
Platform Overlays: Enabling In-Network Stream
Processing in Large-scale Distributed Applications

Ada Gavrilovska
ada@cc.gatech.edu

Sanjay Kumar
ksanjay@cc.gatech.edu

Srikanth Sundaragopalan
srikanth@cc.gatech.edu

Karsten Schwan
schwan@cc.gatech.edu

Center for Experimental Research in Computer Systems (CERCS)
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, 30332

ABSTRACT
The purpose of this research is to explore the capabilities of future,
multi-core heterogeneous systems, with specialized communica-
tion support, to be used as efficient and flexible execution platforms
in distributed streaming applications. On such platforms, we cre-
ate overlays of hardware- and software-supported execution con-
texts – platform overlays. Stream manipulations, represented via
stream handlers, are deployed on top of such overlays, based on the
ability of individual contexts to perform handler operations. As a
result, stream processing is dynamically mapped to those platform
resources best suited for it, and it can even be fully contained to the
networking subsystems, thereby enabling in-network stream pro-
cessing. Experimental results demonstrate the benefits of our ap-
proach towards meeting application-specific quality requirements.

Categories and Subject Descriptors
D.4.1 [Input/Output and Data Communications]: Data Commu-
nication Devices—Processors; C.2 [Computer-Communication
Networks]: Distributed Systems

General Terms
Design, Performance

Keywords
Network processors, Streaming applications

1. INTRODUCTION
Data-intensive streaming applications challenge distributed ex-

ecution platforms with their large data volumes, dynamic qual-
ity of service constraints, and/or highly variable runtime behav-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05, June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

iors. Typically deployed on top of application-level overlays, ap-
plication components executing in these distributed environments
depend upon underlying communication services for meeting end
user performance and quality needs. QoS requirements range from
simple rate or timeliness guarantees to those that dynamically link
application-specific notions of quality like ‘data resolution’ to lower-
level metrics like delay and throughput.

In order to address dynamics in application requirements and
policies, in inputs and outputs, and in platform resources, a com-
mon approach is to execute application-specific computations ‘along’
the data paths between distributed sources and sinks [15, 16, 10].
Nodes on the stream data path perform application-specific stream
customizations and/or route data through the overlay. Since such
overlay-centric actions compete with other computational or com-
munication tasks executed on overlay nodes, it is important (1) to
isolate the computations needed for data movement in the overlay
from those of application components that execute ‘core’ function-
ality, and (2) to increase the overlap of computation and communi-
cation for data received/transmitted from these application compo-
nents.

Emerging networking technologies have significantly increased
the bandwidths available in distributed infrastructures. In addition,
techniques like OS-bypass or RDMA-based approaches have pro-
vided improved computation/communication overlap [8, 13]. How-
ever, the ability to directly place data where it is needed by the ap-
plication remains subject to hardware restrictions like I/O bus ad-
dress range. Furthermore, data layout, content, or format may not
meet application’s expectations, thereby not eliminating the need
to perform additional data copying or receive-side processing.

Recent developments in programmable networking devices, net-
work interfaces and dedicated communications cores in future het-
erogeneous multi-core platforms, create possibilities to concurrent-
ly execute communications and computation on separate hardware
supported contexts on these devices/systems. Distributed stream-
ing applications can benefit from these platforms by (1) deploy-
ing all overlay related functionality (e.g., application-specific mul-
ticast) onto the communications subsystem, and thereby not per-
turbing the ongoing computation, (2) dynamically tuning the pro-
cessing actions executed on the overlay path through the commu-
nication core to meet application interests and platform resources,
and (3) dynamically specifying the layout, content, and subset of

data which is to be delivered to application components executing
on the computational subsystem.

