breaking Pendulum

To introduce Hydra, let us model a physical system whose structural configura-
tion changes abruptly during simulation: a simple pendulum that can break at a
specified point in time; see Figure 1. The pendulum is modelled as a point mass
m at the end of a rigid, mass-less rod, subject to gravity m~g. If the rod breaks,
the mass will fall freely. This makes the differences between the two configura-
tions sufficiently large that e.g. Modelica does not support non-causal modelling
of this system. Instead, if simulation across the breaking point is desired, the
modeller is forced to model the system in a causal, less declarative way.

There are two levels to Hydra: the functional level and the signal level. The
functional level is concerned with the definition of ordinary functions operating
on time-invariant values. The signal level is concerned with the definition of
relations between signals, the signal relations, and, indirectly, the definition of
the signals themselves as solutions satisfying these relations.

Signal relations are first-class entities at the functional level. The type of
a signal relation is parametrised on a descriptor of the types of the signals it
relates: essentially a tuple of the types carried by the signals. For example, the
type of a signal relation relating three real-valued signals is SR (Real ,Real ,Real).

Signals, in contrast to signal relations, are not first-class entities at the func-
tional level. However, crucially, instantaneous values of signals can be propagated
back to the functional level, allowing the future system structure to depend on
signal values at discrete points in time.

The definitions at the signal level may freely refer to entities defined at the
functional level as the latter are time-invariant, known parameters as far as
solving the equations are concerned. However, the opposite is not allowed: time-
varying entities are confined to the signal level. The only signal-level notion that
exists at the functional level is the time-invariant signal relation.

Hydra is currently implemented as an embedding in Haskell using quasiquot-
ing [10, 11]. This means Haskell provides the functional level almost for free
through shallow embedding. In contrast, the signal level is realised through
deep embedding: signal relations expressed in terms of Hydra-specific syntax



type Coordinate = (Double,Double)
type Velocity = (Double,Double)
type Body = (Coordinate,Velocity)

g :: Double
g = 9.81

freeFall :: Body → SR Body
freeFall ((x0 , y0 ), (vx0 , vy0 )) = [$hydra|

sigrel ((x , y), (vx , vy)) where
init (x , y) = ($x0$, $y0$)
init (vx , vy) = ($vx0$, $vy0$)
(der x , der y) = (vx , vy)
(der vx , der vy) = (0,−$g$)

|]

pendulum :: Double → Double
→ SR Body

pendulum l phi0 = [$hydra|
sigrel ((x , y), (vx , vy)) where

init phi = $ phi0 $
init der phi = 0
init vx = 0
init vy = 0
x = $ l $ ∗ sin phi
y = − $ l $ ∗ cos phi
(vx , vy) = (der x , der y)
der (der phi)

+ ($g / l$) ∗ sin phi = 0
|]

Fig. 2. Models of the two modes of the pendulum.

are, through the quasiquoting machinery, turned into an internal representation
that then is compiled into simulation code. This, along with the reasons for using
quasiquoting, is discussed in more detail in an earlier paper [5]. However, that
paper only treated structurally static systems.

Figure 2 shows how to model the two modes of the pendulum in Hydra. The
type Body denotes the position and velocity of an object, where position and
velocity both are 2-dimensional vectors represented by pairs of doubles. Each
model is represented by a function that maps the parameters of the model to a
relation on signals; i.e., an instance of the defining system of DAEs for specific
values of the parameters. In the unbroken mode, the parameters are the length
of the rod l and the initial angle of deviation phi0 . In the broken mode, the
signal relation is parametrised on the initial state of the body.

[$hydra| and |] are the open and close quasiquotes. Between them, we have
signal-level definitions expressed in our custom syntax. The keyword sigrel starts
the definition of a signal relation. It is followed by a pattern that introduces signal
variables giving local names to the signals that are going to be constrained by
the signal relation. This pattern thus specifies the interface of a signal relation.

Note the two kinds of variables: the functional level ones representing time-
invariant parameters, and the signal-level ones, representing time-varying en-
tities, the signals. Functional-level fragments, such as variable references, are
spliced into the signal level by enclosing them between antiquotes, $. On the
other hand time-varying entities are not allowed to escape to the functional level
(meaning signal-variables are not in scope between antiquotes).

