
The Mars Project — PDF in XML
Matthew R. B. Hardy

Adobe Systems Incorporated
345 Park Ave,

San Jose, CA 94086, USA
mahardy@adobe.com

ABSTRACT
The Portable Document Format (PDF) is a page-oriented,
graphically rich document format based on PostScript semantics.
It is the file format underlying the Adobe® Acrobat® viewers and
is used throughout the publishing industry for final form
documents and document interchange. Beyond document layout,
PDF provides enhanced capabilities, which include logical
structure, forms, 3D, movies and a number of other rich features.

Developers and system integrators face challenges manipulating
PDF and its data. They are looking for solutions that allow them
to more easily create and operate on documents, as well as to
integrate with modern XML-based document processing
workflows.

The Mars document format is based on the fundamental structures
of PDF, but uses an XML syntax to represent the document. Mars
uses XML to represent the underlying data structures of PDF, as
well as incorporating additional industry standards such as SVG,
PNG, JPG, JPG2000 and OpenType. Mars combines all of these
components into a ZIP-based document container.

The use of open standards in Mars means that Mars documents
can be used with a large range of off-the-shelf tools and that a
larger population of developers will be very familiar with its
underlying technology. Using these standards, publishers gain
access to all of the richness of PDF, but can now tightly integrate
Mars into their document workflows.

Categories and Subject Descriptors
 I.7.2 [Document and Text Processing]: Document Preparation —
Markup languages; I.7.4 [Document and Text Processing]:
Electronic Publishing.

General Terms
Documentation

Keywords
PDF, Mars, XML, SVG, Zip, Package.

1. INTRODUCTION
The Portable Document Format (PDF) [1] was introduced by
Adobe Systems Incorporated in 1993. The primary goal of PDF
was to perfectly reproduce the appearance of a document,
capturing the author’s intent completely. The page content of
PDF is based on a static subset of PostScript® [2].

PDF has become the de facto document format in the publishing
industry and many other areas. There are a number of reasons
PDF has been so widely adopted. It is platform independent, and
can be used for safe and secure document interchange. Content
can be protected within a PDF document. It is a highly compact
format, providing efficient access to any component of the
document.

Adobe provides PDF as a royalty-free specification, allowing
third parties to build applications. Specific subset of PDF, such as
PDF/A [3] and PDF/X [4] are already ISO standards and the
entire PDF specification has just been sent to ISO for
standardization.

PDF contains many features that are beyond simple print
reproduction. The list below highlights some of the enhanced
features that PDF supports:

• Document Navigation (e.g. bookmarks/links)

• Fillable Forms and XFA

• Logical Structure

• Accessibility/Content Access

• Video and Sound

• Annotations/Collaboration

• Layers and 3D objects

• Signatures/Security

• Document Packages

PDF has clearly evolved to meet needs beyond its initial
conception. However, there are a number of characteristics that
are desirable beyond those currently available.

PDF would benefit from more third party tools and developers. It
would also be beneficial for PDF to natively support more
integration with open standards.

As we move to a world where publishing workflows are entirely
XML-based [5], it would be highly desirable for PDF to fit into
those workflows natively. The goal of the Mars projects was to
do just that. Mars provides an alternative representation for PDF
using XML and open standards.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’07, August 28–31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008...$5.00.

161

D
oc

um
en

t B
ac

kb
on

e

SVG Pages

Fonts

Metadata

Images

Logical Structure

Audio/Video

Attachments

Annotations

ICC Color

XML Data
XML

XML

OTF

XML

Stds

XML

XML

XML

Std

Mars Document

Figure 1 – Mars Concepts.

Figure 1 lists the primary components of a Mars document and the
formats used to represent them. Mars uses custom XML Tagsets
to represent PDF specific features, but uses industry standard
formats whenever possible.

Page content is defined using SVG [6], a World Wide Web
Consortium (W3C) XML-based vector graphics language.
Images can be represented using the following images standards
PNG, JPEG, JPEG2000 or JBIG2. Fonts are represented using
the industry standard OpenType format. Color is managed using
International Color Consortium (ICC) color profiles.

2. PDF DOCUMENT STRUCTURE
Before looking at how Mars is used to provide an alternative
representation for PDF, it is important to understand how a PDF is
structured.

PDF can conceptually be viewed at a number of different levels.
There is the underlying syntax used to represent PDF on disk;
there is the structured view, which looks at the objects and data
structures of PDF; finally there is a high level view looking at
how these objects are combined to represent the different aspects
of a PDF document.

2.1. Syntax and Object Structure
At the lowest level, a PDF document consists of a set of objects,
which can reference other objects. An example of the syntax used
to represent these objects is:

1 0 obj << /Key (Value) >>

Each object has an object number which can later be used to
reference the object. Objects also have what is known as a
generation number, which is used to simplify updating the
document, but is not of relevance here. In this example, the object
number is 1 and the generation value is 0.

The most common object type in PDF is the dictionary object,
which is shown in this example. A dictionary is an unordered set
of key-value pairs. The ‘<<’ and ‘>>’ are used to represent a
dictionary and the entries inside are pairs of objects consisting of
a name object as the key (a name is represented using a preceding
‘/’ character followed by a string) and any type of object as the
value. In the example above, the key is ‘/Key’ and the value
object is a string ‘Value’.

