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Abstract—Just like computation and storage, networks in
data centers require virtualization in order to provide isolation
between multiple co-existing tenants. Existing data center net-
work virtualization approaches can be roughly divided into two
generations: a first generation approach using simple VLANs
and MAC addresses in various ways to achieve isolation and
a second generation approach using IP overlay networks. These
approaches suffer drawbacks. VLAN and MAC based approaches
are difficult to manage and tie VM networking directly into the
physical infrastructure, reducing flexibility in VM placement and
movement. IP overlay networks typically have an relatively low
scalability limit in the number of tenant VMs that can participate
in a virtual network and problems are difficult to debug. In
addition, none of the approaches meshes easily with existing
provider wide area VPN technology, which uses MPLS. In this
paper, we propose a third generation approach: multiple layers
of tags to achieve isolation and designate routes through the
data center network. The tagging protocol can be either carrier
Ethernet or MPLS, both of which support multiple layers of
tags. We illustrate this approach with a scheme called Zeppelin:
packet tagging using MPLS with a centralized SDN control plane
implementing Openflow control of the data center switches.

I. INTRODUCTION

Cloud computing has experienced explosive growth, thanks
to the proliferation of virtualization techniques, commodity
devices and rich Internet connectivity. Cloud customers out-
source their computation and storage to public providers and
pay for the service usage on demand with the “pay-as-you-go”
charging model. This model offers unprecedented advantages
in terms of cost and reliability, compared to the traditional
computing model that uses dedicated, in-house infrastructure.
Today, a number of companies have provided public cloud
computing services, such as Amazon’s Elastic Compute Cloud
(EC2) [1], Google’s Google App Engine [2], Microsofts Azure
Service Platform [3], Rackspaces Mosso [4], and GoGrid [5].

To maximize economic benefits and resource utilization,
the cloud provider usually simultaneously initiates multiple
virtual machines to execute on the same physical server.
Moreover, the cloud providers use “multi-tenancy”, where
virtual machines from multiple customers, or tenants, can
share the same machine. Most cloud providers only use host
based virtualization technologies to realize separation and
performance isolation between VMs on the end host machine
level. In the network, the cloud provider deploys and manages
a set of physical routers and links that carry traffic for all
customers indistinguishably. The Service Level Agreement
(SLA) defined in todays cloud computing are mainly centered

around the computation and storage resources. An applica-
tion’s performance is still unpredictable due to the lack of
guarantee in the network layer. Therefore, many companies are
still reluctant to move their services or enterprise applications
to the cloud, due to reliability, performance, security and
privacy concerns.

Thus, it is critical for cloud operators to deploy efficient
traffic isolation techniques, for isolating performance among
tenants, minimizing disruption, as well as preventing malicious
DoS attacks. In this work, we aim at providing a scalable and
effective solution for traffic isolation in the cloud platform.
We categorize the existing work on cloud network virtualiza-
tion into two generations: a first generation approach using
simple VLANs and MAC addresses to partition the traffic
according to the specific tenant. The VLAN and MAC address
based approach has poor manageability, i.e.,, is difficult to
configure and limited in the number of tenants it supports.
In this approach, the mapping of virtual networks to the
physical network is static, leaving little choice for dynamic
VM placement and movement. To overcome these limitations,
several new techniques using IP overlay networks have been
proposed [6], [7], [8], considered as the second generation. The
approach using IP overlay networks suffers from a different
scalability problem. Typically it can only support hundreds of
VMs per virtual network. In addition, mapping between the
on-the-wire packets and the tenant’s VMs emitting the traffic
is not transparent, complicating debugging problems.