This paper explores the capabilities of heterogeneous multi-core
systems, with specialized communication cores to be used as ex-
ecution platforms for distributed data streaming applications. To
emulate such systems we use hosts with attached network proces-
sors (NPs), where the host represents the general purpose process-
ing core, and the NP the communication core. We model such het-
erogeneous systems as overlays of processing contexts, intercon-
nected via system-level interconnects and shared memory commu-
nication channels, termed platform overlays. A context in such
a platform overlay corresponds to some hardware- or software-
supported processing element available on the modeled platform.
The platform overlay model permits multiple data paths to be de-
ployed simultaneously, delivering data either to/from application
components running on general purpose computational nodes on
the same platform, or to remote end-points in the distributed appli-
cation overlay. Application-specific computations, represented via
stream handlers [5], are dynamically deployed onto contexts in the
platform overlay, thereby increasing the computation/communica-
tion overlap in the system, reducing processing loads to the general
computational resources, and delivering improvements through uti-
lization of specialized networking hardware.

The intent of platform overlays is to permit applications, via mid-
dleware, to dynamically map different stream processing actions to
those platform resources best suited for them, and even fully con-
tain such actions to the networking subsystem. The outcome is in-
network stream processing along the entire stream path from source
to destination. Advantages derived from this approach include the
following. First, at communication end-points, processing actions
executed jointly with data receipt/transmission can transform the
stream and its data items, placing these items into memory in ex-
actly the forms and layouts required by the application. Second,
at both end-points and intermediate nodes in the application over-
lay, the ability to offload processing from the general computa-
tion nodes can reduce perturbations to application computations
and improve overall system and overlay performance. Third, com-
munication cores have optimized hardware enabling more efficient
implementations of certain types of processing actions, such as
data forwarding and multicast, byte swapping, and certain low-
level application-specific operations on stream data.

The remainder of this paper is organized as follows. Section 2
discusses the target application domain and the services suitable
for in-network execution. We describe our model for representing
application-level services in Section 3 and the platform overlays
execution model in Section 4. Results from experimental analysis
appear in Section 5. This is followed by a brief survey of related
work and concluding remarks.

2. DISTRIBUTED STREAMING
APPLICATIONS

Distributed streaming applications depend upon the ability of the
underlying infrastructure to provide services for online data anal-
ysis, for pre-processing and/or customization of a stream before it
reaches its destination, or for stream manipulations necessary for
the implementation of different quality or fault-tolerance proper-
ties. Examples of such applications abound, ranging from scien-
tific collaborations, multimedia and visualization applications, op-
erational information and event notification systems, etc.

The application from which we draw illustrative examples is a
distributed scientific collaboration, termed SmartPointer (see Fig-
ure 1). Here, data streams generated by a data-intensive molecu-

lar dynamics (MD) simulation are delivered to an imaging server.
Based on the stages of the experiment and the scientists’ interests
in different types of molecules, the imaging server generates ren-
derable images that represent different views of the ongoing simu-
lation’s output. The generation of these images is itself a compu-
tationally intensive task, involving floating point and matrix arith-
metic, and imposes substantial loads on the server CPU and on its
I/O and memory infrastructure. Once computed, images are for-
warded to multiple clients or groups of clients. Depending on the
clients’ networking and platform resources, or interests, the imag-
ing server needs to further manipulate the image representation,
such as downsampling the color encoding, performing cropping
operations to match the client’s view point, etc. Another class of
streaming applications used extensively in our work which ben-
efit from the movement of stream manipulations onto dedicated
communications hardware are the Operational Information Sys-
tems used by companies like Delta Airlines OIS [9], where data
events regarding passengers, crew, flights, luggage, etc. are col-
lected and processed on continuous basis, 24/7, to support com-
pany’s daily operations.