PDF allows objects to reference other objects, to allow for more
complex data structures. For example, if another object wanted to
use the object defined previously, it would simply include “1 0
R”. An example of this might be:

2 0 obj << /InlineDict 1 0 R >>

The above dictionary has a key of ‘/InlineDict’ whose value
is the object defined previously.

The fundamental types that exist in the PDF object structure are
dictionaries, arrays, strings, integer and real numbers, Boolean
values and streams. Streams are similar to dictionaries, but are
used to hold binary data or content streams (which represent page
content). They consist of a dictionary component and raw data.

At a slightly higher level, a PDF document can be viewed as a
hierarchy of dictionaries. These dictionaries are shared in
multiple places within the document using the referencing
mechanism described above.

PDF can therefore be thought of as a graph of objects which is
comprised of multiply linked trees with shared nodes. While the
page content is stored in the streams, the meta-information that
represents a PDF and allows for the richness of PDF is stored in
these trees.

2.2. PDF Document Structure
But how is the object/dictionary structure described above used to
define a document? The diagram in Figure 2 shows the primary
component dictionaries that are used to form the basis for a simple
PDF document.

Figure 2 – PDF Document Outline.

162

At the top level of a PDF document, there is the Document
Catalog Dictionary.

2.2.1. Document Catalog Dictionary
The document catalog provides the primary entry point into the
document and is the container of all the sub-trees that make up a
PDF document.

It also contains meta-information about document, which includes
the following: the version of the PDF (latest version being 1.7
[7]); the document layout (e.g. single column or multi-column);
document metadata; language identifiers; and more…

2.2.2. Page Tree
The page tree contains dictionaries representing each page. Each
Page dictionary provides information about the page. This
includes include the size of the page, its rotation, any other
metadata associated with the page, etc..

Most importantly, it contains an entry containing the (content)
stream representing the page contents and a resource dictionary,
which in turn contains any resources for the page (e.g. images,
fonts, etc.).

2.2.3. Content Streams
As described previously, streams can be used to contain any type
of raw data, but a content stream specifically refers to a stream
holding page content.

This page content uses a PostScript-like notation to draw
graphical content. The PDF content operators are not identical to
the PostScript operators, but utilize the same reverse polish
notation and provide similar levels of functionality. However,
unlike PostScript, there is no support for conditional statements or
loops. The PDF content operators can display text, draw lines and
curves, paint images, etc..

The resource dictionary holds all the resources that the page uses.
Such resources include fonts, images, graphics states, shadings
and patterns, etc..

2.2.4. Logical Structure Tree
The structure tree allows a PDF document to contain logical
structure information about its contents [8]. The structure tree can
be considered similar in nature to an XML document processed
into a DOM [9], but with slightly restricted contents (i.e. no
support for XML Processing Instructions or comments).

The structure tree consists primarily of structure element nodes.
These are the equivalent of elements in an XML document. Just
like in XML, element nodes can have attributes. The children of a
given element node can contain more elements, but can also refer
to page content.

A content stream can contain marking operators, which can be
used to give that content an ID (which is a numerical value unique
to that content stream). An element node in the structure tree
indicates which content stream it refers to (e.g. a specific page)
and the ID associated with the content. This links the structure to
the page contents1.

1 For a more in-depth description of logical structure in PDF see
(10).

2.2.5. Bookmarks/Actions
The outline hierarchy dictionary in the catalog is used to create
bookmarks for the document. Again, it contains all the
bookmarks for the document. The hierarchy is used to determine
containment, so when creating bookmarks for a long document,
each chapter might have a top level entry and then subsequent
child entries.

The bookmarks specify an action that will be performed when
they are selected. An action can perform a number of different
types of task. The most common action linked to a bookmark is a
‘GoTo’ action, which is used to move to a specific location within
the document.

However, more complex actions do exist and are used in a number
of places other than for bookmarks. Actions can be used to play
sounds or movies, launch external programs, execute JavaScript,
reset forms, etc..

2.2.6. Named Destinations
Related to bookmarks and actions are named destinations. Rather
than have a destination in a ‘GoTo’ action point to an area on a
page, a named destination can be defined.

A name tree is used to store this data and provide fast access to
the destinations. A unique name is linked to a dictionary
containing the destination information.

It is useful to have these definitions when a destination is going to
be used in multiple places. Although the bookmarks are the
primary user of the name tree, there are other uses (e.g. links on a
page can make use of named destinations).

2.3. Overview
The above descriptions provide a view of PDF that is very much a
set of structured trees, which are used to describe a PDF
document. In fact, the dictionaries and trees map very well to the
XML model, because they are intrinsically hierarchical in nature.

The main difficulty with integrating PDF into modern XML
workflows is with the underlying PDF syntax, not the conceptual
model of a PDF. If PDF documents could be described in XML,
rather than the current PDF syntax, this would facilitate the
integration of PDF into such workflows.

Of course, doing this is not trivial. While large sections of PDF
do map well to XML, other sections don’t necessarily map as well
in their current form (e.g. logical structure). PDF also has a
number of optimization that work well for the PDF syntax (or
were necessary when the format was updated to add new
features), but would be better if done differently in XML.

3. MARS
The Mars format is a packaged XML representation of PDF. The
Mars document structure generally mirrors the PDF document
structure where possible, but uses XML to represent the dictionary
structures and page streams of PDF. Where this was not possible,
these changes are explicitly stated in the following sections.