Our scheme, called Zeppelin, builds upon MPLS [9], which
is widely used in provider provisioned Virtual Private Net-
works and commonly supported in various switches. We pro-
pose an OpenFlow based controller application that oversees
a set of MPLS based forwarding elements. We rely on the
OpenFlow capable virtual switch on each physical server to
encapsulate packets with a tenant-specific label, and a label
specifying the last hop link of the destination VM. The Open-
Flow controller maintains the mapping between the destination
VM’s address and the destination MPLS link label. To improve
scalability, we use hierarchical labels, i.e., separating the tenant
labels from the location labels. Zeppelin is an example of a
third generation data center virtualization scheme, based on
multiple layers of packet tagging instead of a single layer as
with simple VLANS.

We summarize the main contribution of this paper below.
We propose a new cloud network virtualization architecture
built on top of the MPLS and OpenFlow technologies. We
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illustrate its usefulness on various use cases, such as VM
creation and VM movement. We examine the correctness of
our design by implementing it on the Mininet emulator, and
perform an analysis to verify scalability.

This paper is organized as follows. We discuss the existing
work in Section II. The design of Zeppelin is presented in
Section III and the implementation is described in Section IV.
We perform analysis on the scalability in Section V and
conclude in Section VI.

II. RELATED WORK

The first generation of data center network virtualization
uses simple VLANs or MAC addresses in various ways. In a
data center, VLANS are used to partition the traffic according
to the specific tenant that the VM belongs to. Such groups
are identified by their unique VLAN ID. When the VLAN
ID is restricted to 802.1q [10], the maximum size of the
VLAN ID is 12 bits, limiting the number of tenants the
virtualized data center network can support. In addition, if
a server supports VMs from more than one tenant, the link
between the server NIC and the first hop switch must be
trunked. Managing VLAN trunks across multiple server to
switch links is complicated and error-prone. Other simple
MAC approaches, such as MAC address filtering or simple
MAC in MAC encapsulation, suffer from similar scalability
and managability constraints, especially when the traditional
Ethernet distributed control plane is used.

To overcome these issues, IP encapsulation approaches were
developed. The basis of these approaches is a mesh of IP
tunnels connecting the virtual switches on servers supporting
the same tenant. The tenant Layer 2 traffic is isolated inside the
IP tunnels. VXLAN (Virtual eXtensible LAN) technology [7],
is an example of such an approach. The tunneling is realized
by encapsulating Ethernet frames with four additional protocol
headers: the outer Ethernet, outer IP, outer UDP and VXLAN
headers. The VXLAN tunnel is set up between two end points
(VTEP) whose IP addresses are used as the outer IP addresses.
The VXLAN header is used to encode a 24 bit VXLAN
Network Identifier (VNI) or segment ID, which can support up
to 16 million separate virtual networks. The VTEPs, which are
implemented in the virtual switch of hypervisors or the access
switches, encapsulate packets with the VM’s associated VNI
The realization of traffic isolation is implemented via an IP
multicast scheme. Each VNI is mapped into a multicast group.
The Internet Group Management Protocol (IGMP) messages
are sent from the VTEP to the upstream switches to join
and leave the group. The messages are only sent to members
within the same multicast group, eliminating unnecessary
unicast flooding. Another example of IP overlay virtualization
is NVP [8] which uses Generic Route Encapsulation (GRE)
tunnels [6] (among others). IP overlay approaches typically use
centralized control planes where the IP addresses of the tenant
overlays are tracked. This approach is often called software
defined networking (SDN) [11].

The IP overlay approach achieves a high degree of scal-
ability in the number of tenant virtual networks that can be

supported at the expense of the number of VMs per virtual
network. While the topology of the tunnels can be optimized
for a particular application, without loss of generality, it is
suggested that a full mesh is used, i.e., setting up a tunnel
between any pair of hypervisors in the tenant’s virtual network.
As the number of VMs increases, the number of virtual
switches that must be updated when a tenant VM joins or
leaves the network becomes unwieldy. Equally, the lack of
tools for debugging problems in overlay networks makes
network management more difficult than with solutions that
use the underlying hardware support for traffic isolation.

