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Abstract

In this paper, a novel method for simultaneously reg-
istering multiple images acquired from different imag-
ing modalities is presented. The optimal alignment is
computed as the set of transformations that minimize
the dispersion of the multi-dimensional joint phase mo-
ment distribution. Dispersion is measured as the cu-
mulative quadratic orthogonal distance between sam-
ples from the joint phase moment distribution and the
corresponding multi-dimensional fitted hyperline. The
proposed method is designed to be computationally ef-
ficient, robust to signal non-homogeneities and noise,
and maintains internal consistency amongst all images.
Experimental results using real-world medical and re-
mote sensing images show that the proposed method
achieves a high level of registration accuracy when si-
multaneously registering multiple multimodal images.

1 Introduction

A problem of great interest in the field of visual pat-
tern recognition is image registration, where images of
the same scene captured under different conditions are
aligned with each other. Image registration is impor-
tant to a wide range of applications, such as environ-
ment change analysis, superresolution [1], building ex-
traction [2], and computer-assisted surgery. Much of re-
cent research in image registration has focused on mul-
timodal image registration, where images captured us-
ing different imaging modalities are registered together.

Multimodal image registration is a very challenging
problem for many reasons. Images captured using dif-
ferent imaging modalities are represented using differ-
ent intensity mappings, making it difficult to compare
images in a direct manner based on intensity values.
This situation is further complicated by the presence
of signal non-homogeneities, noise, and geometric dis-
tortions. Furthermore, there are many cases where it

is necessary to register multiple images from different
imaging modalities to obtain a more complete picture of
the scene (e.g., T1/T2/CT registration, LANDSAT 4/5/7
inter-band registration). Hence, it is important to main-
tain internal consistency between all the images being
registered, which is a difficult task to accomplish in the
case of multimodal registration given the different infor-
mation being captured. Therefore, an automatic method
that can address all of the above issues is highly desired.

Many methods have been proposed for the purpose
of multimodal registration. Such methods can be gen-
erally divided into entropy-based methods [3, 4] and
feature-based methods [5, 6]. Current methods have
mainly focused on dealing with issues such as signal
non-homogeneities, noise, and geometric distortions.
However, current methods register images in a pair-wise
manner, where only two images of different modali-
ties are registered at a time. To the best of our knowl-
edge, there are currently no multimodal image registra-
tion methods that register multiple images from differ-
ent modalities simultaneously. This is very important
for avoiding error accumulation during the registration
process.

The main contribution of this paper is a simultaneous
approach to the problem of registering multiple images
from different modalities. In this paper, the theory be-
hind the proposed method is described in Section 2. The
proposed method is described in Section 3, and exper-
imental results using multi-spectral LANDSAT images
and T1/T2/PD/CT images are presented in Section 4.

2 Theory

Prior to explaining the proposed method, it is im-
portant to first explain the theory behind the proposed
method. Suppose we wish to register n different images
f1, f2, ..., fn acquired using n different image modali-
ties. The optimal set of transformations T̂1, T̂2, ..., T̂n

that bring the n images into alignment can be formu-



lated as the following optimization problem:{
T̂1, T̂2, ..., T̂n

}
= arg min

T1,...,Tn

[
C
(
fT1
1 , fT2

2 , ..., fTn
n

)]
(1)

where fTk
k = fk (Tk(x)) and C is the objective func-

tion that evaluates the dissimilarity between all images.
It can be seen that registration accuracy is heavily de-
pendent on the objective function used. In the context
of multimodal image registration, the most widely used
objective functions are those based on mutual informa-
tion [3, 4], which measures the reduction in uncertainty
of one image when another image is known. An objec-
tive function based on mutual information can be ex-
pressed as follows:

C(fT1
1 , fT2

2 ) = −
(
H(fT1

1 )+H(fT2
2 )−H(fT1

1 , fT2
2 )
)

(2)
where H(fT1

1 ) and H(fT2
2 ) are the marginal intensity

entropies and H(fT1
1 , fT2

2 ) is the joint intensity en-
tropy. In this case, minimizing the objective function
maximizes mutual information, which in effect mini-
mizes the joint intensity entropy. Methods that utilize
entropy-based objective functions take advantage of the
fact that correctly registered images are characterized
by tightly packed joint distributions and that minimiz-
ing the joint intensity entropy effectively minimizes the
dispersion of the joint distribution.