In cases where PDF uses binary data as a component of the
document (e.g. an image or font), Mars uses industry recognized
standard file formats to represent them.

Because of the need for multiple XML tagsets to represent the
different components of the document, coupled with the

163

requirement to store binary data within the document, Mars uses
multiple sub-files, stored in a packaged zip [10] format to contain
all these disparate components.

From a high level perspective, a Mars document is comprised of
multiple file-based components (XML and binary), which
interlink to produce a connected set of sub-files, which in turn
represent the overall document. URIs are used to connect the sub-
files within a Mars document. The linking connectivity used
within Mars is generally unidirectional.

Although the XML specification provides a mechanism for
including binary data inline in an XML document, the mechanism
is inelegant and increases the complexity and size of the
document. It also makes it harder to extract parts of the
document. For these reasons, any non-private binary data within
Mars is stored in separate sub-files.

3.1. Packaging
In section 3.2 the reasons for splitting the dictionary structures
into multiple XML files are discussed. However, it is first
necessary to discuss how a Mars document can contain multiple
sub-files. As described previously, Mars uses a zip-based
package to contain these sub-files. The specific implementation
uses the Universal Container Format [11].

Mars uses a standard zip format to package the files. However,
the packaging used by Mars imposes a number of requirements on
the contents of the zip. The primary requirements are as follows:
the first file in the package must be the ‘mimetype’ file, which
must be at the root of the package (i.e. not in a subfolder), that
contains the mime type for the package contents; a
‘container.xml’ in the ‘META-INF’ folder describing any
associations in the package (optional if none exist); and the file
‘backbone.xml’ which is the entry point into the Mars document
and is not optional.

By using a zip package, Mars gains a number of advantages. The
first of these is that many of the Mars components, especially the
XML components, compress well with zip. The second
advantage is that zip provides random access to the components
within the Mars package. The nature of the zip package also
facilitates deferred loading of document components (e.g. access
over the Internet where the document can be partially displayed
before the entire file has been downloaded).

Other than the requirements above, Mars does not explicitly
define a strict package layout. It is up to the creating application
to decide on file locations. However, the Mars specification
provides a recommended default layout, which creating
applications can choose to follow.

3.2. Mars Components
Mars splits the dictionary structure of PDF into multiple XML
sub-files. These files represent different aspects of the overall
document. Figure 3 shows an overview of the sub-files that can
be found inside a Mars package, showing the common
components found within a Mars document package. The
following sections describe these components.

Figure 3 – Mars Document Outline.

3.2.1. Backbone
At the top level of a Mars package must be the backbone.xml file.
This file provides a very similar function conceptually to the
catalog dictionary in a traditional PDF. It is the root of the
document. It specifies the primary entry points into the rest of the
document components and provides any requisite information
about the document.
The backbone provides information as to whether a given tree
from the PDF representation is present and provides a URI to its
source (note that the URI is relative to the package). These entry
points include links to each of the pages within the document, the
bookmarks, metadata, article threads, etc..
A difference between the catalog and backbone is in the page
references. In the catalog, a reference is made to the top of the
pages tree and the tree must be iterated to find a specific page. In
the backbone, this information is provided explicitly and the
bounding box of each page is given at this point. This allows a
consuming application to list the number of pages and know their
size before reading any sub-files.
The backbone contains other information as well. It contains
language information, version information, whether or not the
document is logically structured and some other meta-information
about the document.

3.2.2. Pages Level Files
Each page is represented at the top level by an info.xml file.
These page info files can be considered to be equivalent to the
page dictionaries in PDF.
While the backbone holds the bounding box size for each page,
the page info holds the crop box, bleed box, art box, etc.. It also
has other information, such as the page rotation, any preferred
zoom, and others…
However, it also provides a similar purpose to the backbone, in
that it is the entry point into the content that combines to form a
page. It holds URIs for the SVG representing the page; to the
content annotations; to the logical structure for the page; and for
the destinations on the page. Unlike the page dictionary in PDF, it
does not directly hold a link to the resources for the page, because
these are directly referenced by the SVG page contents.

164

3.2.2.1. Page SVG
The page info file refers directly to an SVG file describing the
page. This SVG file is very similar in concept to the page content
stream in PDF, but uses the W3C scalable vector graphics
language to represent the page contents, rather than PDF
operators.
Mars uses a subset of SVG Tiny [6] as its core. Because SVG has
some aspects which are less relevant to a page description format,
these features are not supported in Mars. The table below shows
the primary SVG features excluded from Mars and the reason they
were excluded (see the Mars reference for more information [11]).

Table 1 – Major SVG Tiny Features Excluded from Mars

Name Description/Reason

CSS All CSS-related markup is not supported. SVG provides
other equivalent mechanisms, so CSS was excluded for
simplicity.

Interactivity and
Scripting

The SVG used in Mars is intended to be static. Mars
provides the PDF model for scripting.

Animation and
Multimedia

PDF already provides mechanisms for rich media
and page content is designed to be static.

textPath and tref These were not supported because PDF uses an
alternative approach.

Color
Interpolation

Conflict in color models between SVG and PDF.