After the keyword where follow the equations that define the relation. These
equations may introduce additional signal variables as needed. Equations marked
by the keyword init are initialisation equations used to specify initial conditions.
The operator der indicates differentiation with respect to time of the signal-
valued expression to which it is applied.



pendulumBE :: Double → Double → Double
→ SR (Body ,E Body)

pendulumBE t l phi0 = [$hydra|
sigrel (((x , y), (vx , vy)), event e) where

$ pendulum l phi0 $ � ((x , y), (vx , vy))
event e = ((x , y), (vx , vy))

when time = $t $
|]

(a) Pendulum extended with a breaking event

breakingPendulum :: SR Body
breakingPendulum =

switch
(pendulumBE 10 1 (pi / 4))
freeFall

(b) Composition using switch

Fig. 3. The breaking pendulum

The non-causal nature of Hydra can be seen particularly clearly in the last
equation of the unbroken mode that simply states a constraint on the angle of
deviation and its second derivative, without making any assumption regarding
which of the two time-varying entities is going to be used to solve for the other
(both g and l are time-invariant functional-level variables).

To model a pendulum that breaks at some point, we need to create a compos-
ite model where the model that describes the dynamic behaviour of the unbroken
pendulum is replaced, at the point of breaking, by the model describing a free
falling body. These two submodels must be suitably joined to ensure the conti-
nuity of both the position and velocity of the body of the pendulum.

To this end, the switch-combinator, which forms signal relations by temporal
composition, is used:

switch :: SR (a,E b) → (b → SR a) → SR a

The composite behaviour is governed by the first signal relation until an event
of type b occurs (E b in the type signature above). At this point, the second
argument to switch is applied to the value carried by the event to compute the
signal relation that is going to govern the composite behaviour from then on.
Event signals are discrete-time signals, signals that are only defined at (countably
many) discrete points in time, as opposed to the continuous-time signals that
(conceptually) are defined everywhere on a continuous interval of time. Each
point of definition of an event signal is known as an event occurrence. Unlike
continuous-time signals, the causality of event signals is always fixed.

Figure 3 shows how switch is used to construct a model of a breaking pendu-
lum. The pendulum model is first extended into a signal relation pendulumBE
that also provides the event signal that defines when the pendulum is to break:
see figure 3(a). In our case, an event is simply generated at an a priori specified
point in time, but the condition could be an arbitrary time-varying entity. The
value of the event signal is the state (position and velocity) of the pendulum at
that point, allowing the succeeding model to be initialised so as to ensure the
continuity of the position and velocity as discussed above.



To bring the equations of pendulum into the definition of pendulumBE ,
pendulum is first applied to the length of the pendulum and the initial angle
of deviation at the functional level (within antiquotes), thus computing a sig-
nal relation. This relation is then applied, at the signal level, using the signal
relation application operator �. This instantiates the equations of pendulum in
the context of pendulumBE . Unfolding signal relation application in Hydra is
straightforward: the actual arguments (signal-valued expressions) to the right of
the signal relation application operator � are simply substituted for the corre-
sponding formal arguments (signal variables) in the body of the signal relation
to the left of �. See [5] for further details.

Finally, a model of the breaking pendulum can be composed by switching
form pendulumBE to freeFall : see figure 3(b). Note that the switching event
carries the state of the pendulum at the breaking point as a value of type Body .
This value is passed to freeFall , resulting in a model of the pendulum body in
free fall initialised so as to ensure the continuity of its position and velocity.

In our particular example, the pendulum is only going to break once. In other
words, there is not much iteration going on, and it would in principle (with a
suitable language design) be straightforward to generate code for both modes
of operation prior to simulation. However, this is not the case in general. For
example, given a parametrised signal relation:

sr1 :: Double → SR ((Double,Double),E Double)

we can recursively define a signal relation sr that describes an overall behaviour
by “stringing together” the behaviours described by sr1 :

sr :: Double → SR (Double,Double)
sr x = switch (sr1 x ) sr

In this case, because the number of instantiations of sr1 in general cannot be
determined statically (and because each instantiation can depend on the param-
eter in arbitrarily complex ways), there is no way to generate all code prior to
simulation. However, the pendulum example is simple and suffice for illustrative
purposes. Moreover, despite its simplicity, it is already an example with which
present non-causal languages struggle, as mentioned above.