A third generation of data center virtualization technology
utilizes modern tagging based approaches, such as SPBM
(802.1aq [12]) or MPLS [9]. This architecture uses multiple
layers of packet tags to designate tenant virtual networks and
routing through the data center physical network fabric. While
VLAN-based virtualization approaches also use tags, only one
tag is available. With multiple layers of tags, scalability in
the number of networks can be achieved. Because only the
networking elements involved in routing packets between two
VMs need to be touched to set up routing, scalability in the
number of VMs can be achieved. A mixture of centralized and
distributed control planes is used, with smaller data centers
favoring a centralized control plane and larger data centers
favoring a distributed control plane. Recently, there have been
efforts on building virtual overlay networks using SDN [13].
In Zeppelin, we use MPLS for packet tagging and a centralized
control plane with OpenFlow [14] as the control protocol for
setting up flow state on the switches. For an example of a
distributed data center fabric using SPBM, see Allan, et. al.
[15].

Flowvisor [16] represents another approach to cloud net-
work virtualization based on OpenFlow. With Flowvisor, the
data center OpenFlow controller uses all fields in the header
to partition up the network, not just VLAN tags or MPLS
labels. The header fields of the tenants are rewritten to map
their flows into subsets of the header to isolate the tenant’s
traffic. In principle, this can allow two tenants to share the
same VLAN tag if their address spaces overlap but they do
not use all the addresses, for example, reducing the possibility
that the VLAN tag space will run out. While Flowvisor
represents an innovate approach to using OpenFlow for data
center virtualization, there are some issues. Providing tenants
with visibility into what fields are being remapped is required,
and debugging problems becomes more complicated because
the header fields on the wire don’t represent a simple map of
the tenant’s network address space. In contrast, debugging the
multi-tagging virtualized networks is much simpler, because
there is a straightforward mapping between the tenant and the
tags.

III. DESIGN

The physical infrastructure of data center networks is typ-
ically designed around a rack of 20-40 servers connected
into a top of rack switch (TORS). The TORS aggregates
traffic from the servers in the rack and feeds it into the data
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center backbone network, where additional layers of switches
(up to 2) further aggregate and distribute traffic. Various
designs have been proposed for the backbone network: fat-
tree [17], ring [18], etc. Zeppelin makes no assumptions about
the backbone network design. The only requirements Zepplin
makes on the network are:

o the the first layer of aggregation (TORS-equivalent) is
connected by some kind of overlay network in a full
mesh, which may or may not be MPLS, see Figure 1,

« the source-side TORS can route an MPLS-labelled packet
into the overlay tunnel for the destination-side TORS,

« the destination-side TORS can route an MPLS labelled
packet to the virtual switch (VS) and server designated
by the label,

Additionally, the source TORS may have multiple overlay tun-
nels available to a particular destination TORS, which would
allow the TORS to do multi-path routing. In the following
discussion, we assume that the TORS are OpenFlow-capable
MPLS switches and that the overlay mesh between the TORS
is also MPLS.

The Zeppelin data center network virtualization scheme
is based on an OpenFlow [19] control plane and an MPLS
data plane [9]. Although the system was implemented using
OpenFlow 1.1, later versions of OpenFlow that support MPLS
could also be used. The basic approach involves having
an OpenFlow-capable virtual switch (VS) on the server tag
packets from a source VM with a label encoding a tenant
id and a label specifying the destination link between the
destination TORS and the destination VS on the server where
the destination VM resides. While MPLS labels as used in
wide area networks typically have no meaning outside the
router and link on which they appear, here we are repurposing
them as a way to route to a specific destination link across
the data center, rather than using the IP address or MAC
address to route to a specific destination node. The OpenFlow
controller maintains the mapping between the destination

Fig. 2. Basic unicast routing scheme

IP/MAC address and the destination MPLS link label.

In the following sections, we describe Zepplin’s design for
virtualizing the network for unicast routing and how Zepplin
handles VM movement.

