Resolution Games and Non-Liftable Resolution
Orderings

Hans de Nivelle,

Department of Mathematics and Computer Science,
Delft University of Technology,
Julianalaan 132, 2628 BL, the Netherlands,
email: nivelle@cs.tudelft.nl

Abstract

We prove the completeness of the combination of ordered resolution and
factoring for a large class of non-liftable orderings, without the need for
any additional rules like saturation. This is possible because of a new proof
method wich avoids making use of the standard ordered lifting theorem.
This proof method is based on resolution games.

1 Introduction

Resolution was introduced in ([Robins65]) and is still among the most successful
methods for automated theorem proving in first order logic. (See [ChangLee73]).
Although resolution is efficient, it is not efficient enough. Therefore so called
refinements of resolution have been designed, which can improve efficiency quite
a lot, without losing completeness. In this paper we will consider ordering refi-
nements. Ordering refinements are a restriction of the resolution rule. With re-
finements two types of improvement can be gained: First resolution refinements
simply improve efficiency, which means that less memory will be used, and less
time will be spent on finding a proof if it exists. Second it can be shown that
certain resolution refinements are terminating on certain clause sets for which
unrestricted resolution would be non-terminating. Thus it is possible to obtain
decision procedures with resolution. This approach was initiated by ([Joy76]) and
([Zam72]). ([FLTZ93]) contains an overview of the results reached in this field.
The general strategy for proving the completeness of an ordering refinement is as
follows: (1) Prove the completeness of the refinement for the ground level. (2)
Then show that a refutation of a certain set of ground clauses can be lifted to the
non-ground level. For the first part it has been shown that resolution with every
ordering on ground literals is complete. For the second part, the ordering must
have a special property which is called liftability: A < B = A© < BO. This

property is problematic because any ordering that satisfies this property must
leave many literals uncompared. For example literals p(X) and p(s(Y)) cannot
be compared. Suppose that p(X) < p(s(Y)). Then because of liftability, < is
preserved by both {X := s(s(0)),Y := 0}, and {X := s(0),Y := s(0)}. However
this results in p(s(s(0))) < p(s(0)) and p(s(0)) < p(s(s(0))). This contradicts
the fact that < is an ordering. In the same way p(s(Y)) < p(X) is impossible.
From the efficiency point of view it is desirable to compare as many literals as
possible, because then as little as possible resolution inferences will be made.

It is also desirable from the decision point of view to be able to drop this liftability
property, because certain non-liftable orderings have been proven terminating for
certain clause sets, but it was not known whether or not these orderings were
complete. (See [FLTZ93]). We can positively answer this question here.

It is for these reasons that we will study resolution with non-liftable orderings
here. We will prove two completeness theorems for two types of non-liftable
orderings. For these proofs we will make use of a device called resolution game.
The resolution game can be seen as ordered resolution, with which a certain
counterplayer can change the ordering at certain moments. We begin by repea-
ting some basic definitions.

Definition 1.1 An order is a relation which satisfies the following properties:
O1 For no d is it the case that d < d. O2 For each dy,dy and d3: if di <
dg, dy < ds3, then d; < d3. An order < is total if O3 whenever d; # ds, then
either d; < dy or do < d;.

< is well-founded if there is no infinite sequence dg, d1,ds, ..., such that dy >
dy >do > >d; > -.

A total, well-founded relation is called a well-order.

Definition 1.2 Let F' be a finite set of function symbols with arities attached
to them, V' be a countably infinite set of variables, and let P be a finite set of
predicate symbols with arities attached to them. We define terms as follows: (1)
Every variable, or function in F' with arity 0 is a term. (2) If f is an element

of F, with arity n, and t1,...,t, are terms, then f(¢1,...,¢,) is a term. There
are no other terms than defined by these rules.

If p is a predicate symbol, with arity n, and ¢1,...,t, are terms, then
p(t1,...,ty) is an atom . A literal is an atom p(tq,...,t,), or its negation

= p(t1,...,tn). The complexity of a term #t is defined from #v = 1, for a
variabele v, #f = 2, for a 0-ary function symbol f € F, and f(t1,...,t,) =
2 + #£t1 + - - - #t,,, for an n-ary function symbol f € F.