The stream processing actions involved in these applications are
executed at the stream end points, sources and destinations, as well
as at intermediate nodes in the application-level overlays. Such ac-
tions are specific to each application, and typically, they require
access to, interpretation, and manipulation of the application-level
contents of the messages traversing the overlay. The wide range of
stream manipulations shown to be well-suited for in-network exe-
cution can be classified as follows:
� content-based routing – necessary for content-based load bal-

ancing [1], or for wide area event systems, as in IBM’s Gryphon
system [19], where boolean or simple query-based selection op-
erations are performed on events, to route events or to deliver
suitable event subsets to groups of end users;

� data sharing – required for data mirroring and replication ser-
vices, used in publish/subscribe infrastructures and transactional
services such as those executed in OISs;

� selective data filtering and data reduction – needed to ensure
delivery of only those data items and those elements of items that
are of current interest to the application, as with image cropping
that matches the current end user’s viewpoint in remote scientific
collaborations, or with downsampling of an MPEG stream, to
reduce the amount of data placed on the network so as to match
the current networking conditions;

� data transcoding operations, used in OISs or scientific collab-
orations, for instance, to enable data exchanges that have the
required format or necessary level of detail;

� priority scheduling – necessary to implement QoS-centric stream
manipulations, e.g., in order or classify the data items being
transported as in for critical data delivery in multimedia or sen-
sor application;

� stream merging – needed to coalesce data from multiple sources,
either to create a single collective stream containing all individ-
ual substreams, or to perform selective joins on inputs from mul-
tiple sources which satisfy specific requirements, such as tempo-
ral joins;

� ancillary tasks like data stream monitoring and control used for
timely detection of critical events in sensor applications, or for
status services such as online averages and sums; and

� security services that cover the wide range of security process-
ing either already embedded into high end networking products
(e.g., the crypto processing in the IXP2850) or under considera-
tion for such machines (e.g., authentication, intrusion detection,
attack forensics, etc.).

���

���

���

���Immersadesk

Servers
Image

iPaq client

ANP

ANP

LEGEND:

image data

coordinates & bonds

raw MD data

Dynamics
Molecular

disk client

PC

Bond Server

Figure 1: SmartPointer application.

A3

q1

q2

q3

A4

A5

A6

q4

A1 A2 A3 A4

q3

A5

context

queue

activity

Ci

qi

Ai

streamId

C3C2C1

q4q2q1
A6

A2

A1

Figure 2: Platform overlay model.

3. ENABLING IN-NETWORK STREAM
PROCESSING

In order to enable the execution of stream manipulation actions
in the network, we introduce a model for representing application-
specific processing actions that can be embedded and executed joint-
ly with core forwarding functionality on networking hardware. Our
approach relies on (1) a data abstraction to represent application-
specific information about the stream data items to be manipulated;
(2) stream operands represented through stream handlers [5], com-
putational units to represent application-specific processing actions
applied to stream data; and (3) service paths – the collection of
stream operands applied to the end-to-end stream data path and the
processing contexts where these operands are executed. The re-
mainder of this section discusses each of these abstractions.

Data abstractions. The basic data abstraction is a self-describing
application-level data unit. A data unit is self-describing through
information embedded in the data unit’s header, which can spec-
ify the data size and format, i.e. layout, offsets, and sizes of the
application-level data fields that comprise the data unit, as well as
the data unit’s membership and position in a set of similar data
units from the same source(s) or for the same destination(s). This
information defines a data tag with two parts: one that defines the
application-level data represented by the data unit, the other that
determines its membership in a group, based on network- and/or
middleware-level protocols. In the SmartPointer application, data
units correspond to binary representation of simulation outputs,
which also carry information about the event’s type in the form
of format identifier. The format identifier, along the the lower-level
protocol headers make up the data tag.

A data unit may be represented as a sequence of one or more
data fragments, all of which, except for the last one, are of size
fragment size. Each fragment is tagged with a fragment tag that
uniquely binds a fragment to a single data unit, and to a specific
position in the sequence of fragments that compose the data unit.
The first fragment in the sequence is the only one that has to con-
tain the data tag corresponding to the application-level data unit. A
single application-level data unit can have multiple representations
as a sequence of fragments. The combined use of fragment and
data tags permits us to apply communication actions typically as-
sociated with different levels of a communication stack. Examples
are those associated with network header information, with system
services, such as sendfile that operate of kernel buffers [7], and
application-level processing actions. The actions applied are deter-
mined by a combination of data tag and fragment tag content, and
they are applied to individual fragments’ contents.