A. Unicast Routing Scheme

Figure 2 illustrates the basic unicast scheme with a simple
example. In the figure, there are two tenants, the Green Tenant
and the Blue Tenant. Both tenants have VMs running on the
same servers, one server is in Rack 1 and the other in Rack
m. The IP address of the two VMs running on the same server
in Rack m is exactly the same, 10.22.30.2, though the MAC
addresses differ. The link between the source TORS and the
source server on Rack 1 is assigned label L1, while the link
between the destination TORS and the destination server on
Rack m is assigned the label Ln. Two LSPs are available
between the source TORS and destination TORS: RIRmLSP-
1 and RIRmLSP-2. This example was not chosen because it is
representative of an actual deployment, but rather to illustrate
that Zeppelin handles overlapping IP address spaces correctly,
ensuring tenant isolation.

Routing proceeds through the following steps (list numbers
correspond to numbers in the figure):

1) The Green Tenant and Blue Tenant VMs emit a packet
bound for their destination VMs in Rack m. The source
VS pushes tenant labels on the packets, indicated by GT
Label for the Green Tenant and BT Label for the Blue
Tenant, and a label for the destination link, indicated by
Ln Label.

2) The source TORS uses ECMP [20] to choose a different
path for each tenant and pushes inter-TORS routing
labels onto the packets. Packets destined to the Green
Tenant destination are routed over the LSP R1IRmL-1
while those destined to the Blue Tenant are routed over
the LSP R1RmL-2.

3) The packets are routed through the overlay to the des-
tination TORS. The destination TORS pops the inter-
TORS labels and inspects the link label. The link label
indicates that the destination is on link Ln, so the des-
tination TORS routes the packet out the corresponding
physical port.
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4) The tenant label and destination IP address are used to
determine which VM gets the packet. The destination
VS pops the link label and tenant label and delivers the
packet to the appropriate VM.

To set up the routing, the OpenFlow tables in the source and
destination VS and the source and destination TORS must be
programmed. The following sections describes how Zeppelin
interposes on common IP network operations to achieve this,
and the changes required to the cloud operating system to
support Zeppelin.

B. Changes in Cloud Operating System

The cloud operating system typically has a Cloud Execution
Manager (CEM) that manages the operations necessary to
start, terminate, and move a VM, and a Cloud Network Man-
ager (CNM) that handles connecting a VM to a virtual network
and to the Internet. For example, the CEM corresponds to
Nova and the CNM corresponds to Neutron in the OpenStack
operating system [21]. We assume that the cloud operating
system provides service for multiple tenants, and that each
tenant is identified by a tenant id.

The CNM maintains mappings between tenant ids, TORS
labels, and the MAC and IP addresses of VMs and servers.
Figure 3 illustrates the collection of tables implemented in the
CNM that maintain these mappings.

These tables and their use are:

o Server MAC to VS Link table (SMVL table) - Look up
the link label for the link between the TORS and a VS
running on a server in the rack aggregated by the TORS
using the server MAC address as a key,

o Tenant Id to Tenant Label (TITL table)- Look up the
tenant label using the tenant ID as a key,

e TORS Label to VS Link Label table (TLVLL table) -
Look up the link label for the link between the TORS

and a VS running on a server in the rack aggregated by
the TORS using the TORS backbone mesh label as the
key,

o« CNM mapping table - Maintains the mapping between
the tenant id, tenant VM MAC, tenant VM IP address,
and the server MAC address. There is one CNM mapping
table per tenant.

These tables are used to set up and manage the configuration

of OpenFlow routing in the data center.

C. TORS Flow Table Rules for Packets Incoming to the Rack

OpenFlow 1.1 supports multiple tables and we make use
of them in Zeppelin. Zeppelin uses two tables for incoming
packets, one to handle the inter-TORS routing labels and one
to handle the intra-rack link labels. For packets incoming to
the rack, Table 1 is programmed with one rule per overlay
connection in the inter-TORS backbone network. This rule
matches the inter-TORS back bone overlay routing label. The
corresponding action pops the label and sends the packet to
Table 2. Because the number of racks in a data center may
number in the thousands, to increase scalability these labels
can be installed at the time an inter-TORS overlay tunnel is
needed. In this way, the limited flow table space is not used
up by rule/action pairs unless there is a VM actively using the
tunnel.