Definition 1.3 A substitution © is a finite set of the form

{v1 :=t1,...,0p 1= t,}, where each v; € V and each ¢; is a term. The effect
of substitution © on a literal A is defined as usual: As the result of replacing
simultaneously all v; in A by t;. Because of this it must be the case that for no

i # j, we have v; = v;. Otherwise the effect on literals containing v; = v; would
be undefined.

A literal A is an instance of a literal B if A can be obtained from B by a
substitution. We call A a renaming of B if A is an instance of B and B is an
instance of A. In that case we also call A and B equivalent. We call A a strict
instance of B if A is an instance of B and A and B are non-equivalent.

If A and B are literals and © is a substitution, such that A©® = B© then
both © and AO are called a unifier of A and B.

If © is a unifier of A and B, then © is called a most general unifier if for
every unifier 3 of A and B, and every literal C, it is the case that C'Y is an
instance of C'O.

If A is an instance of B and © = {v; := t1,...,v, := t,} is a C-minimal
substitution such that A = BO, then we define the complezity of the instantiation
as #ty + -+ #ty.

It has been proven in [Robins65] that there exists an algorithm that has as input
two atoms (or literals), computes a most general unifier if they are unifiable, and
reports failure otherwise.

Definition 1.4 A clause is a finite set of literals. A clause {A1, ..., A,} should
be read as the first order formula VZ(A4; V --- V Ap). Here T are the variables
that occur in the clause.

We call a clause decomposed if all literals in it have exactly the same variables.
An L-ordering C is an ordering on literals. If C is an L-order, then a literal L
is mazimal in a clause ¢ if (1) L € ¢, and (2) for no L' € ¢, we have L C L'.

Note that, because C is an order, and clauses are finite, every non-empty clause
has at least one maximal element.

Resolution is a refutation method. If one wants to try to prove a formula one
has to try to refute its negation.

Definition 1.5 Ordered resolution We define the resolution rule: Let ¢
and ¢z be clauses, such that (1) ¢; and ca can be written as ¢; = {41 }Ury,
and cg = {— A2} Urs, (2) A; is C-maximal in ¢;, and = Ay is C-maximal
in ¢g, and (3) A; and Ay are unifiable with mgu ©. Then r1© U720 is an
ordered resolvent of ¢; and co. We write ¢1,co 110 U re0.

Ordered factoring Let ¢ be a clause containing 2 literals A; and Ao, such that
(1) A; and Ay are unifiable with mgu O, and (2) A; is C-maximal in c.
Then cO is an ordered factor of c. Notation c - cO.

We have not defined unrefined resolution. Unrefined resolution can be obtained
by dropping the ordering conditions in definition 1.5.

Definition 1.6 We call C liftable if AC B = A© C BO.

This property ensures that if a literal A4;0 is maximal in a clause {410, ..., 4,0},
that then its uninstantiated counterpart A; in {As, ..., 4,} is also maximal. This
makes lifting possible. The next theorem is the standard ordered resolution the-
orem.

Theorem 1.7 Ordered resolution with ordered factoring is complete, for any
liftable L-order.

L-orders are a slight generalization of the more well-known A-orders. An A-
order is an order on atoms, which is extended to literals by the rule A C B =
ALC - B,~ALC B,- AC - B. Although every extension of an A-order is
an L-order, the converse is not true. For example P C_ Q C - Q C — P is
an L-order, but not the extension of an A-order. It is known that A-ordered
resolution and factoring is complete since ([KHG69]).

2 Non-Liftable Orderings

We will now give the two completeness theorems for non-liftable orderings. For
the proof we develope the resolution games in the next section. After that we
prove the two completeness theorems in Section 5.

Theorem 2.1 Let C be an L-order, such that

REN If A C B, then for all renamings A©; of A, and BO> of B, we must have
AO; C B@Q,

SUBST For every A and strict instance AO of A it must be that A© C A.

Then the combination of C-ordered resolution and factoring is complete.

Theorem 2.1 implies the completeness of resolution with any relation that is
included in an order satisfying the conditions. An example is the ordering defined
by L1 T Lo iff #L1 > #Ls. Another possibility is an alfabetic, lexicographic
ordering on term structure.