While entropy-based objective functions have
proven to be effective in multimodal registration,
there are several important drawbacks when taken
into the context of registering multiple images of
different image modalities. Entropy-based objective
functions, including normalized mutual information,
are highly under-constrained in terms of evaluating
intensity relationships. Therefore, the convergence
planes of such objective functions are highly non-
monotonic with many local optima in non-ideal
situations [7]. This becomes increasedly problematic
as the number of dimensions (in this case, number of
imaging modalities) increase, thus making it difficult
to converge to the global optima. More importantly,
entropy-based objective functions suffer from what
is referred to as the “curse of dimensionality”. As
the number of dimensions increase, the number of
samples required to reliably approximate entropy
grows exponentially. Therefore, this makes it very
difficult to extend entropy-based methods to high-
dimensional multimodal registration problems as there
are typically insufficient number of samples to estimate
entropy properly. Intuitively, it would seem that an
alternative approach to measuring the dispersion of
joint distributions that is well-constrained and can be
efficiently extensible to high-dimensional problems is
much desired.

To construct a multimodal objective function that
is more well-constrained than entropy-based functions,
we propose that the multimodal images being regis-
tered are first transformed from their individual inten-
sity feature spaces to a common feature space based
on complex wavelet phase moments. This complex
wavelet feature transform allows information acquired
using different imaging modalities to be compared in a
direct manner. Hence, a more well-constrained distance
measure can to be integrated into the objective function
to improve convergence monotonicity. The phase mo-
ment transform M can be computed as follows [8]:

M(x) = 1
2

∑
θ

P (x, θ)2+

1
2

[
4

(∑
θ

(P (x, θ) sin(θ)) (P (x, θ) cos(θ))

)2

+(∑
θ

[
(P (x, θ) cos(θ))2 − (P (x, θ) sin(θ))2

])2 ] 1
2

(3)
where P (x, θ) is the phase coherence at orientation θ
computed using the iterative phase coherence estima-
tion scheme described in [9]. This phase moment trans-
form is highly robust to signal non-homogeneities and
noise.

To construct a multi-modal objective function that is
efficient and easily extensible to high-dimension prob-
lems, it is important to first observe the behavior of
the joint phase moment distribution as the images come
into alignment. The joint phase moment distributions
at various stages of alignment for a particular three-
dimensional case are shown in Figure 1. It can be ob-
served that as the images come into alignment, the sam-
ples in the joint phase moment distribution becomes
tightly packed around a 3-dimensional hyperline. This
is intuitive since in the ideal case where all images con-
tain the same information, the samples in the joint dis-
tribution would lie entirely along the hyperline x = y =
z when the images are in alignment. This can be gen-
eralized to the n-dimensional case, where the optimal
alignment between n images occurs when the samples
in the joint distribution are maximally packed around a
n-dimensional hyperline. Based on this theory, we pro-
pose that the dispersion of a n-dimensional joint phase
moment distribution can be measured efficiently based
on the orthogonal distances between samples in the joint
distribution and the fitted n-dimensional hyperline that
minimizes the error residual within the distribution.

For the case of n images, the proposed objective
function is defined as the cumulative quadratic orthogo-
nal distance between samples in the joint phase moment
distribution J and the fitted n-dimensional hyperline h:



Figure 1. a) misaligned images, b) joint
distribution of misaligned images, c) joint
distribution of aligned images, d) aligned
images

C(fT1
1 , fT2

2 ..., fTn
n ) =

N∑
i=1

∥∥∥(j
i
− µ

)
× ϕ

∥∥∥
2

(4)

where N is the number of samples in the joint distri-
bution, µ and ϕ are the centroid and direction cosines
of the hyperline h respectively, × and ‖.‖2 indicates a
cross product and a L2 (quadratic) norm respectively,
and j

i
is a vector representing the ith sample from joint

distribution J and can be defined as follows:

j
i
= [M1 (T1(xi)) M2 (T2(xi)) ... Mn (Tn(xi))]