In the second flow table, a rule/action pair forwards the
packet to the appropriate link on the rack. Since the number of
servers in the rack is limited (usually 20-40), these rule/action
pairs are installed when the rack is initialized. The rule/action
for the flow table entry is:

o If the top MPLS label matches the label for a particular
link between the TORS and the virtual switch on the rack,
forward the packet out the port connected to the link.

These ensure that incoming packets are forwarded onto the
correct link.

D. TORS Flow Table Rules for Packets Outgoing from the
Rack

For routing outgoing packets, Table 1 in the source TORS is
programmed with a rule/action pair that processes the packet
through an ECMP Group. Figure 4 shows that part of the
TORS Table 1 flow table associated with outgoing packet
routing. The flow table itself contains entries with a rule
matching the link labels for links between the destination
TORS and destination server/VS. If a packet’s header matches
one of these, then the packet is sent to an ECMP group
containing actions that prepare the packet for routing into one
of the LSPs leading to the destination TORS. The group hashes
the packet header then selects an action bucket based on the
hash. The actions in the action buck push a label for one of the
inter-TORS back bone overlay LSPs, then forward the packet
out one of the physical ports toward the destination TORS.
Because there could be up to a hundred thousand destination
VS/server links in the data center, these flow rules are only
installed when a VM requests a connection with another VM
or a destination outside the data center on the Internet.
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E. Interventions on IP Network Operations

The virtual switches on the servers need to be programmed
with OpenFlow rule/action pairs to intervene on IP address
lookup and IP address configuration. There are two rule/action
pairs per virtual switch:

« If the protocol type matches ARP, forward the packet to
the controller. This ensures that a VM starting a session
obtains the IP address information for the destination VM
from the controller and allows the controller to install
OpenFlow rules for routing between the two VMs.

« If the protocol type matches DHCP, forward the packet
to the controller. This ensures that the controller knows
the IP address of all VMs in the data center so it can
perform the ARP intervention described above. This rule
is only installed if the CEM allows tenants to use DHCP;
otherwise, the CEM injects the IP address at the time the
VM is started, and records the address without requiring
an OpenFlow rule.

F. VM Activation

Figure 5 illustrates the message sequence involved in acti-
vating a VM on a server. At (1) , the CEM sends a message
to the CNM including the Green Tenant ID (GT ID), Green
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Tenant MAC (GT MAC), and MAC of the server (Srvr MAC)
on which the VM will be instantiated. The CNM uses the
Srvr MAC as a key to look up the link label of the VS to
TORS link in the SMVL table and the tenant ID as a key to
look up the tenant label in the TITL table at (2) . At (3), the
CNM inserts an entry into the CNM mapping table for the
VM, recording the tenant id, VM MAC address, and server
MAC address, and the VM IP address if the CEM uses address
injection to configure the IP address. If the CEM uses address
injection, these are then used together with the Green Tenant
IP addresses to program the OpenFlow table in the VS with
the following rule/action pairs for handling inbound traffic (5):

o If the first MPLS label matches the VS-TORS link label
for this VS, the second MPLS label matches the Green
Tenant label, and the destination IP address matches the
Green Tenant VM IP address, pop the MPLS labels and
forward the packet to the Green Tenant VM’s MAC
address.

This rule ensures that traffic to the VS incoming on the VS-
TORS link is forwarded to the Green Tenant VM if the packet
has the VM’s IP address.

If the CEM does not use address injection, the inbound
traffic rule is installed when a DHCP request is made for an
address, described in the next section.