Similarly, there are a number of PDF features that are current
beyond the capabilities of SVG. For these Mars defines
extensions to SVG to support these enhanced capabilities. These
extensions consist of XML elements and attributes interleaved
with the SVG in the Mars namespace.
There are too many extensions to describe here, but features that
are added include transparency extensions, soft-mask
enhancements, high-end print support, image extensions, smooth
shading, blending and font descriptors.
The other primary addition is marked content groups. PDF allows
content to be ‘marked’ for use by a consuming application or
plug-in. The marked content mechanism allows content to be
marked for later identification and provides a mechanism for
associating metadata with that content. There are many uses for
this and it is common for consuming applications to add private
marked content to the page. A formal use of marked content is for
logical structure, which is described later.
Note, one major difference between the PostScript/PDF graphics
model and the SVG graphics model is that they use different
coordinate spaces. PDF has its origin in the lower left corner and
the y coordinate grows upwards. SVG has its origin in the upper
left corner and grows the y coordinate downwards. When
converting between Mars and PDF, this has to be taken into
account.

3.2.2.2. Page Resources
Although SVG provides a rich vector graphics format, there is
still a need for extra data. This includes fonts, image, shadings
and patterns. PDF uses the page dictionary to hold both the
content stream and its resources in separate dictionaries and then
provides mechanisms to let the page content access these
resources by name. Mars instead simply allows the SVG page
content to directly refer to the resources it uses.

As described previously, Mars does not enforce a specific package
layout beyond some basic requirements. Therefore, an application
creating a Mars document can choose where to place the resources
inside the package. However, the recommendation is to put
shared resources in a shared folder, but to put resources that are
only used once in the same location as the SVG referencing them.

Fonts are stored in OpenType and images can use a number of
standard formats including JPEG, JPEG2000, PNG and JBIG2.

3.2.2.3. Annotations
Each page can have annotations associated with it. There are two
classes of annotation, content and markup. Markup annotations
might be things such as text, circles, and underlines and are
generally used in markup/review of a document. The content
annotations are used to actually add or enrich the content of a
document. These include such items as movies, links, sounds, 3D
and watermarks. However, form fields are perhaps the most
important use for content annotations.
Because content annotations are considered part of the page, they
are directly referenced from the page info file. All the content
annotations for a given page are within a single XML file.
Markup annotations are different, in that they can be considered
as existing outside of the page. While they often appear on the
page, they are not usually an integral component of the page. It is
quite common to turn them off or hide them. Because of their
nature, markup annotations are not explicitly linked from the
page. Instead, an implicit association is created between a given
page and it markup annotations by the presence of ‘pg.svg.ann’
file in the same location as the ‘pg.svg’ file describing the page.
This implicit style of association makes it very easy to add and
remove markup annotations without changing any other
component of the document, including the page. This is of
particular benefit when annotations are used for reviewing
purposes, where they do not in fact change the underlying
document.
Annotation can have very complex appearances. PDF allows
content streams to be used to describe the appearance of
annotations. Mars provides a similar mechanism, but just as for
page content, annotation appearances are defined using SVG and
use the same SVG features supported for pages.

3.2.2.4. Destinations
Unlike PDF where destinations are stored in a single name tree at
the top level of the document, Mars tries to make the document
more modular. If a new page is added, it is important to have to
make as few updates to the rest of the document as possible. With
this in mind, the decision was made to migrate the destinations
from their centralized location to the page they belonged to.
When a new page is added, if there are any destinations associated
with that page, the page info file must reference them. However,
no update is required to the rest of the document (see the section
3.2.4 for a description of how fast access to this information is
provided within Mars).

3.2.2.5. Logical Structure
For similar reasons to those described above, logical structure is
also distributed to the pages the referenced content belongs to. In
PDF, the structure tree describes the logical structure and
hierarchy of the document and uses references into the page
content to link the structure to the content. Reading all the

165

structure information at once can be problematic. Mars therefore
places the structure in the ‘struct.xml’ file at the page level.
However, unlike the destinations tree, whose hierarchy is solely
used to provide fast search capabilities into the tree, the logical
structure tree hierarchy must be preserved. Because there is no
central repository for the structure information and nodes in the
tree can have content spanning multiple pages, each structure file
must contain information regarding all nodes above content
belonging to the relevant page.
Because nodes can contain content on more than one page, they
can occur in multiple files. Therefore, unlike a single tree where
ordering can be determined simply by position of sub-nodes in the
tree, a more complex mechanism is needed to determine the
ordering. Mars uses a path mechanism, similar in concept to
XPath, to provide the hierarchy and positioning information of
nodes.
A path contains a sequence of stages, separated by a ‘/’ character.
Each stage is comprised of an optional prefix (which is a string), a
numerical value and an optional postfix (which is also a string). If
a prefix is present, it is separated from the numerical value by a
colon. If a postfix is present, it is separated using a hyphen. An
example is “abc:1.3-def”. Ordering is determined by sorting the
nodes by their path. Sorting is done by prefix first (if present),
numerical value second (which must be present) and postfix last
(again if present). This allows easy addition of nodes and
facilitates merging of documents, where two nodes sets can be
given prefixes, but their internal sort order remains the same. It is
not valid to have an absolute zero value as the numerical
component (e.g. 0, 0.0 or 0.0.0 are not valid, because this
complicates the addition of later nodes should the document be
changed).
In a very similar manner to PDF, content in the SVG is given an
ID, which is then referenced from within the structure file. The
structure uses the marked content group mechanism discussed
previously to set this ID and reference it. This adds an SVG
group element with an XML ID into the page contents
surrounding the content that is to be marked. Because this is the
only required change, the SVG needs to embed very little
information about the logical structure.