In practical terms, the switch-combinator is a somewhat primitive way of
describing variable model structure. Our aim is to enrich Hydra with higher-
level constructs as descried in the original FHM paper [13]. The basic aspects of
the implementation should, however, not change much.

3 Embedding

In this section, we describe the Haskell embedding of Hydra in further detail.
First, we introduce a Haskell data type that represents an embedded signal
relation. This representation is untyped. We then introduce typed combinators
that ensures that only well-typed signal relations can be constructed.



The following data type is the central, untyped representation of signal rela-
tions. There are two ways to form a signal relation: either from a set of defining
equations, or by composing signal relations temporally:

data SigRel =
SigRel Pattern [Equation ]
| SigRelSwitch SigRel (Expr → SigRel)

The constructor SigRel forms a signal relation from equations. Such a relation
is represented by a pattern and the list of defining equations. The pattern serves
the dual purpose of describing the interface of the signal relation in terms of
the types of values carried by the signals it relates and their time domains
(continuous time or discrete time/events), and of introducing names for these
signals for use in the equations. Patterns are just nested tuples of signal variable
names along with indications of which ones are event signals: we omit the details.
The list of equations constitute a system of Differential Algebraic Equations
(DAEs)5 that defines the signal relation by expressing constraints on the (signal)
variables introduced by the pattern and any additional local variables.

The switch-combinator forms a signal relation by temporal composition of
two signal relations. Internally, such a temporal composition is represented by
a signal relation constructed by SigRelSwitch. The first argument is the signal
relation that is initially active. The second argument is the function that, in the
case of an event occurrence from the initially active signal relation, is used to
compute a new signal relation from the value of that occurrence. This new signal
relation then becomes the active one, replacing the initial signal relation.

Note the use of a mixture of shallow and deep techniques of embedding. The
embedded function in a signal relation constructed by SigRelSwitch corresponds
to the shallow part of the embedding. The rest of the data types constitute a deep
embedding, providing an explicit representation of language terms for further
symbolic processing and ultimately compilation, as we will see in more detail
below. The following data type represents equations. There are four different
kinds:

data Equation =
EquationInit Expr Expr | EquationEq Expr Expr |
EquationEvent String Expr Expr | EquationSigRelApp SigRel Expr

Initialisation equations, constructed by EquationInit , provide initial conditions.
They are thus only in force when a signal relation instance first becomes active.

Equations constructed by EquationEq are basic equations imposing the con-
straint that the valuations of the two expressions have to be equal for as long as
the containing signal relation instance is active (e.g., equations like der (der x ) =
0). Equations constructed by EquationEvent define event signals; i.e., they rep-
resent equations like event e = (x , y) when time = 3. These equations are

5 Although not necessarily a fixed such system as these equations may refer to signal
relations that contain switches.



directed. The string is the name of the defined event signal. The first expression
gives the value of the event signal at event occurrences. The second expression
defines these occurrences. An event occurs whenever the signal represented by
this expression crosses 0. For the above example, the expression defining the
event occurrences would thus be time − 3 .

The fourth kind of equation is signal relation application, EquationSigRelApp,
i.e. equations like sr �(x , y +2). This brings all equations of a signal relation into
scope by instantiating them for the expressions to which the relation is applied.

Finally, the representation of expressions is a standard first-order term repre-
sentation making it easy to manipulate expressions symbolically (e.g. computing
symbolic derivatives) and compiling expressions to simulation code:

data Expr = ExprUnit | ExprReal Double | ExprVar String | ExprTime |
ExprTuple Expr Expr [Expr ] | ExprApp Function [Expr ]

data Function = FuncDer | FuncNeg | FuncAdd | FuncnSub | FuncMul | . . .

We use quasiquoting, a recent Haskell extension implemented in Glasgow
Haskell Compiler (GHC), to provide a convenient surface syntax for signal re-
lations. We have implemented a quasiquoter that takes a string in the concrete
syntax of Hydra and generates Haskell code that builds the signal relation in
the mixed-level representation described above. GHC executes the quasiquoter
for each string between the quasiquotes before type checking.