G. VM Address Configuration

If the tenant VM uses DHCP, Figure 6 contains the message
sequence between the VM, VS, and CNM. The Green Tenant
VM sends a DHCP Request message which is intercepted by
the server VS (1). The VS forwards the message to the CNM
(2). The CNM then acts as either the DHCP server or as a
DHCEP relay, finding an address for the VM (3). When the
address is found, the CNM records the address in the CNM
mapping table (4). The CNM then looks up the Green Tenant
label and the link label for the TORS-VS link at (5). At (6),
the CNM programs the OpenFlow flow table in the VS for
the inbound routing rule/action as described in the previous
subsection. The CNM then replies to the VM with a DHCP
Reply, containing the address (7).
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H. Destination IP and MAC Discovery

When a VM needs to contact another VM at an IP ad-
dress, it will send an ARP message to discover the MAC
address associated with the IP address. Figure 7 shows the
message sequence triggered by the Green Tenant VM’s attempt
to discover a destination MAC address. The Green Tenant
broadcasts an ARP Request message with the destination IP
address (1). The VS intercepts the ARP Request and forwards
it to the CNM (2). The CNM looks up the destination IP
address in the Green Tenant CNM mapping table, and extracts
the Srvr MAC on which the destination VM is running (3).
The CNM uses the destination server MAC address to look
up the destination VS link label in the SMVL table (4).

The CNM then programs the source TORS with flow routes
for incoming and outgoing traffic and the destination VS with
flow routes for outbound traffic from the destination VM to
the source VM (5), for those rules that were not installed at the
time the TORS and VS were started. The TORS flow routes are
described Sections III-C and III-D. The flow routes installed
in the source VS are shown at (6). The rule/action pair is:

o If the MAC matches the Green Tenant source VM MAC

and the IP address matches the Green Tenant destination
VM IP address, push a Green Tenant label and Ln -
the label for the link between the destination TORS and
destination VS/server - onto the packet and forward the
packet to the source TORS.

The forward action to the source TORS is shown in in
(7). Finally, the CNM replies to the requesting Green Tenant
VM with an ARP reply resolving the IP address to the MAC
address of the destination VM (8).

1. VM Movement

One of the most difficult aspects of data center networking is
dealing with VM movement. When such a movement occurs,
the routes to the old server location are no longer valid. If
the VM is moved into a new IP subnet, the IP address of
the VM can become invalid and existing clients can lose
connectivity. Figure 8 illustrates the process of VM movement.
The solid arrows indicate control plane messages while the
dashed arrows indicate data plane traffic. The numbers are
keyed to the list below.
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VM movement

1) The CEM decides on a server and begins moving the
Green Tenant VM. As long as the source VM is still
capable of taking traffic, no routing changes are made.

2) When the source VM can no longer take traffic, the CEM
notifies the CNM.

3) The CNM modifies the source VS flow table to cause
any further traffic to the source Green Tenant VM to be
forwarded to the CNM for buffering.

4) When the Green Tenant VM on the destination server is
ready, the CEM notifies the CNM, or if the hypervisor
supports gratuitous ARP, the VM sends an ARP which
is forwarded to the CNM through the ARP rule in the
destination server VS.

5) The CNM installs a rule into the destination server VS
flow table to forward packets with the Green Tenant
VM IP address and Green Tenant MPLS label to the
Green Tenant VM. If there are no other VMs on the
source TORS rack utilizing the link entries for outgoing
and incoming traffic that the Green Tenant VM utilized,
these are deleted to conserve TORS flow table space,
(not shown).

6) The CNM sends any buffered packets to the Green
Tenant VM on the destination server.

7) The CNM updates the CNM Mapping table entry for
the VM’s server MAC address with the new server’s
address. After this change, any new sessions to the Green
Tenant VM’s server will be answered by the new VM.