3.2.2.6. Page Summary
The Mars format attempts to keep all the components relevant to a
specific page in one location. These components need very little
information outside of the page files. This design principle makes
each page relatively independent and therefore makes page
addition/removal and general document construction simpler.

It also means that when reading in a Mars file for viewing, the
viewer need only open the files relevant to the specific page and
therefore minimize the amount of data it must read for each page
or task.

3.2.3. Bookmarks
Because the bookmark tree is intended to provide a navigation
mechanism for the entire document, it is important to be able to
provide that information to a consuming application in an efficient
manner. Therefore, Mars keeps the entire bookmarks tree in one
XML file.

3.2.4. Caches
For both page named destinations and logical structure, Mars
moves the data to exist alongside the page it belongs to, rather
than holding it in a single file.
One reason for moving the data to the page level was to simplify
document construction. However, for both destination and
structure, another reason to separate these out was due to the large
amount of data related to them. The destinations tree can be very
large, with large documents having many thousands of named
destinations (e.g. the current PDF reference manual has over
70,000 destinations). By moving the entries to a per page basis,
only destinations meaningful to the components of the document
that are in use need to be processed.
However, it is sometimes necessary to access every single entry,
but only for a small amount of the information actually present in
each entry. This is entirely possible in Mars, but it is highly
inefficient. Therefore, the caches were introduced to Mars. These
provide access to some of the basic information in the document
without having to search the entire Mars file. However, they can
be entirely regenerated or replaced if they are not present or
become out of date from the data inside the Mars file.

3.2.4.1. Structure Cache
The main purpose of the structure cache is to be able to reproduce
the outline of the entire structure tree without reading the per-page
structure files.
It does not provide any information beyond the hierarchy of the
nodes. It contains no names for nodes or such. It does provide
URIs back to the per-page structure files so that after it has been
read in, the nodes easily be linked to their full information.
Again, to give an idea of the size of the information present, a
large document such as the PDF reference manual has over
200,000 element nodes and over 125,000 content references.
While the cache can contain element nodes, because of the nature
of the structure path mechanism described previously, element
nodes are optional and only content nodes need to be present. The
reasoning behind this is that it is possible to regenerate all the
cache information from just the leaf nodes, so by keeping the size
of the cache as low as possible, we increase performance and
scalability.

3.2.4.2. Named Destinations
The named destinations cache simply stores the name of each
destination and the page it is on. This optimizes searching for
named destinations within a Mars document.

3.3. Mars Conclusion
The packaged nature of Mars has been described in the previous
sections and each of the components which make up a Mars file
have been discussed.

However, very little of the actual tagset used by Mars has been
described and how it compares to PDF. The following section
describes how we actually construct a Mars file.

4. HOW TO BUILD A MARS DOCUMENT
This section takes a simple PDF document and shows how it
looks as a Mars document. It then describes how we would add
bookmarks and logical structure to that simple document
including adding the extra information to the SVG.

166

4.1. Simple PDF in Mars Format
The simple PDF consists of a single page, with the text “Hello
World” and “Goodbye Universe!” displayed. Figure 4 shows the
PDF syntax to represent such a page.
%PDF-1.2
1 0 obj
<<
/Type /Catalog
/Pages 2 0 R
>>
endobj

2 0 obj
<<
/Type /Pages
/Kids [3 0 R]
/Count 1
>>
endobj

3 0 obj
<<
/Type /Page
/Parent 2 0 R
/Resources 4 0 R
/Contents 5 0 R
/MediaBox [0 0 612 792]
>>
endobj

4 0 obj
<<
/ProcSet [/PDF /Text]
/Font <</F1 6 0 R >>
>>
endobj

5 0 obj
<<
/Length 51
>>
stream
 BT
 /F1 24 Tf
 1 0 0 1 260 600 Tm
 (Hello World) Tj
 1 0 0 1 260 550 Tm
 (Goodbye Universe!) Tj
 ET
endstream
endobj

6 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Helvetica
>>
endobj

trailer
<<
/Root 1 0 R
>>

Figure 4 – PDF “Hello World” Example.

As described previously, at the root is the catalog dictionary (1 0
obj in this example). It refers to the pages tree and since this
document has no other enhanced features, this is all it contains.
The pages tree (2 0 obj) keeps a count of the number of pages
and has an array of pages (in this case, an array with one entry).
The page (3 0 obj) references its resources (4 0 obj) and
contents (5 0 obj) and specifies its MediaBox. The page
itself consists of a stream displaying the text “Hello World” at
position (260,600) and “Goodbye Universe!” at (260,550) using
the font /F1. This font is defined in the resources and actually
described in the font dictionary (6 0 obj).

Table 2 – Files in Simple Mars

Path File Name

/ mimtetype

/ backbone.xml

/page/0/ info.xml

/page/0/ pg.svg

If we create an equivalent Mars file for this, we would expect to
see the set of files listed in Table 2 within the Mars package. The
contents of the Mars files (excluding ‘mimetype’ which is pre-
defined) would be as seen in Figure 5.