Theorem 2.2 Let C be an order, such that

REN if A and B contain exactly the same variables, and A C B, then for all
substitutions ©; and ©3, such that (1) AO; is a renaming of A, (2) BO,
is a renaming of B, (3) A©; and BO; have exactly the same variables, we
have A©; C BO,.

Then C-ordered resolution with factoring is complete for every set of decompo-
sed clauses.

It is impossible that p(X,Y) C ¢(X,Y) and ¢(Y,X) C p(X,Y). This would
imply p(X,Y) C p(Y, X), which would imply p(X,Y) C p(X,Y).

The <, order, together with the E+'-class, defined in ([FLTZ93]), pp. 82,
satisfies the conditions, mentioned here. There is no place for details here, but
the check is easy.

3 Resolution Games

In this section we define resolution games and give a completeness result for
resolution games. The proof is given in the next section. We need a precise con-
trol over the factoring rule. Therefore it is needed to define clauses as multisets
instead of ordinary sets. So we define:

Definition 3.1 A multiset is a set, which is able to distinguish how often an ele-
ment occurs in it. We write [A4,. .., A] for the multiset containing A4, ..., A,.
Unlike in the set {A;,...,A,} it is meaningful to repeat elements in the list.
The union of 2 multisets S U Sy is obtained by summing the number of occur-
rences for each element. The difference set of 2 multisets S1\S3 is obtained by
subtracting for each element, the number of occurrences in So from the number
of occurrences in Sp. If this results in a negative number then the number of
occurrences is put to 0.

Definition 3.2 A (binary) resolution game is an ordered triple, G = (P, A, <),
where

e P is a set of propositional symbols. We define a literal of G as a proposi-
tional symbol p or its negation — p.

e A is a set of attributes,

e < is an order on £ x A, where L is the set of literals. It must be the case
that < is well-founded on £ x A.

An indezed literal is a pair L : a consisting of a literal L and an attribute a € A.
A clause of G is a finite multiset of indexed literals of G.

The meaning of a clause is the disjunction of its literals. So the clause
[a1 : A1,...,ap 0 Ap] has as meaning a; V - - - V a,. Accordingly we call a set of
clauses satisfiable if the set of its meanings is satisfiable. We define:

Definition 3.3

Resolution Let ¢; and ca be two clauses, such that (1) ¢; can be written as

c1=[r:Ri)Ular: A1,...,ap: Ap], and ¢z can be written as
ca=["r:RaJU[by: B1,...,bq: By, (2) r: Ry is <-maximal in ¢, and
- 7 : Ry is <-maximal in ¢o. Then [a1 : A1,...,ap : Ap]U b1 : B1,...,b4:

B,] is a resolvent of ¢; and cs.

Factoring Let ¢ = [a1 : A1,...,ap : Ap] be a clause, such that: (1) a1 : A is
maximal in ¢, (2) a1 = a;, for an i > 1. Then c\[a; : 4] is a factor of c.

Reduction Let ¢ = [a1 : A1,...,a, : Ap] be a clause. A reduction of ¢ is
obtained by replacing zero, one or more a; : A; by an a; : A}, such that
a; + A} < a; : A;. Tt is also possible to delete literals in the clause. (Note
that there is no maximality restriction here).

We can now define how the game is played.

Definition 3.4 Let C be a finite set of clauses of a resolution game G. There
are two players.

The opponent The opponent will try to derive the empty clause by computing
factors and resolvents.

The defender The defender will try to prevent this by replacing newly derived
clauses by reductions.

There are two sets G and N. The set G contains all the derived clauses, and
N contains the clauses of the last generation. The game starts with G = (§, and
N = C. Then:

1. The defender can replace any clause in N by a reduction. So he can make
0, 1 or any finite number of replacements. When the defender is finished
N is added to G. N is emptied.

2. Now the opponent can compute any ordered resolvent, or ordered factor
of clauses in GG. The result is put in N. He can derive as many clauses as
he wants in one turn, but he cannot use the new clauses because they are
in N. When he is finished the defender is on turn again.

The game ends when the opponent succeeds in deriving the empty clause. In
that case the opponent is the winner. If the defender succeeds in preventing this,
the defender is the winner. Unfortunately for him, he will not enjoy his victory
at a finite time, because in this case the game may last forever.