While the internal representation of a signal relation is untyped, Hydra itself
is typed, and we thus have to make sure that only type-correct Hydra programs
are accepted. As Hydra fragments are generated dynamically, during simulation,
we cannot postpone the type checking to after program generation. Nor can we
do it early, at quasiquoting time, at least not completely, as no type information
from the context around quasiquoted program fragments are available (e.g., types
of antiquoted Haskell expressions). In the current version of Hydra, only domain
specific scoping rules (e.g., all constrained signal variables must be declared)
are checked at the stage of quasiquoting. Fortunately, the type system of the
present version of Hydra is fairly simple; in particular, Hydra is simply typed, so
by using the standard technique of phantom types, the part of the type checking
that requires type information outside the quasiquotes is delegated to the host
language type checker [14].

A phantom type is a type whose type constructor has a parameter that is
not used in its definition. We define phantom type wrappers for the untyped
representation as follows:

data SR a = SR SigRel
data PatternT a = PatternT Pattern
data ExprT a = ExprT Expr
data E a

Phantom types can be used to restrict a function to building only type-correct
domain-specific terms. For example, a typed combinator sigrel can be defined in
the following way:



sigrel :: PatternT a → [Equation ] → SR a
sigrel (PatternT p) eqs = SR (SigRel p eqs)

As can be seen, the type of the pattern that defines the interface of the signal
relation is what determines its type.

Similarly, we define a typed combinator switch:

switch :: SR (a,E b) → (b → SR a) → SR a

E is a type constructor with no constituent data constructors. It is used to
type patterns that introduce event signals. The data for the event signals are
constructed using event equations.

A signal relation that is defined using the switch combinator is structurally
dynamic. However, the type of the switch combinator statically guarantees that
its type (i.e., its interface) remains unchanged. Thus, a structurally dynamic
signal relation can be used in a signal relation application just like any other
signal relation.

Well-typed equations are constructed using combinators in a similar way:

equationEq :: ExprT a → ExprT a → Equation
equationSigRelApp :: SR a → ExprT a → Equation

Typed combinators for the remaining parts of the language, including Pattern
and Expr , are defined using the same technique.

Under the hood the representation is still untyped. However, if only the typed
combinators are exposed for building of signal relations, it is guaranteed that
only well-typed terms can be constructed. The quasiquoter of Hydra has only
access to typed combinators for building signal relations.

Symbolic transformations (e.g., symbolic differentiation and flattening) on
embedded language terms work with the untyped representation. These trans-
formations need to be programmed with care as the Haskell type checker cannot
verify that the transformations are type preserving.

Several type system extensions of Haskell (e.g., generalised algebraic data
types, existential types, and type families) make alternative techniques for typing
EDSLs possible. One alternative would be to directly construct signal relations
in typed representation and implement the symbolic transformations on the
typed representation. While this approach requires more work from the EDSL
implementer, it provides additional correctness guarantees (e.g., the Haskell type
checker could be used to verify that transformations are type preserving). We
have not yet evaluated suitability of Haskell type system for such undertaking
and opted for simpler, untyped representation.

4 Simulation

In this section we describe how an iteratively staged Hydra program is run. The
process is illustrated in Figure 4 and is conceptually divided into four stages. In
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Fig. 4. Execution model of Hydra

the first stage, a signal relation is flattened and subsequently transformed into
a mathematical representation suitable for numerical simulation. In the second
stage, this representation is JIT compiled into efficient machine code. In the
third stage, the compiled code is passed to a numerical solver that simulates the
system until the end of simulation or an event occurrence. In the fourth stage,
in the case of an event occurrence, the event is analysed, a corresponding new
signal relation is computed and the process is repeated from the first stage. In
the following, each stage is described in more detail.

As a first step, all signal variables are renamed to give them distinct names.
This helps avoiding name clashes during flattening, signal relation application
unfolding, and thus simplifies this process. Having carried out this preparatory
renaming step, all signal relation applications are unfolded until the signal rela-
tion is completely flattened.

Further symbolic processing is then performed to transform the flattened
signal relation into a form that is suitable for numerical simulation. In particular,
derivatives of compound signal expressions are computed symbolically. In the
case of higher-order derivatives, extra variables and equations are introduced to
ensure that all derivatives in the flattened system are first order.