(5)
where xi is the n-dimensional co-ordinate of the ith

sample. The fitted hyperline h that minimizes the error
residual within the joint distribution J can be calculated
by performing orthogonal regression on the joint dis-
tribution. The orthogonal regression method used can
be described as follows. First, a matrix D is computed
based on the difference between samples in the joint dis-
tribution J and the centroid of the samples µ (which is
also the centroid of the hyperline):

D =


j
1
− µ

j
2
− µ
...

j
n
− µ

 (6)

Singular value decomposition (SVD) is then performed
on D and the direction cosines of the hyperline ϕ is
determined as the singular vector corresponding to the
largest singular value. The fitted hyperline h can be rep-
resented by the direction cosines ϕ and the centroid µ.

3 Proposed Method

Based on the above theory, the proposed method can
be described as follows. An iterative solver based on
sequential quadratic programming (SQP) [10] is used
to solve the optimization problem defined in Equation
(1) using the objective function defined in Equation (4)
The set of transformations are then re-estimated itera-
tively until convergence is reached to determine the op-
timal alignment between all images being registered. A
multi-resolution scheme involving three different scales
(s = 1

4 ,
1
2 , 1) was used to improve convergence speed

as well as avoid local optima.

4 Experimental Results

The effectiveness of the proposed method was eval-
uated using four different test sets. TEST1 consists
of 256×256 T1/T2/CT images of an axial cranial slice
from the NLM Visible Human project. TEST2 con-
sists of 256×256 T1/T2/PD images of a coronal pelvic
slice from the NLM Visible Human project. TEST3
and TEST4 consist of 761×748 images acquired using
Landsat 7 ETM+ band 3 and Landsat 4-5 TM bands
4 and 5 at (Lat/Long: 46.0/-83) and (Lat/Long: 69.6/-
92.7) respectively from the USGS project. Each test
set was distorted using 20 different random affine trans-
formations and were then registered using the proposed
method. To judge the registration accuracy of the pro-
posed method, the RMSE was determined based on 20
ground-truth control point triplets. As stated earlier,
there are currently no methods that registers multiple
images from different modalities simultaneously.

The registration accuracy results are shown in Ta-
ble 1. The proposed method achieved low RMSE
for all of the test sets. Sample registration results of
TEST1, TEST2, and TEST3 achieved using the pro-
posed method are shown in Figures 2 to 4 respectively.
Based on visual inspection, the registration appears ac-
curate in both cases. These results demonstrate the ef-
fectiveness of the proposed method for registering mul-
tiple images from different modalities while maintain-
ing internal consistency amongst all the images.

5 Conclusions

In this paper, we introduced a novel method for si-
multaneous multimodal registration of multiple images.
A new objective function was introduced based on the
dispersion of joint phase moment distributions. The
proposed method is highly efficient and robust to noise
and signal non-homogeneities. Experimental results us-
ing real-world multimodal image sets indicate that high



Table 1. Registration accuracy
Test Set RMSE1 (pixels)

min mean max
TEST1 0.4458 0.7812 1.5356
TEST2 0.2793 0.4810 0.9625
TEST3 1.0449 2.2784 2.7399
TEST4 0.6372 1.1349 2.0156

1: The RMSE is computed over 20 random distortions.

Figure 2. TEST1: a) overlay of T1/PD/CT
(green/red/blue), b) registered images

Figure 3. TEST2: a) overlay of PD/T1/T2
(green/red/blue), b) registered images

Figure 4. TEST3: a) overlay of Land-
sat 7 band 3 and Landsat 4/5 bands 4-5
(green/red/blue), b) registered images

registration accuracy can be achieved for situations in-
volving multiple images. Future work involves investi-
gating more robust orthogonal distance functions to re-
duce the effect of outlier samples on registration accu-
racy.
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