We have defined the resolution game in such a way that the defender can only
affect newly derived clauses. We could also have defined the resolution game
in such a way that the defender is allowed to reduce any clause. In that case
Theorem 3.5 still holds.

The resolution game is different from lock or indexed resolution [Boyer71], be-
cause in lock resolution the resolvent inherits the indices from the parent clause
without any changes. We have the following theorem:

Theorem 3.5 Let C be a set of clauses of a resolution game G. (1) If C is
unsatisfiable, then the opponent of the resolution game can play in such a way
that he is guaranteed to derive the empty clause at a finite moment. (2) If C is
satisfiable then the defender can play in such a way that the opponent will not
derive the empty clause.

We call the first part of the theorem completeness, and the second part soundness.
The proof of the soundness is not difficult. All the actions of the opponent are
semantically sound. The defender can play in such a manner that his actions are
sound, by never deleting a literal. This guarantees that the empty clause will

not be derived if C is satisfiable. The proof of the completeness is more difficult.
We give the main part of it in the next section. Here we only show that it is
sufficient to consider resolution games G = (P, A, <), in which < is total. We
have the following lemma.

Lemma 3.6 Every well-founded order is contained in a well-order.

So for every resolution game G it is possible to obtain a resolution game G’ by
replacing < by a well-order <’ . Then we have:

COPY1 Every resolvent, or factor that can be computed with G’, can also be
computed with G. This is because a literal, that is maximal w.r.t to <" will
certainly be maximal w.r.t. <.

COPY2 Every reduction that can be made with G is also a reduction with G'.

We will show that the completeness of game G’, implies the completeness of G.
It is for this reason that it is sufficient to consider games in which the order is
total. An opponent of a set of clauses C' playing G can simultaneously play a
game using game G’ as defender. He will copy the moves from the opponent of
G’ to G, and copy the moves from the defender of G to G’. This goes as follows:
The opponent of a set of clauses C with game G starts a simultaneous game as
defender of C using game G’. Then he proceeds as follows:

1. He waits for the defender on game G to make his reductions.

2. After this he can imitate the reductions made by the defender on G onto
G'. This is possible because of COPY2.

3. Then he waits for the opponent of G’ to compute his factors and resolvents.

4. When the opponent of game G’ is finished he imitates his moves on G. This
is possible because of COPY1. After this he continues at 1.

Because the opponent of G’ will derive the empty clause, if the initial clause
set is unsatisfiable, the opponent of G will derive the empty clause, and win the
resolution game. So it is sufficient to prove the completeness of resolution games
for those resolution games, in which < is a well-order. We will do this in the
next section. We will end with an example:

Example 3.7 Let < be defined from:
—c:0< b:0< —“a:0< =—a:1< b:1< c:0< —c:1<
a:0< c:1< —c:2< =b:0< —a:2< —2b:1< b:2<
c:2< -b:2< a:1< a:?2.

Let C be the following unsatisfiable set of clauses:
b:2,¢:2,a:2] [¢:2,mb:2] [-¢:2] [~a:2,b:2].

The clauses are sorted according to < . So each last literal is the selected literal.
If the defender doesn’t make any reductions then the resolvent [a : 2,¢: 2] is
possible. This clause can be reduced to for example [7a:0,c¢: 0], [c: 1,7 a: 2],
or [ma:0,c:2]. The defender can also replace the initial clause [c: 2,- b : 2]
by [- b: 1,c: 2]. In that case the only possible resolvent is [— b : 1]. Whatever
reductions the defender makes, the emtpy clause can always be derived.

4 Completeness of Resolution Games

In this section we give the completeness proof of the resolution game. For this
proof we need the following notion:

Definition 4.1 Let C be a set of clauses. We call C closed iff

1. For every ci,co € 6_, such that ¢; and ¢y have a resolvent d, there is a
reduction d’ of d in C.

2. For every c € C, such that ¢ has a factor d, there is a reduction d’ of d in

C.

C'is a closure of a clause set C if C' contains a reduction of every ¢ € C.