• /backbone.xml
<PDF PDFVersion=”1.4” Version=”0.8.0”>
 <Pages>
 <Page src=”/page/0/info.xml”
 x1=”0” y1=”0” x2=”612” y2=”792” />
 </Pages>
</PDF>

• /page/0/info.xml
<Page>
 <Contents src=”pg.svg”/>
</Page>

• /page/0/pg.svg
<svg fill=”none” stroke=”none”>
 <defs>
 <font-face font-family=”F1”>
 <font-face-src>
 <font-face-name name=”Helvetica”/>
 </font-face-src>
 </font-face>
 </defs>
 <text font-size=”24” font-family=”F1”
 fill=”rgb(0,0,0) device-color(DeviceGray,0)”
 fill-rule=”evenodd”>
 <tspan x=”260” y=”192”>Hello World</tspan>
 <tspan x=”260” y=”242”>Goodbye Universe!</tspan>
 </text>
</svg>

Figure 5 – Mars “Hello World” Example.

The backbone contains a reference to the first page and defines its
bounding box. Other than that it notes that we had a PDF version
1.4 compatible document and a Mars version 0.8.0 document.

The page info file is similarly simple. Note that because the
pg.svg file is at the same level in the package as the page info file,
we simply use a relative reference to it, not having to explicitly
state the absolute path. Should this page ever be moved to
another document or moved within the package, only the
backbone would need to be informed of the change.

Finally, we have the SVG file representing the page contents.
Note that because the font wasn’t actually embed in the PDF, but
instead used a named system font (one of the default fonts), Mars
also doesn’t need to embed it. Therefore, the font definition is
entirely inline with the SVG. The SVG consists of a <defs/>
section, which names the font (if we had more than one line of
text, we would want to re-use this resource, hence its definition
here, rather than inline with the text).

Finally we actually display the text. As described in section
3.2.2.1, the coordinate spaces of SVG and PDF/PostScript differ.
The example shows how the coordinates for “Hello World” in the
PDF are translated to SVG coordinates. Given that we have
defined the page to be 612 units wide by 792 units high, the PDF
coordinates for “Hello Word” of (260,600) translate to (260,192).

4.2. Enhancing the Document
The above example is very simple and doesn’t show how modular
Mars is. However, there isn’t the scope in this paper to describe
every feature of Mars and how to create a Mars document using it.
Therefore, the example below is limited to adding bookmarks and
logical structure to our existing Mars document.

4.2.1. Bookmarks
To add bookmarks using named destinations to the sample Mars
file, we would need to add or update the files seen in Table 3.

167

Table 3 – Adding Bookmarks

Path File Name

/ backbone.xml

/ bookmarks.xml

/page/0/ dests.xml

The contents of these files would be as seen in Figure 6 (note that
new or changed content is highlighted).

• /backbone.xml
<PDF PDFVersion=”1.4” Version=”0.8.0”>
 <Bookmarks src=”bookmarks.xml”/>
 <Pages>
 <Page src=”/page/0/info.xml” ID=”0”
 x1=”0” y1=”0” x2=”612” y2=”792” />
 </Pages>
</PDF>

• /bookmarks.xml
<Bookmarks Open=”true”>
 <Bookmark>
 <Title>Hello World</Title>
 <Action>
 <GoTo><Dest Name=”Hello”/></GoTo>
 </Action>
 </Bookmark>
</BookMarks>

• /page/0/dests.xml
<Destinations>
 <Dest Name=”Hello”>
 <XYZ Left=”246” Top=”65” Zoom=”4”
 Page_ref=”/backbone.xml#0”/>
 </Dest>
</Destinations>

Figure 6 – Mars Bookmarks.

The bookmarks.xml file specifies the name for the bookmark and
the action to be performed when the bookmark is selected. In this
case, it is a GoTo action. The place to go to is referenced using a
name ‘Hello’. Although only one bookmark is defined in this file,
it is simple to add more. Under the Bookmarks element, it is
legal to have any number of Bookmark elements. Each
Bookmark element can contain Bookmark elements as well,
allowing for the nesting/hierarchy of bookmarks.
The dests.xml file at the level of the page contains the actual
destination information. Note that the bookmarks.xml file does
not explicitly have a reference to the dests.xml file. The place to
look up destinations names is implicit.
Finally, we declare the bookmarks by adding a reference to them
in the backbone.xml file. There is one other change necessary in
the backbone however. For the destination to be able to reference
the page, it must refer to the node in the backbone that is relevant
to it. For this it uses a fragment identifier referencing an ID.
Therefore, an ID was needed on the page node being referenced.
Apart from changes to the backbone to include the bookmarks and
add an ID (which in most cases would be present by default
because page IDs may be used elsewhere), the rest of the package
is left untouched, with only new files having been added.

4.2.2. Logical Structure
The addition of logical structure requires a few more changes to
existing files than the addition of bookmarks. This is because the
logical structure mechanism needs to refer to content on the page.

The simple logical structure tree we want to add is shown below
in Figure 7. The top level of the tree is a ‘Sect’ node (section),
with two children, both ‘P’ nodes (paragraphs), which point into
the content.

P

Hello
World

Goodbye
Universe!

P

Sect

Figure 7 – Logical Structure.

The files that would need to be added or changed to add this
logical structure are listed in Table 4.

Table 4 – Adding Logical Structure

Path File Name

/ backbone.xml

/page/0/ info.xml

/page/0/ pg.svg

/page/0/ struct.xml

The contents of these files are described below in Figure 8 (again
highlighted to show the changes).