There are still flow table rules on VSs throughout the data
center routing traffic on existing sessions to the old server. The
CNM uses lazy update to change these rules to the new server.
When a packet for the old VM arrives at the old server’s VS,
the VS encapsulates the packet and forwards it to the CNM
since the rule for the old VM has been deleted. The CNM
uses the tenant label on the packet to determine the tenant id
and the IP address of the correspondent’s VM to locate the
VS with a rule pointing to the old server, and changes the
flow rule on the correspondent’s VS and TORS (if necessary)
to forward traffic to the new server. The packet is then sent
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to the Green Tenant VM on the new server. By using lazy
update, the CNM is saved from having to update all the rules
on every VS at the time of VM movement. All flow rules
ultimately either time out or are modified to send traffic to the
new server. The CNM can allow the flow rule on the old VS
to time out after a grace period, say half a day. VM movement
events are not frequent enough that this should prove burden
on the VS flow table storage.

IV. IMPLEMENTATION ON MININET EMULATOR

We used NOX [22] as the OpenFlow controller and imple-
mented the CNM and CEM modules as applications running
over the NOX middleware. As illustrated in Figure 9, the CEM
and CNM modules talk to each other through well-defined
messages. The message names are descriptive of their function,
for example, VM _Installed is sent to the CNM when a VM is
instantiated. The CNM module, as explained in Section III, is
responsible for sending OpenFlow messages to the switches
when it receives a notification from the CEM module.

We used Mininet [23] to emulate the data center net-
work. The topology of the network was described through a
JSON [24] file. This file was parsed by MiniNet to set up an
emulated data center network. We modified MiniNet to store
node metadata for every switch/host that was bought up on
parsing the topology JSON. We added APIs to MiniNet to
help set up a DHCP server. We also emulated VM movement
through a JSON entry in our topology file. We added timer
entries in the JSON file that helped determine the start of and
finish of VM movement.

TORS VM Session VM Migration
Bootup | Creation Setup Old | New | Modified
Src VS 0 1or3 1 -2 +3 1
Dst VS 0 0 1 0 0 0
Src TORS k 0 0 or 1+2r 0 0 Oorl
Dst TORS 0 0 0 or 1+2r 0 0 0or I
TABLE I

SUMMARY OF RULES INSTALLATION

The CNM module was implemented to have an east-west
interface from the CEM module and a north-south OpenFlow
interface to program the OpenFlow switches. We described
the CEM-CNM interface in the section above. The Open-
Flow interface consisted in functions to handle the OpenFlow
PACKET-IN message for ARP, DHCP, and broadcast packets,
together with a flow removal and join handler. Functions to
program the TORS and VS with the rules described above
were also implemented.

V. ANALYTICAL AND EMULATED RESULTS

In this section, we present our analysis results to show the
scalability of Zeppelin. We are particularly interested in flow
table state scalability, since that is a key issue for OpenFlow.
We first summarize the rule updates in different scenarios and
then discuss the dynamics using different experiments.

Table I shows the number of rules that need to be installed
in four different scenarios. When starting a TORS, one needs
to install one rule for each server connecting to this TORS.
Therefore, assuming that each TORS can support & number
of servers, then k rules are installed. Each rule matches a VS-
TORS label with the action of forwarding the packets to the
corresponding server. No rules are needed in other switches.
When a server is started, one and possibly two rules are
installed on the VS to forward the ARP and DHCP packets
to the controller (only the ARP rule is needed if the CEM
configures IP addresses with address injection). These two
rules are shared across all the VMs on the same VS. Therefore,
they only need to be programmed once for all the VMs on a
server. In addition, a rule is needed matching the VS-TORS
label, the tenant label, and the VM’s IP address, with the action
of either popping the label or forwarding the packet. Although
this rule contains three logically different actions, it can be
implemented as one rule physically. Thus, we have 1 rule on
the source VS. This rule is established either when the VM is
started, if address injection is used, or when the IP address is
obtained through DHCP.