We will prove completeness of resolution games by showing that every closed set
that does not contain the empty clause, is satisfiable. This implies completeness.
Suppose that this holds, while resolution games are not complete. There is a
clause set C, of a resolution game G, such that C' is unsatisfiable, and whatever
the opponent does, the defender can block derivation of the empty clause. Then,
when the opponent produces all possible clauses in each move, the conjunction
of the successive generations C' = Ui>o Gi is a closure of C. By assumption this
set does not contain the empty clause. Then C' must be satisfiable, and this
implies that C' is satifiable. This is a contradiction.

We use an adaptation of a proof in [Bezem90], of the completeness of A-ordered
hyperresolution. The proof is probably a bit dissapointing, because it does
not use the game-structure, but it is with less technicality than the proof in
([Nivelle94b]). The proof in ([Nivelle94b]) is based on games. We adapt the
proof in two steps for the clarity of the presentation. We first give the proof for
the case in which the defender never makes a reduction. In that case we have
proven the completeness of a variant of lock resolution. After that we make some
more adaptations to obtain the completeness of the full resolution game. We will
show that every closed set of clauses has a formal model, and that this implies
that every closed set of clauses has a model.

Definition 4.2 Let C be a set of clauses of a resolution game G. We define
a formal model M as a set of indexed literals, which (1) does not contain a

complementary pair, = a : i1, and a : i, (2) and which contains an indexed
literal of every clause.

We have the following simple lemma:
Lemma 4.3 If a set of clauses C' has a formal model M, then it has a model.

This can be seen by taking the interpretation I, defined by: I(A4) =t iff an A : ¢
occurs in M, for each atom A.

4.1 Completeness of Restricted Resolution Games

If we consider games in which the defender never makes a reduction we have
that d = d’, in both cases of Definition 4.1.

Definition 4.4 Let C be a closed set of clauses. We define an intersection set
of C, as a set of indexed literals I, s.t. I contains a literal of every c € C.

We will construct an intersection set I, s.t.

MAXUNIQUE for every A : a € I, there is a clause ¢ € C, such that A : a
is maximal in ¢, A : @ is not repeated in ¢, and there is no other indexed
literal of ¢ in I.

It is the case that if a certain set I is an intersection set of a set of clauses C' and
I satisfies MAXUNIQUE, then I is a formal model of C. This is seen as follows:
Suppose that I contains a complementary pair A : a; and = A : as. Then there
are clauses ¢; and co such that A : a; is maximal in ¢; and ¢;\[4 : a;] N T = 0.
and - A : ay is maximal in ¢z and c2\[= A : az] NI = (). Now because C is closed
under resolution, C' contains d = (c1\[A4 : a1]) U (c2\[- A : az]). Then dNT =0
and this contradicts the fact that I is an intersection set.

So what remains to show is that there exists an intersection set, satisfying
MAXUNIQUE. We will construct this intersection set.

Lemma 4.5 Let g be a closed set (in which resolvents and factors are never
reduced), s.t.) & C. Then there exists an intersection set I of C, that satisfies
MAXUNIQUE.

Proof: Because < is a well-order on the set of indexed literals we can use
recursion. Let A be the ordinal length of < . Let L, be the a-th indexed literal,
for 0 < a < A. With I, we will denote the construction of the set I up to a.
We construct the I, as follows:

1. I =0,

2. For any limit ordinal , let 1o = g, 13-

3. For any successor ordinal o, put I = In_1 if In—1 U{Lg | a < 8 < A} is
an intersection set. Otherwise let I, = Io—1 U{Lq—1}. (So at stage a we
decide whether or not L,_; is added)

4. Finally put I = I,.

We will show that [is an intersection set satisfying MAXUNIQUE.

Suppose that I is not an intersection set. Then there is a clause ¢ € C, such that
INc=0. Let o be the index of the maximal literal in c¢. So L, is the maximal
literal of c. Then at stage o+ 1 of the construction, I, U{La+1, Lat2,- -} is not
an intersection set, and L., would have been added to I,. This is a contradiction.
It remains to prove that I satisfies MAXUNIQUE. Suppose I does not. Then I
contains an indexed literal A : @ = L,_1 such that either

1. L,_1 does not occur uniquely in a clause ¢ € C. Then at stage a of the
construction of I, L,_1 would not have been added.