Finally, the following equations are generated at the end of the stage of
symbolic processing: i(d~x

dt , ~x, ~y, t) = 0, t = t0 (1), f(d~x
dt , ~x, ~y, t) = 0 (2), and

e(d~x
dt , ~x, ~y, t) = 0 (3). Here, ~x is a vector of differential variables, ~y is a vector of

algebraic variables, t is time, and t0 is the starting time for the current set of
equations. Equation 1 determines the initial conditions for Equation 2 (i.e., the
values of d~x

dt ,~x and ~y at time t0). Equation 2 is the main DAE of the system that
needs to be integrated in time starting from the initial conditions. Equation 3
specifies the event conditions (signals crossing 0).

As the functions i, f , and e are invoked from within inner loops of the solver,
they have to be compiled into machine code for efficiency: any interpretive over-



head here would be considered intolerable by practitioners for most applications.
However, as Hydra allows the equations to be changed in arbitrary ways dur-
ing simulation, the equations have to be compiled whenever they change, as
opposed to only prior to simulation. Our Hydra implementation employs JIT
machine code generation using the compiler infrastructure provided by LLVM.
The functions i, f and e are compiled into LLVM instructions that in turn are
compiled by the LLVM JIT compiler into native machine code. Function pointers
to the generated machine code are then passed to the numerical solver.

The numerical suite used in the current implementation of Hydra is called
SUNDIALS6. The components we use are KINSOL, a nonlinear algebraic equa-
tion systems solver, and IDA, a differential algebraic equation systems solver.
The code for the function i is passed to KINSOL that numerically solves the sys-
tem and returns initial values (at time t0) of d~x

dt ,~x and ~y. These vectors together
with the code for the functions f and e are passed to IDA that proceeds to solve
the DAE by numerical integration. This continues until either the simulation
is complete or until one of the events defined by the function e occurs. Event
detection facilities are provided by IDA.

At the moment of an event occurrence (one of the signals monitored by
e crossing 0), the numerical simulator terminates and presents the following
information to an event handler: Name of the event variable for which an event
occurrence has been detected, time te of the event occurrence and instantaneous
values of the signal variables (i.e., values of d~x

dt , ~x and ~y at time te).
The event handler traverses the original unflattened signal relation and finds

the event value expression (a signal-level expression) that is associated with
the named event variable. In the case of the breaking pendulum model, the
expression is ((x , y), (vx , vy)). This expression is evaluated by substituting the
instantaneous values of the corresponding signals for the variables. The event
handler applies the second argument of the switch combinator (i.e., the function
to compute the new signal relation to switch into) to the functional-level event
value. In the case of the breaking pendulum model, the function freeFall is ap-
plied to the instantaneous value of ((x , y), (vx , vy)). The result of this application
is a new signal relation. The part of the original unflattened signal relation is
updated by replacing the old signal relation with the new one. The flat system
of equations for the previous mode and the machine code that was generated
for it by the LLVM JIT compiler are discarded. The simulation process for the
updated model continues from the first stage and onwards.

In previous work [6], we conducted benchmarks to evaluate the performance
of the proposed execution model. The initial results are encouraging. For a small
system with handful of equations (e.g., the breaking pendulum) the total time
spent on run-time symbolic processing and code generation is only a couple of
hundredth of a second. To get an initial assessment of how well our approach
scales, we also conducted a few large scale benchmarks (thousands of equa-
tions). These demonstrated that the overall performance of the execution model
seems to scale well. In particular, time spent on run-time symbolic processing

6 http://www.llnl.gov/casc/sundials/



and JIT compilation increased roughly linearly in the number of equations for
these tests. The results also demonstrate that the time spent on JIT compilation
dominates over the time spent on run-time symbolic processing. Above all, our
benchmarks indicated that the time for symbolical processing and compilation
remained modest in absolute terms, and thus should be relatively insignificant
compared with the time for simulation in typical applications.

In the current implementation of Hydra, a new flat system of equations is
generated at each mode switch without reusing the equations of the previous
mode. It may be useful to identify exactly what has changed at each mode
switch, thus enabling the reuse of unchanged equations and associated code
from the previous mode. In particular, this could reduce the burden placed on
the JIT compiler, which in our benchmarks accounted for most of the switching
overheads. Using such techniques, it may even be feasible to consider our kind
of approach for structurally dynamic (soft) real-time applications.