The collection of data items for which certain fields in the data
tag have certain values, or sets of values, define a data stream. The

fields in the tag that unify the data items in a stream can be solely
the application-level portion of the data tag, such as format identi-
fier, or they can be information about the path endpoints, such as
source and sink addresses, or a combination of both. The subset
of the data tag shared by all items in a stream represents a stream
identifier.

Stream operands. Our previous work has introduced stream
handlers, which are lightweight, parameterizable units of applica-
tion specific computation that can be executed jointly with com-
munication codes to implement manipulations of stream data. We
use stream handlers to provide implementations of stream operands
that can be embedded and executed at multiple locations on the
stream data path from source to destination [5]. In the context
of the data abstraction introduced above, a stream operation may
be executed on the entire data item, or may be incrementally ap-
plied to subsequent fragments of stream data. For instance, a data
selection operand may be applied once the entire stream data is
delivered to a particular execution context, or may it may be exe-
cuted as early as the fragment(s) containing the appropriate fields
used by the select operation become available. Finally, a stream
operand will have distinct implementations depending on the pro-
cessing contexts where it is executed (e.g., to deal with platform
heterogeneity), or depending on data fragment to which it is ap-
plied.

Service paths. The sequence of stream operands applied on the
stream end-to-end path, described via the execution contexts which
execute these operations, and the representation of stream data ac-
cepted by these operands, represents a service path. Service paths
are partially ordered graphs, with graph nodes corresponding to
stream operands, and edges to the flow of stream data items (see
Figure 2).

4. PLATFORM OVERLAYS
In order to better understand how to execute stream manipula-

tion services represented as compositions of stream operands, on
heterogeneous, multi-core platforms, we model such platforms as
platform overlays. Hardware (e.g., processors, coprocessors, NICs)
or software (e.g., address spaces) processing contexts correspond to
nodes in the platform overlay. The model builds on top of existing
research on structuring computational paths as pipelines of elemen-
tary/basic operations [6, 15].
Multi-core platform assumptions. Several assumptions regarding
future multi-core heterogeneous platforms underlie our research.
First, we assume that these platforms will consist of a collection of
general purpose and specialized cores, such as for communication,
storage or graphics tasks. The IBM Cell processor is an example
of such a multi-core system [3]. Next, we assume that individual

CPUs and memory are organized in a way that does not create inter-
ference from excessive access to shared memory modules or shared
system interconnect. This assumption implies that processes bound
to a CPU (for computation or communication) have exclusive ac-
cess to private memory, ‘local’ to that particular CPU. Accesses
to ‘remote’ memory are needed to implement intra-platform com-
munication paths, and are controlled through the OS components
executing on separate cores. Finally, since we focus on the commu-
nication capabilities of these systems, we assume that communica-
tion cores are dedicated to executing networking-related function-
ality, i.e. protocol processing [11], and have architectures special-
ized to efficiently execute communication stacks and handle multi-
ple network interfaces, similarly to modern network processors.
Platform overlay runtime. Data is delivered to/from a context as
a sequence of fragments (e.g., network packets, memory location,
sequence of memory buffers), which is property of the context. The
runtime at each context may translate the data from one represen-
tation to another (e.g., from network packets to application-level
data item in memory). Within each context, one or more activa-
tion points may be identified, which correspond to locations where
additional data accesses and manipulations can be applied (e.g.,
points along the layers in the protocol stack processing, kernel/user
interface, etc.). Finally, a context may support concurrency, i.e., be
multi-threaded. In a single data-multiple threads model, the appli-
cation is responsible for providing multithreaded representation of
the application-specific operation in order to benefit from the sup-
ported concurrency. In a multiple data-single thread model, syn-
chronized access to shared state is enabled through compiler- and
OS-level techniques and underlying hardware support.