2. Lq—1 does occur uniquely in some clauses, but nowhere as maximal ele-
ment. In that case the set {Lg | o < § < A} contains all maximal elements
of clauses in which L,_; uniquely occurs, and L,_; would not have been
added at stage a.

3. Lq—1 occurs uniquely and maximally in a clause ¢, and as maximal element,
but is repeated. In that case there is a (possible iterated) factor of ¢ in C,
in which L,_1 is not repeated.

End of proof

4.2 Completeness of Full Resolution Games

We will now adapt this proof to a completeness proof for full resolution games.
The first problem that we encounter is that the argument below the definition of
MAXUNIQUE does not work anymore, because the resolvent may be reduced.
We have to replace Definition 4.4 by

Deiinition 4.6 Let C be a closed set of clauses. We define an intersection set
of C' as a set of indexed literals, s.t.

1. If A:ay € I, then for all A : as, such that A:a; < A:as, also A:as € 1.
2. From every clause ¢ € C, there is an element in I.
Then we can replace property MAXUNIQUE by

MAXUNIQUE2 For every A : a; € I, for which there is no A : az € I, such
that A : as < A : ay, there is a clause ¢ € C, such that A : aq is maximal
in ¢, A:apis not repeated in ¢, and there is no other indexed literal of I
in c.

Now it is possible to repeat the argument below the definition of MAXUNIQUE
with a few adaptations. Suppose that an intersection set I of C' which satisfies
MAXUNIQUE2, contains a complementary pair A : a; and = A : as. Then
I contains minimal elements A : af and = A : a} for which A : o} < A: a1
and = A : al, < = A : ag. For these literals there must be clauses c¢; and cq,
such that A : af is maximal in ¢;, = A : af is maximal in ¢, and ((c1\[4 :
a}])U(e2\[~ A : ab])) NI = 0. Then C contains a reduction d’ of this resolvent.
It must be the case that d’ NI = @, because of property 1 in Definition 4.6, and
this contradicts property 2 in Definition 4.6. So it remains to show that there
exists an intersection set, satisfying MAXUNIQUE2.

Lemma 4.7 Let C be a closed set of clauses, for which §) ¢ C. There exists an
intersection set I of C, that satisfies MAXUNIQUE2.

Proof: Let C; C C be the set of clauses of C' with non-repeated maximal
elements, i.e., the set of clauses that does not have a factor. We use the same
recursion as in the proof of Lemma 4.5. Let A\ be the length of <. Let L, be
the a-th indexed literal, for 0 < o < A. Let I, be the construction of I up to «,
(here 0 < o < X) The construction goes as follows:

1. In =10,
2. For any limit ordinal o, put Io, = Ugs_,, I5-
3. For any successor ordinal o do
(a) If there is a literal A : @’ € I,_1, such that Lo,—1 = A : a and
A:ad <A:a,then I, =11 U{Ly-1}.
(b) Otherwise (if no such literal exists), then
i. if I,—1 U{Lg | @« < B < A} is an intersection set of Cy, then
Ioz = la-1-
ii. otherwise I, = In—1 U{Lo-1}-
4. Finally we define I = I.

It is not difficult to see that I is an intersection set of C, because every in-
tersection set of Uf is an intersection set of C. We must show that I satisfies
MAXUNIQUE2. Let A : a1 be such that there is no A : ay € I, for which
A :as < A: a; and despite this, there is no clause ¢ € ﬁf, such that A : aq is
maximal in ¢, and A : a; is the only literal of I in c¢. Let o be the moment at
which adding of A : a7 is decided, so A : a1 = Lq_1. There are the following
possibilities:

1. L,—1 does not occur uniquely in a clause ¢ € 5f. Then at stage o, Lo—1
would not have been added.

2. L1 does occur uniquely in some clauses in C'f, but nowhere as maximal
element. In that case Io_1 U{Lg | o < 8 < A} is an intersection set, and
Lo_1 would not have been added.

3. La—1 does occur uniquely and maximally in a clause ¢ € Cy, but is repe-
ated. This is impossible because of the nature of C'y.