• /backbone.xml
<PDF PDFVersion=”1.4” Version=”0.8.0”>
<Marked TaggedPDF=”true”/>
<Bookmarks src=”bookmarks.xml”/>
 <Pages>
 <Page src=”/page/0/info.xml” ID=”0”
 x1=”0” y1=”0” x2=”612” y2=”792” />
 </Pages>
</PDF>

• /page/0/pg.svg
<svg fill=”none” stroke=”none”>
 <defs>
 <font-face font-family=”F1”>
 <font-face-src>
 <font-face-name name=”Helvetica”/>
 </font-face-src>
 </font-face>
 </defs>
 <g pdf:Mark=”P” ID=”Para1”>
 <text font-size=”24” font-family=”F1”
 fill=”rgb(0,0,0) device-color(DeviceGray,0)”
 fill-rule=”evenodd”>
 <tspan x=”260” y=”192”>Hello World</tspan>
 </text>
 </g>
 <g pdf:Mark=”P” ID=”Para2”>
 <text font-size=”24” font-family=”F1”
 fill=”rgb(0,0,0) device-color(DeviceGray,0)”
 fill-rule=”evenodd”>
 <tspan x=”260” y=”242”>Goodbye Universe!</tspan>
 </text>
 </g>
</svg>

• /page/0/info.xml
<Page>
 <Structure src=”struct.xml”/>
 <Contents src=”pg.svg”/>
</Page>

168

• /page/0/struct.xml
<Structure>
 <Elem Lang=”EN-GB” Path=”/1” Tag=”Sect” />
 <Elem Page_src=”info.xml” Path=”/1/1” Tag=”P” />
 <MCR Path=”/1/1/1” ref=”pg.svg#Para1” />
 <Elem Page_src=”info.xml” Path=”/1/2” Tag=”P” />
 <MCR Path=”/1/2/1” ref=”pg.svg#Para2” />
</Structure>

Figure 8 – Mars Logical Structure.

The structure tree defined in the struct.xml file creates the three
elements that constitute the structure tree and two marked content
references, which link these nodes to the page content.

A structure element in the structure tree that directly references
page content must point to the containing page (i.e.
“Page_src=‘info.xml’”). Containment is not defined by element
hierarchy, but entirely through the use of the ‘Path’ attribute.
Note that MCR nodes also have a path associated with them. This
is because Elem nodes can contain multiple MCR nodes, so the
content ordering has to be explicit also.

By using the path mechanism, rather than storing the structure
tree, we instead store a description of the structure tree. The
description is more amenable to incremental processing and
modification.

To support these changes, the pg.svg file has been updated to
provide information about the content using the marked content
group mechanism. An ID has been added to the content and a
mark associated with it. This is then referenced from the
struct.xml file.

The info.xml file for the page has been updated to indicate that the
page contains structure and the location of the struct.xml file. The
backbone has similarly been updated to indicate that a viewer
should look for structure.

4.2.3. Caches
Both of the updates we made can benefit from caches. Table 5
below lists the names and locations of the cache files that would
be generated for the destinations and logical structure added
previously.

Table 5 – Cache Files

Path File Name

/cache/ names.xml

/cache/ struct.xml

The contents of these files are show in Figure 9.

The caches specify a query, which allows them to select every file
containing structure should the data become stale.

In the case of the named destination cache, each destination name
is listed. However, rather than repeat its location for each entry,
this is moved to a containing Dests element, which groups all
the destinations contained in that file.

A similar approach is taken with logical structure. The
information that is shared between each component is moved
outside of the individual entries and shared between all of them.

• /cache/names.xml
<Cache>
 <Query>
 <Files><Pattern Value=”/page/*/dests.xml”/></Files>
 </Query>
 <Data>
 <Dests Page=”/page/0/dests.xml”>
 <Dest Name=”Hello”/>
 </Dests>
 </Data>
</Cache>

• /cache/struct.xml
<Cache>
 <Query>
 <Files><Pattern Value=”/page/*/struct.xml”/></Files>
 </Query>
 <Data>
 <Group ref=”/page/0/struct.xml”>
 <MCR Path=”/1/1/1” />
 <MCR Path=”/1/2/1” />
 </Group>
 </Data>
</Cache>

Figure 9 – Mars Caches.

For both destinations and logical structure, only partial
information is placed within the cache. This information provides
the data necessary to a consuming application. In the case of the
destinations, it is just the name of the destination and the location
of the rest of the data. This provides faster searching for named
destinations within a Mars document. For logical structure, just
the MCR leaf nodes are cached. This is because the paths from
these are enough to reconstruct the structure tree outline and again
to then reference the full per-page information when that becomes
needed.

4.3. Creating Mars Files Conclusion
This section has described the process of creating a basic Mars
file and then adding a number of enhanced features to it. The
process is relatively modular, but a small number of updates are
required to existing components to add these features.

By being modular, we minimize these updates and simplify the
process of adding new content to an existing Mars document.
There are other components (markup annotations) where no
updates are required, because the files are entirely self-contained.

5. CONCLUSION
The previous sections have discussed Mars, an XML-based file
format for representing PDF documents. A comparison was made
between PDF and Mars and then the process of creating a Mars
file to represent a given PDF was described. The goal was to
highlight similarities and differences between PDF and Mars.

5.1. Goals for Mars
One goal for Mars was equivalence with the PDF file format.
Every aspect of PDF must be representable using Mars. However,
while the feature set is equivalent, the approach to representing
each component can differ.