We propose to set up rules dynamically upon VM communi-
cation, which will significantly reduce the memory consump-
tion on both the TORS and the VS. Upon a new session estab-
lished between two VMs, a set of rules will be programmed on
the fly. First, one needs to install a rule on the VS to match the
destination MAC with the action of pushing the tenant label
and the destination VS-TORS link label, as well as forwarding
to the source TORS. Second, the source TORS will need a
rule to match the destination VS-TORS label and forward to
the correct path. But if there is already a session between



any VM connected to this source TORS and the destination
VS, this rule can be eliminated. In the forward direction, a
separate rule is used to map the path from the source TORS to
the corresponding forwarding next hop. Assuming multi-path
routing is supported, then the TORS needs to have r number
of rules for mapping » ECMP groups. Similarly, on the reverse
direction, 7 rules are installed to match the inter-TORS label
and pop the label. Note that these rules may not be needed if
there are already sessions established between the two TORS.

Finally, when a VM is migrated to a different server, the
controller will modify the inbound forwarding rule to forward
the packet to the controller, instead of going to the VM. The
corresponding new rule will be installed on the new VS. The
rules on the TORS are updated on demand. Triggering by any
packets sent to the old VM location, the controller will update
the TORS with the new TORS location.

Next, we use experiments to show the rules needed dy-
namically. We assume a tree topology with 12 racks, which
is also used in [25]. Each TORS is connected to 20 servers.
Next, we simulate the process of VM creation and inter-VM
communication. In the experiment, we continuously start VM
instances. Each VM selects n number of other VMs to set up
sessions, where n is a random number uniformly drawn from
a pre-defined average value. In Figure 10 and Figure 11, we
show two cases, i.e., average 5 sessions per VM and average
10 sessions. For each case, we compute the average number
of rules per VS and per TORS, as a function of the number
of VMs per VS/TORS. From Figure 10 we observe that the
rules are linearly increasing as the number of VMs on the
VS. However, for rules in TORS, the increasing trend slows
down when the number of VMs are large, since many rules
only need to be installed once between a pair of VSes and
TORSes.

Flow scalability is an important criterion when considering
the applicability of OpenFlow. Curtis, et. al. [26] discuss the
flow scalability of OpenFlow. They show that a typical TORS
of the current generation can support 1500 OpenFlow rules
in TCAM, whereas an average TORS has roughly 78,000
flows. In our scheme, flows heading to the same server share a
forwarding rule on the TORS, so strategic placement of VMs
can substantially reduce the amount of flow table space. In
addition, as shown in Figure 11, the number of rules at 5
flows per VM is around 1500, while the number at 10 flows
per VM is around 2500 for 1000 VMs per rack. The former
number would be well within the current generation TORS
capacity to handle, while the latter should be within the next
generation. Finally, the analysis done by Curtis at. al. assumes
the flow rules are handled in the TCAM. Many switch chips
today contain support for MPLS, so a carefully optimized
implementation of OpenFlow on such a chip could potentially
avoid having to use the TCAM and might support even more
rules.

VI. CONCLUSION

In this paper, we have described the design and implemen-
tation of Zeppelin, a third generation data center virtualization
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scheme based on MPLS labels. Zeppelin uses two layers of
MPLS labels: one identifying the virtual network upon which
the tenant is located and one identifying the routing path
through the network. The routing path layer itself consists of
two labels: one identifying the link between the destination
last hop virtual switch and last hop top of rack switch, and
one identifying the route through the back bone network.
In contrast to the use of MPLS in wide area networks -
where MPLS labels are meaningless outside of the link and
router on which they are allocated - in Zeppelin, the MPLS
labels have semantic relevance across the data center. A
centralized controller handles assignment of MPLS labels and
programming of virtual switches and top of rack switches
using the OpenFlow protocol.

An implementation of the scheme was built using NOX
and tested on top of the MiniNet emulator. An analysis of
the emulation shows that the flow rule scalability is within
the limits of existing switch chips if TCAM is used to hold
the rules, and could even be more scalable if the OpenFlow
implementation utilizes the built-in MPLS support of the
switch chips.

For future work, we have planned an extension of Zeppelin
to multicast, and an implementation on actual OpenFlow
hardware. We also plan to study actual data center traffic to
see if Zeppelin can efficiently support it.
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