Stream operands represented via stream handlers are executed at
contexts’ activation points. The runtime uses configuration state
and stream meta data, implemented as hash tables, CAMs or other
look-up structures, to invoke the appropriate handler (or sequence
of handlers). In addition, the runtime provides resources for han-
dler execution, such as handler internal memory, needed for param-
eters and state. If data is delivered to/from the context as a sequence
of fragments with respect to which the operation implemented by
the handler is incremental, it can be executed ‘immediately af-
ter’/‘just before’ the data fragment is received/forwarded. For in-
cremental operations, or operations that do not depend on special
hardware or software components, there may be multiple deploy-
ment options in the overlay. The ‘cost’ of each of these options
is determined through the attainable performance levels. However,
certain application components are bound to specific context and
activation points (e.g., an operation that performs floating point ma-
trix arithmetic on unaligned data can only be invoked at message
boundaries in a context where a floating point unit exists).

Platform overlay nodes are interconnected via communication
channels, represented as queues. Each queue can have multiple
inputs and outputs, i.e., arbitrary communication paths may be es-
tablished among platform nodes, similarly to distributed network
overlays. Communication is enabled via two basic operations: en-
queue and dequeue. Queue elements consist of data and/or data
descriptors, containing information regarding location and sender
of the data, as well as additional meta-data, such as data tag, or
integer counter for efficient implementation of operations such as
zero-copy multicast, described in Section 5. Actual implementa-
tions of the queues and the supporting operations may vary. For
instance, across contexts with separate memories, the movement
of data requires copying. In such cases, enqueue and dequeue are
implemented on top of underlying hardware-supported data move-
ment operations, memory read/writes or direct I/O, and entail ad-
ditional use of signaling mechanisms to exchange meta data and

synchronize. In the prototype system described in Section 5, com-
munications between the general purpose CPU and the commu-
nication subsystem involve DMA and programmed I/O across the
PCI interconnect. Enqueue/dequeue operations for platform nodes
with shared memory may involve only manipulation of the data de-
scriptor, and avoid unneeded copies.

Meta information contained in data descriptors is used to provide
mechanisms for backwards control-flow, needed for acknowledg-
ments, reference counting, or to enable efficient, zero-copy imple-
mentation of data sharing operations, such as the multicast evalu-
ated in the following section. Here, upon successfully updating and
processing the data fragment containing the network header, each
transmitting handler signals a notification that the subsequent use
of the same data copy can proceed concurrently.

The use of platform overlays to abstract complex underlying
hardware, coupled with stream handlers to represent stream ma-
nipulations as sequences of stream operands, permits us to con-
struct service paths where specific operations are mapped to spe-
cific platform contexts, based on available resources or on applica-
tion requirements. In this manner, in-flight stream customizations,
as needed in distributed streaming applications, can be embedded
with communications-related tasks on dedicated communications
cores. At data sources, data sharing services can be implemented
more efficiently by moving them onto networking hardware com-
ponents, optimized for repeated execution of data transmissions. At
stream destination nodes, preprocessing of stream data on hardware
contexts not running core application processing, can reduce loads
due to unneeded data, or can perform stream data transformation
according to application-specific requirements, and eliminate the
need for additional data copying due to format/encoding mismatch.

Finally, in order to deal with the dynamic nature of the applica-
tions considered, service paths in platform overlays must be recon-
figurable. Towards this end, applications must have the ability to
dynamically deploy new codes, and perform reconfiguration with
zero-perceivable down time. We demonstrate that this is feasible
on standard off-the-shelf programmable networking platforms.