Our approach offers new functionality in that it allows non-causal modelling
and simulation of structurally dynamic systems that simply cannot be handled
by static approaches. Thus, when evaluating the feasibility of our approach, one
should weigh the overheads against the limitation and inconvenience of not being
able to model and simulate such systems non-causally.

5 Related Work

The deep embedding techniques used in the Hydra implementation for domain-
specific optimisations and efficient code generation draws from the extensive
work on compiling staged domain-specific embedded languages. Examples in-
clude Elliott et al. [3] and Mainland et al. [11]. However, these works are con-
cerned with compiling programs all at once, meaning the host language is used
only for meta-programming, not for running the actual programs.

The use of quasiquoting in the implementation of Hydra was inspired by
Flask, a domain-specific embedded language for programming sensor networks
[11]. However, we had to use a different approach to type checking. A Flask pro-
gram is type checked by a domain-specific type checker after being generated,
just before the subsequent compilation into the code to be deployed on the sensor
network nodes. This happens at host language run-time. Because Hydra is itera-
tively staged, we cannot use this approach: we need to move type checking back
to host language compile-time. The Hydra implementation thus translates em-
bedded programs into typed combinators at the stage of quasiquoting, charging
the host language type checker with checking the embedded terms. This ensures
only well-typed programs are generated at run-time.

Lee et al. are developing a DSL embedded in Haskell for data-parallel ar-
ray computations on a graphics processing unit (GPU) [9]. GPU programs are
first-class entities. The embedded language is being designed for run-time code
generation, compilation and execution, with results being fed back for use in
further host language computations. Thus, this is another example of what we



term iterative staging. At the time of writing, the implementation is interpreted.
However, a JIT compiler for a GPU architecture is currently being developed.

The FHM design was originally inspired by Functional Reactive Program-
ming (FRP) [4], particularly Yampa [12]. A key difference is that FRP provides
functions on signals whereas FHM generalises this to relations on signals. FRP
can thus be seen as a framework for causal simulation, while FHM supports non-
causal simulation. Signal functions are first class entities in most incarnations
of FRP, and new ones can be computed and integrated into a running system
dynamically. This means that these FRP versions, including Yampa, also are
examples of iteratively staged languages. However, as all FRP versions support-
ing highly dynamic system structure so far have been interpreted, the program
generation aspect is much less pronounced than what is the case for FHM.

In the area of non-causal modelling, Broman’s work on the Modelling Kernel
Language (MKL) has a number of similarities to FHM [1]. MKL provides a λ-
abstraction for defining functions and an abstraction similar to sigrel for defining
non-causal models. Both functions and non-causal models are first-class entities
in MKL, enabling higher-order, non-causal modelling like in FHM. However,
support for structural dynamism has not yet been considered.

Non-causal languages that do support more general forms of structural dy-
namism than the current mainstream ones include MOSILAB7, a Modelica ex-
tension, and Sol [16], a Modelica-like language. MOSILAB has a compiled imple-
mentation, but insists all structural configurations are predetermined to enable
compilation once and for all, prior to simulation. Sol is less restrictive, but cur-
rently only has an interpreted implementation. Both MOSILAB and Sol could
thus benefit from the implementation techniques described in this paper.

6 Conclusions

In this paper we presented a novel implementation approach for non-causal mod-
elling and simulation languages supporting structural dynamism. Our approach
was to embed an iteratively staged DSL in Haskell, using a mixed-level embed-
ding to capitalise maximally on the host language while simultaneously enabling
an efficient implementation through JIT compilation. The iterative staging al-
lows us to model systems that current, main-stream, non-causal languages can-
not handle without resorting to causal modelling. As far as we are aware, this is
the first compiled implementation of a non-causal modelling language that sup-
ports highly structurally dynamic systems, demonstrating the practical feasibil-
ity of such a language as compilation of simulation code is considered essential
for most practical applications for reasons of performance.

The use of the EDSL approach was instrumental to achieve the above. By
reusing the features of the host language and its tool chain, we could focus our
efforts on the problems that are specific to non-causal modelling and simulation.
We also note that LLVM has worked really well for our purposes. Compilation

7 http://www.mosilab.de/



of iteratively staged embedded languages does not seem to have attracted much
attention thus far. We hope the implementation techniques we have developed
will be useful to others who are faced with implementing such languages.
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