End of proof

We will give two examples demonstrating that resolution games are not complete
when (1) the condition that A : ¢’ < A : a in reductions, or (2) the condition
that < is well-founded, is dropped. (So for example replacing @ : 1 by a: 2 is a
valid reduction in the first case)

Example 4.8 Define G = (P, A, <) from P = {a,b}, A =N, and
l1:mn1 <3 :no iff ny < no. The clause set C' =

[@:0,b:1] [~b:0,a:1] [a:0,-b:1] [b:0,7a:]1]
[@:0,—ma:1] [b:0,7b:1]

is closed and unsatisfiable, but does not contain the empty clause.

Now replace N’ by Z. Then < is not well-founded anymore. Let the initial
clause set be equal to C. The defender can always reduce in such a manner that
newly derived clauses are sorted in the same way as in C. Therefore he can block
derivation of the empty clause.

5 Application of Resolution Games

We are now in the position to prove Theorems 2.1 and 2.2. For both theorems the
strategy is the same. Each unsatisfiable clause set has a finite set Cy of ground-
instances, which is unsatisfiable. From this non-satisfiable set we construct the
resolution game, by taking all the ground literals in C;. We use the attributes
of the resolution game to indicate the non-ground literals by which the ground
literals are represented. Then it is possible for the defender to make his moves
in such a manner, that the resulting game corresponds to the behaviour of the
non-liftable ordering. Because the empty clause will be derived with the game,
the empty clause will be derived with the non-liftable ordering.

We begin with Theorem 2.1. Assume that a set of clauses C' is unsatisfiable.
By Herbrands theorem there exists a finite set Cy = {¢i,...,¢,} of clauses
in C, such that Cy is unsatisfiable. Let Cyseq = {c1,...,¢n} € C be the set of
clauses for which each ¢; is an instance of ¢;. (Here Clseq is written with possible
repetitions)

Now construct the following resolution game. Define G = (P, A, <), where

e P is the set of ground atoms occurring in Cy. P is finite, because C is
finite. (We will denote the set of literals that can be formed from elements
of P as L).

e We define A as the set of literals, s.t. each L € A

1. has an instance in a clause of Cy, and

2. is an instance of a literal, occurring in a clause in Cygeq.
e < is defined as follows. (a1 : A1) < (as : Ag) if Ay C As.

We will show that G is a valid resolution game. For this we have to show that
< is an order on £ x A, and that < is well-founded on £ x A. The first follows
trivially from the fact that C is an order.

For the second let us define a1 : A1 = ag : As if a3 = a9, and A; is equivalent
with Ao (i.e. they are an instance of each other).

This is an equivalence relation with only a finite number of equivalence-classes.
< will not distinguish elements of these classes. Then, because every sequence
of < must be finite, < is well-founded.

We will now describe how the resolution game is played.

e The resolution game starts with the following set of clauses: For every
¢i ={A1,..., Ay}, the initial set Cyqme contains a clause
[A1©: A;,...,A,0 : A)]. Here O is a substitution, such that ¢;© =¢;. In
his first move the defender does not affect the indices. Now we have:

INSTANCE There exists, for each initial clause [a1 : A1,...,a, : Ap]
one substitution O, such that for all a; : A;, we have 4;0 = a;.

This property will be preserved throughout the game by the defender.

e When the opponent derives a clause ¢ = [a1 : A1,...,a, : Ay, by resolu-
tion, and p : P;, and — p : P> are the literals resolved upon in the parent
clauses, the defender reacts by replacing all A; by A;0, where © is the mgu
of = P; and P». After this he deletes all repeated occurrences of indexed
literals in the result.

e When the opponent derives a clause ¢ = [a1 : A1,...,a, : 4,], by facto-
rization, and p : P;, and p : P, are the literals factored upon, then the
defender reacts by replacing all A; by A;0, where O is the mgu of P; and
P,. Afther this he deletes all repeated occurences of indexed literals in the
result.

This is valid strategy because property INSTANCE will be preserved throughout
the game by the defender. The defender will lose the resolution game. From this
game a [-ordered refutation of C' can be extracted, by replacing each clause
[a1 : A1,...,ap : Ap] by the clause {A;,..., Ay}
We can now prove Theorem 2.2. Let C be a unsatisfiable set of decomposed
clauses, let Cyseq and Cy be defined as in the proof of Theorem 2.1.