5. EVALUATION
The next section demonstrates the importance of abstracting het-

erogeneous multi-core platforms as overlays of processing con-
texts with different capabilities, and of using application-specific
information to dynamically map stream manipulation operations to
the contexts best suited for their execution. Our results demon-
strate that the flexibility offered by this approach, which permits
applications to embed computations with communications and ex-
ecute them on platform components dedicated for communications-
related processing, can lead to performance gains derived from
multiple factors. These include (1) reductions in processing loads
on CPUs dedicated to core application processing, (2) mappings of
operations to the contexts best suited for their execution, and (3)
improved integration of computation and communication to ensure
that the data being transported matches current application require-
ments.

In order to represent multi-core systems with communication
cores, we use pairs of standard hosts and attached network pro-
cessors (NPs). The integrated platforms used in these experiments
consist of standard Linux hosts, interconnected via the PCI inter-
face to Intel IXP NPs (IXP1200 and IXP2400), and are further de-
scribed in [5]. In the host-based version of the experiments evalu-
ated below, all data traffic is directed to one of the host’s network
interfaces. In the IXP-based results, data streams are delivered to
the IXP’s network interfaces, and, if necessary, data is delivered to
the host-resident application component via the PCI interconnect.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of multicast destinations

Th
ro

ug
hp

ut
 (M

bp
s)

NP−based mcast
Host−based mcast

Figure 3: Multicast result.

50 100 150 200 250 300 350 400
0

20

40

60

80

Outgoing data size (B)

Th
ro

ug
hp

ut
 (M

bp
s)

Host
NP

516 416 316 216 116 64
0

50

100

150

200

250

300

Outgoing data size (B)

P
ro

ce
ss

in
g

tim
e

(c
yc

le
s)

receive
select/project
join

Figure 4: Operand results for input stream data sizes of 600B.

Efficient execution of communication-related services. The first
set of experiments demonstrates the importance of dedicating com-
munications-related processing to the communication cores avail-
able on future platforms. We implement an efficient multicast stream
operand, which utilizes meta information in data descriptors to syn-
chronize and overlap data transmissions to multiple clients.

We first compare the processing times of performing the multi-
cast operation on the general purpose host vs. the communications
processor. We record the timestamps when a packet is received and
after the packet is multicast to n (in this case up to 10) different
destinations. Measurements show that the multicasting done at the
communication core (120 us) outperforms its host-based (209 us)
implementation.

We next analyze the ability of both hosts and communication
processors to maintain service levels. Results in Figure 3 are gath-
ered for a stream of 1500B Ethernet packets, delivered at the rate of
98.5Mbps, and multicast to � destinations. Results indicate that the
communication core is able to sustain our maximum input rate of
98.5 Mbps, for all � destinations. The host-based approach, how-
ever, exhibits a steady decrease in throughput sustenance as the
number of destinations increases. These results demonstrate the in-
ability of standard hosts to efficiently execute certain communications-
related tasks, needed in distributed applications. Hence, in future
multi-core systems, the platform overlay model presented in this
paper will permit applications to identify and map such operations
to communication subsystems, thereby significantly improving end
user performance.
Ability to apply in-network stream operands. Next, we demon-
strate the ability of specialized communication cores to efficiently
and flexibly execute application-specific stream processing. The
experiment uses two data streams carrying typical data from an air-
line’s OIS. Experiments compare the execution of a set of stream
operands of the NP vs. the general purpose host. The results shown
in Figure 4 clearly demonstrate that the NP (i.e. the communication
core) performs better than the general purpose host processor for all
packet sizes. This is in part because the communication core has
hardware support for operations like packet receiving, transmitting,
queuing, pipelined multiprocessors, etc. Results also show that
we can sustain operations that produce the same size sub-streams
as the input data stream. Provided that typically, ‘select’ queries
tend to produce smaller data-streams than the original stream, these
‘worst case’ results show that our pipeline implementation can sus-
tain most queries. Moreover, the system is scalable because as the
number of sub-streams increases, additional communication cores
can be used for stream querying, and some of the query processing