Mars makes document assembly modular and minimizes the
amount of interconnectivity that is required. This simplifies
document composition and the addition/removal of content. Mars
also makes it relatively simple to add extra meta-information (e.g.
logical structure) to an existing document. For example, adding
page navigation through the use of bookmarks simply requires the
addition of a bookmarks file, a destinations file at the page level

169

(if it uses named destinations) and a single element added to the
backbone. However, like PDF, the goal of mars is to be a final-
form page description language. While it is not intended to
directly benefit such uses as content reflow and iterative updates
to the same document, the use of industry standard file formats to
represent the underlying page structure does indirectly simply this
process. The modularity in Mars mainly benefits the addition of
semantic components (e.g. the addition of logical structure,
bookmarks, article threads, etc.).

This modular approach has a number of other advantages over a
less modular one. One of these is scalability. As a Mars file
grows in number of pages, the amount of information that needs
processing to load a single page does not increase (e.g. by keeping
logical structure information in a separate file from the page
information, this only needs to be processed when the logical
structure needs to be consumed by a viewing application).
Similarly, should we desire to add markup annotations to a page,
we need only add a single annotations file to the page.

There are a number of other goals for Mars, including a desire for
more tools to manipulate such documents. By using XML to
represent Mars, we can leverage the huge number of XML
parsers, validators, transformation and querying languages (e.g.
XSLT/XQuery) that already exist.

Mars also makes it simpler to integrate the capabilities of PDF
into existing XML workflows. Again, using standard tools, the
data in Mars can easily be created or accessed a re-used inside
these workflows. Mars also lowers the learning curve for
developers who are not familiar with the underlying PDF syntax,
but who are very familiar with XML and web standards.

The use of SVG to represent page content means that existing
SVG tools can be used to create or process the pages in a Mars
document. SVG, being an application of XML, already defines a
DOM representation, which makes it easy to manipulate with
existing tools. A number of other technologies have previously
been created to convert PDF documents into SVG. However, the
intent of many of these tools is to capture only the graphical
content of a PDF and translate it into SVG. They do not capture
the semantics or other information contained within the document
(e.g. bookmarks, logical structure, layers, etc.). There are
exceptions to this, such as PDF2SVG [12], which capture more of
the semantic information. However, PDF2SVG still online
captures a small subset of the semantic information present in
PDF and is generally limited to reproducing appearance.

Tying all the benefits described above together, we have the zip
packaging. This decreases the file size, while providing random
access to the Mars components. The modular nature of Mars
combined with the random access make Mars a very Internet-
friendly format, where content can be loaded on the fly without
downloading the entire package.

5.2. Future
At present an Adobe Acrobat plug-in can be obtained [11] which
allows Acrobat to generate Mars files and to view them. This

plug-in is still in development, but the goal is to have Acrobat
interact with the Mars file format as seamlessly as it does with
PDF.

Automatic generation of Mars from XML workflows allows
easier access to the power of PDF, without losing any of PDF’s
capabilities. All combined, Mars is a file format with the same
capabilities as PDF, but with a greater ability to integrate with the
today’s modern world.

6. ACKNOWLEDGEMENTS
I would like to thank Phil Levy, Principal Scientist and manager
of the Mars Project at Adobe for supporting me in my day to day
work and with writing this paper.

7. REFERENCES
[1] Adobe Systems Incorporated, PDF Reference, 5th ed.,

Berkley: Peachpit Press, 2005. 0-321-30474-8.
[2] Adobe Systems Incorporated, PostScript Language

Reference Manual, 3rd ed., Menlo Park: Addison-Wesley,
1999. 0-201-37922-9.

[3] International Organization for Standardization, Document
management — Electronic document file format for long-
term preservation — Part 1: Use of PDF 1.4 (PDF/A-1),
2005. ISO 19005-1:2005.

[4] International Organization for Standardization, Graphic
technology — Prepress digital data exchange — Use of PDF
— Part 1: Complete exchange using CMYK data (PDF/X-1
and PDF/X-1a), 2001. ISO 15930-1:2001.

[5] World Wide Web Consortium, Extensible Markup Language
(XML) 1.0, 4th ed., 2006. [Online]
http://www.w3.org/TR/2006/REC-xml-20060816/

[6] World Wide Web Consortium, Mobile SVG Profiles: SVG
Tiny and SVG Basic, 2003. [Online]
http://www.w3.org/TR/SVGMobile/

[7] Adobe Systems Incorporated, PDF Reference, 6th ed., San
Jose: Adobe Systems Incorporated, 2006.

[8] M. R. B. Hardy, D. F. Brailsford, “Mapping and Displaying
Structural Transformations between XML and PDF”, in
ACM Symposium on Document Engineering, 2002, pp. 95-
102.

[9] World Wide Web Consortium, Document Object Model
(DOM) Level 3 Core Specification, 2004. [Online]
http://www.w3.org/TR/DOM-Level-3-Core

[10] PKWare Incorporated, Zip Format Specification Application
Note, 1989. [Online]
http://www.pkware.com/index.php?option=com_content&tas
k=view&id=64&Itemid=107

[11] Adobe Systems Incorporated, Mars Project, 2006. [Online]
http://labs.adobe.com/technologies/mars

[12] PDFTron Systems Incorporated, PDF2SVG, 2007. [Online]
http://www.pdftron.com/pdf2svg/

170