The resolution game will be a little different. G = (P, A, <). P and A are
constructed in the same way, but < is constructed different.

e < is defined from: (a; : A1) < (a2 : Az) if one of the following holds

1. The complexity of the instantiation (A; becomes aq) is strictly less
than the complexity of the instantiation (A2 becomes as)

2. The complexity of the instantiation (A; becomes a1) is equal to the
complexity of the instantiation (As becomes as), A1 and As have the
same number of variables. Then there exists a renaming A1 0 of Aj,
such that A4;0© has the same variables as A,. Then it must be the case
that: A1© T As. Note that if these conditions hold for one ©, such
that A;© has the same variables as As, then they hold for any such
©’, because of REN in Theorem 2.2.

We will show that this is a valid resolution game. In order to show that the
relation < is a well-founded order, it is sufficient to show that the relations
mentioned under (1) and (2) are well-founded orders. It is easily seen that the
relation under (1) is a well-founded order. For (2) it is easily checked that (2)
defines an order.

It remains to show that the ordered defined under (2) is well-founded. In the same
way as in the proof of Theorem 2.1 an equivalence relation = can be defined.
< will not distinguish equivalent indexed literals under this relation. Now =
has only a finite number of equivalence classes. Because of this the ordering
defined under (2) is well-founded, and hence the composition of (1) and (2) is
well-founded.

Now the resolution game proceeds in exactly the same way as in the proof of
Theorem 2.1, and a C-ordered refutation of C' can be extracted from this game
in the same manner.

6 Conclusions and Future Work

We have shown that there exists a large class of non-liftable orderings, with
which resolution and factoring is complete. We have proven that the <,-order
is complete for the E’+4-class, which was an open problem in ([FLTZ93]). We
do not know to which extent the orderings are compatible with subsumption.
Also we do not know what happens when condition SUBST in Theorem 2.1 is
dropped. Counterexample 4.8 cannot be reproduced.

7 Acknowledgements

I would like to thank Trudie Stoute for her advice on English and Tanel Tammet
for his improvements in the formulation of theorem 2.1.

References

[Baum92]

[BGYO]

[Bezem90]

[Boyer71]

P. Baumgartner, An ordered theory calculus, in LPAR92, Springer
Verlag, Berlin, 1992.

L. Bachmair, H. Ganzinger, On restrictions of ordered paramodu-
lation with simplification, CADE 10, pp 427-441, Keiserslautern,
Germany, Springer Verlag, 1990.

M. Bezem, Completeness of resolution revisited, Theoretical com-
puter science 74, pp. 227-237, 1990.

R.S. Boyer, Locking: A restriction of resolution, Ph. D. Thesis,
University of Texas at Austin, Texas 1971.

[ChangLee73] C-L. Chang, R. C-T. Lee, Symbolic logic and mechanical theorem

[FLTZ93]

[Joy76]

[KH69]

[Nivelle94b)

[Robins65)

[Tamm94]

[Zam72]

proving, Academic Press, New York 1973.

C. Fermiiller, A. Leitsch, T. Tammet, N. Zamov, Resolution me-
thods for the decision problem, Springer Verlag, 1993.

W.H. Joyner, Resolution Strategies as Decision Procedures, J.
ACM 23, 1 (July 1976), pp. 398-417.

R. Kowalski, P.J. Hayes, Semantic trees in automated theorem
proving, Machine Intelligence 4, B. Meltzer and D. Michie, Eding-
burgh University Press, Edingburgh, 1969.

H. de Nivelle, Resolution games and non-liftable resolution or-
derings, Internal report 94-36, Department of Mathematics and
Computer Science, Delft University of Technology.

J.A. Robinson, A machine oriented logic based on the resolution
principle, Journal of the ACM, Vol. 12, pp 23-41, 1965.

T. Tammet, Seperate orderings for ground and non-ground literals
preserve completeness of resolution, unpublished, 1994.

N.K. Zamov: On a Bound for the Complexity of Terms in the
Resolution Method, Trudy Mat. Inst. Steklov 128, pp. 5-13, 1972.