load can be shifted to host processors under high system loads. Fi-
nally, by performing stream processing on the communication core,
the host processor is freed to carry out the more general processing
actions for which it has been designed. In summary, these results
show that stream processing on communication cores is feasible,
scalable, and produces higher performance than when such actions
are carried out by general purpose processor cores.
Importance of ‘smart’ data delivery. For the SmartPointer appli-
cation described in Section 2, we evaluate the following customiza-
tions of the stream data: (1) filtering of unnecessary data, imple-
mented as a set of data field comparisons, and (2) reformatting the
incoming stream data to meet application-specific format require-
ments. We compare the overheads in terms of execution time of
executing the specific customizations on the communications sub-
system, i.e. on the IXP, vs. the gains observed for the host-resident
application component. The host-side gains result from both reduc-
ing unnecessary loads to the host’s I/O infrastructure and eliminat-
ing application-level data copies as a result of the format mismatch.
In all cases, measurements indicate a net performance gain for our
approach, up to 40% in certain cases (see Figure 5).
Additional experimental results. For brevity, we do not discuss
in detail additional measurements that demonstrate the importance
of embedding application-specific processing onto communication
cores. These results include CPU utilization measurements gath-
ered using the linpack tool, which demonstrate the utility of
off-loading select functionality from the computational core. We
have also evaluated the feasibility of supporting flexible platform
reconfiguration mechanisms, which range from choosing among
pre-loaded handlers, to using parameters to specify the stream han-
dler actions, to dynamic hot-swapping of new codes. For the host-
IXP platforms used in our work, dynamic reconfiguration can be
achieved with practically negligible overheads, which reach up to
28 to 30us in the hot-swapping case.

6. RELATED WORK
The work presented in this paper builds on our previous research

to create integrated platforms of hosts and attached network proces-
sors, so as to enable the execution of application-specific services
onto the programmable NP and closer to the network [5]. Pro-
grammability of network processors has been widely exploited in
both industry and academia, for delivering more flexible network-
and application-level services [14, 17]. Our current work assumes
that these integrated host-NP platforms exemplify future heteroge-
neous, multi-core systems, and aims to explore the additional ben-
efits available through such tight integration.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

Ti
m

e
(s

)

Tagged events over time

1.5k: IXP and host
1.5k: host only
50k: IXP and host
50k: host only
mixed sizes: IXP and host
mixed sizes: host only

Figure 5: Importance of customized data delivery

The utility of executing compositions of various protocol- vs.
application-level actions in different processing context is already
widely acknowledged. Examples include splitting the TCP/IP pro-
tocol stack across general purpose processors and dedicated net-
work devices, such as network processors, FPGA-based line cards,
or dedicated processors in SMP systems [2, 11], or splitting the
application stack, as with content-based load balancing for an http
server [1] or for efficient implementation of media services [12].
Similarly, in modern interconnection technologies, network inter-
faces represent separate processing context with capabilities for
protocol off-load, direct data placement, and OS-bypass [18, 13].
In addition to focusing on multi-core platforms, our work differs
from these efforts by enabling and evaluating the joint execution
of networking and application-level operations on communications
hardware, thereby delivering additional benefits to distributed ap-
plications.

Finally, there are several existing models for representing com-
putation in streaming applications, such as StreamIt or Spidle [15,
4], or models derived from active networking research. We differ
from these approaches by providing a framework that can be uni-
formly applied to represent both network- and/or application-level
manipulations to streaming data. For streaming operations modeled
with these or other approaches, typical performance improvements
are derived through OS-enhancements, and techniques such as spe-
cialized kernel calls, proxy services or OS-bypass [7]. Our work
is complementary to these efforts, as we specifically focus on the
additional performance gains which can be attained through judi-
ciously mapping select streaming operations onto communications
hardware. Our future work will evaluate the benefits from integrat-
ing these two techniques.

7. CONCLUSIONS
This paper evaluates the ability of future heterogeneous multi-

core platforms, with specialized communications support, to sup-
port efficient and scalable services for streaming applications. We
argue that by using such platforms, distributed streaming applica-
tions can achieve performance improvements due to processor of-
fload and the use of specialized networking hardware. Additional
gains can be attained by permitting the deployment of application-
specific computations onto communication cores, due to the effi-
cient in-network execution of selected stream manipulations, or due
to the improved ability to address the mismatch between received
and expected data content, layout or format at communicating end-
points.

8. REFERENCES
[1] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and

D. Saha. Design, Implementation and Performance of a
Content-Based Switch. In Proc. of INFOCOM 2000.

[2] F. Braun, J. Lockwood, and M. Waldvogel. Protocol
wrappers for layered network packet processing in
reconfigurable networks. IEEE Micro, Jan./Feb. 2002.

[3] Cell Processor Architecture Explained.
http://www.blachford.info/computer/Cells/Cell0.html.

[4] C. Consel, H. Hamdi, L. Reveillere, lenin Singaravelu,
H. Yu, and C. Pu. Spidle: A DSL Approach to Specifying
Streaming Applications. In Proceedings of the 2nd
International Conference on Generative Programming and
Component Engineering, Erfurt, Germany, Sept. 2003.

[5] A. Gavrilovska, K. Schwan, O. Nordstrom, and H. Seifu.
Network Processors as Building Blocks in Overlay
Networks. In Proc. of HotI 11, Stanford, CA, Aug. 2003.

[6] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions on
Computer Systems, 18(3):263–297, Aug. 2000.

[7] J. Kong and K. Schwan. KStreams: Kernel Support for
Efficient Data Streaming in Proxy Servers. In Proc. of
NOSSDAV’05, Skamania, WA, 2005.

[8] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over
InfiniBand. In Int’l Conference on Supercomputing, 2003.

[9] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu, and
D. Amin. Operational Information Systems - An Example
from the Airline Industry. In First Workshop on Industrial
Experiences with Systems Software (WIESS), Oct. 2000.

[10] B. Raman and R. Katz. An Architecture for Highly Available
Wide-Area Service Composition. Computer
Communications Journal, May 2003.

[11] G. Regnier, D. Minturn, G. McAlpine, V. Saletore, and
A. Foong. ETA: Experience with an Intel Xeon Processor as
a Packet Processing Engine. In Proc. of HotI 11, 2003.

[12] S. Roy, J. Ankcorn, and S. Wee. An Architecture for
Componentized, Network-Based Media Services. In Proc. of
IEEE International Conference on Multimedia and Expo,
July 2003.

[13] P. Shivam, P. Wyckoff, and D. Panda. Can User Level
Protocols Take Advantage of Multi-CPU NICs? In Int’l
Parallel and Distributed Processing Symposium, 2002.

[14] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a
Robust Software-Based Router Using Network Processors.
In Proc. of 18th SOSP’01, Chateau Lake Louise, Banff,
Canada, Oct. 2001.

[15] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
Language for Streaming Applications. In International
Conference on Compiler Construction, Apr. 2002.

[16] D. Xu and X. Jiang. Towards an Integrated Multimedia
Service Hosting Overlay. In ACM Multimedia, 2004.

[17] K. Yocum and J. Chase. Payload Caching: High-Speed Data
Forwarding for Network Intermediaries. In Proc. of USENIX
Technical Conference, Boston, Massachusetts, June 2001.

[18] X. Zhang, L. N. Bhuyan, and W.-C. Feng. Anatomy of UDP
and M-VIA for Cluster Communications. Journal on
Parallel and Distributed Computing, 2005.

[19] Y. Zhao and R. Storm. Exploiting Event Stream
Interpretation in Publish-Subscribe Systems. In ACM Symp.
on Principles of Distributed Computing, Aug. 2001.

