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In many environmental monitoring applications, since the data periodically sensed by wireless sensor
networks usually are of high temporal redundancy, prediction-based data aggregation is an important
approach for reducing redundant data communications and saving sensor nodes’ energy. In this paper,
a novel prediction-based data collection protocol is proposed, in which a double-queue mechanism is
designed to synchronize the prediction data series of the sensor node and the sink node, and therefore,
the cumulative error of continuous predictions is reduced. Based on this protocol, three prediction-based
data aggregation approaches are proposed: Grey-Model-based Data Aggregation (GMDA), Kalman-Filter-
based Data Aggregation (KFDA) and Combined Grey model and Kalman Filter Data Aggregation
(CoGKDA). By integrating the merit of grey model in quick modeling with the advantage of Kalman Filter
in processing data series noise, CoGKDA presents high prediction accuracy, low communication overhead,
and relative low computational complexity. Experiments are carried out based on a real data set of a tem-
perature and humidity monitoring application in a granary. The results show that the proposed
approaches significantly reduce communication redundancy and evidently improve the lifetime of wire-
less sensor networks.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks consist of a large number of low-cost
sensor nodes which form a multi-hop ad hoc network through
wireless communication [19]. In general, sensor nodes rely on bat-
tery only and once deployed, they are usually unable to be re-
charged. Therefore, power is a critical resource in wireless sensor
networks. Reducing energy consumption is of great importance
in improving the lifetime of wireless sensor networks.

In wireless sensor networks used in environmental monitoring,
a large number of sensor nodes collect information and return col-
lected information to a base station(s) where it is processed, ana-
lyzed, and used. Since the sensor node is energy constrained and
its valid communication distance is limited, it is infeasible for all
the sensors to transmit data directly to the base station (or sink
node). In most environmental monitoring applications, sensed data
may be of high temporal or spatial correlation, and applications
can tolerate some loss of data accuracy. Therefore, it is possible
to use a data aggregation approach to process raw data at the sen-
sor nodes or at intermediate nodes to reduce packet transmissions
and save energy [3,20].
ll rights reserved.
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Since the data generated by sensor nodes during continuous
sensing periods usually are of high temporal coherence, it indicates
there are redundant data in the continuous data sequence, which
causes unnecessary data transmission and energy consumption.
In many environmental sensing applications, e.g. granary monitor-
ing, data flow is many-to-one through a reverse multicast tree,
from leaf sensor nodes to a small number of sink nodes. In these
cases, transmitting redundant data will incur a serious waste of
communication bandwidth and energy. The efficiency of data col-
lection will decrease when each node sends all data to the sink
node. Furthermore, the difficulty of scheduling at the link layer will
increase and cause more frequent collisions [20]. Data aggregation
techniques which exploit temporal correlation of the sensed data
are needed to resolve these two problems.

Model-driven data aggregation approaches take advantage of
data coherence to remove redundancy and reduce transmissions
among sensor nodes [2]. They are effective in improving energy
efficiency and extending the lifetime of the wireless sensor net-
work [2]. In-network processing usually aggregates data at inter-
mediate nodes between the sources and the sinks by using
aggregation functions (such as maximum, minimum, sum and
average). However, using aggregation functions causes a loss of
data resolution. Furthermore, the difference between the pro-
cessed data and the original data may be too large to tolerate in
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some environmental sensing applications. For example, granary
monitoring must continuously gather temperature and humidity
data from every sensor node with relatively small tolerated-error.
Xin et al. [21] analyze some more complicated aggregation ap-
proaches, including data mining and multiple-source-queries rout-
ing. These approaches can provide higher accuracy. However, they
consume a large amount of computational power and storage re-
sources, because their pre-processing stages require O(n2d) trans-
missions, where n is the number of nodes and d is the diameter
of the network [21]. Therefore, these complex approaches are
infeasible for most environmental monitoring applications.

This paper proposes a novel prediction-based data collection
protocol to reduce redundant data transmission. A double-queue
mechanism is designed to synchronize the predicted data series
in the sensor node and the sink node, and therefore, the mecha-
nism avoids the cumulative error of continuous predictions. Based
on this protocol, we design three prediction-based data aggrega-
tion approaches (GMDA, KFDA, and CoGKDA). The proposed ap-
proaches are used to predict the data of the next period at both
sensor and sink ends based on the same small number of recent
data items. When data of the next period is sensed, the sensor node
compares the predicted data with the sensed data. The sensor node
does not forward the sensed data to the sink node when the predic-
tion error is less than a pre-configured threshold value. In this case,
the sink node considers the predicted data as the sensed data in
current sensing period. Therefore, unnecessary transmission is
eliminated and energy is saved. The sensor node must send the
sensed data to the sink node when the prediction error is out of
the pre-configured threshold. The pre-configured threshold is a
tunable parameter for users to control the accuracy of predicted
data. It is inversely proportional to data accuracy. Experiments
and evaluations demonstrate the proposed approaches can signif-
icantly reduce communication redundancy and improve the net-
work lifetime in environmental monitoring applications.

Our contribution can be summarized as follows:

� A prediction-based data collection protocol is proposed to spec-
ify the cooperative processes between sensor node and sink
node, in which a novel double-queue mechanism is designed
to synchronize the prediction data series in the sensor node
and the sink node, hence cumulative error in continuous predic-
tions is avoided.
� By integrating the merits of the grey model in quick modeling

with the advantages of Kalman Filter in processing data series
noise, we have designed the CoGKDA algorithm for environmen-
tal monitoring wireless sensor networks. CoGKDA exhibits high
data accuracy, low communication overhead, and relatively low
computational complexity. Furthermore, CoGKDA can extend
the sensor nodes’ lifetime by reducing data transmissions redun-
dancy and conserving power during continuous data collections.

The rest of the paper is organized as follows: In Section 2, state-
of-the-art methods in data aggregation are reviewed. Section 3
presents a novel prediction-based data collection protocol. Section
4 describes the Grey-Model-based Data Aggregation approach. An-
other data aggregation approach based on the Kalman Filter is gi-
ven in Section 5. In Section 6, a combined data aggregation
approach and its concrete algorithm are presented in detail. Exper-
iments and performance evaluation are presented in Section 7 and
concluding remarks are made in Section 8.
2. Related work

There has been a lot of work done in the field of data-driven
techniques for energy conservation in wireless sensor networks.
Anastasi et al. [4] presents a systematic and comprehensive taxon-
omy of the energy conservation scheme in wireless sensor net-
works. Prediction-based data aggregation approaches are
overviewed and classified into three types: stochastic approaches,
time series forecasting, and algorithmic approaches.

Stochastic approaches exploit the probabilistic and statistical
properties of sensed data. Deshpande et al. [5] propose a data pre-
diction scheme based on a probabilistic model to reduce data
transmission and reduce the quantity of data acquisition. A repre-
sentative stochastic approach, named KEN [6], uses dynamic prob-
abilistic model to minimize communication from the sensor node
to the base station. The data aggregation process does not require
communication between the sensor node and the base station ex-
cept when the sensor node senses anomalous data. KEN naturally
accommodates applications that are based on event reporting or
anomaly detection. An extension of KEN is presented in [7], where
a Dynamic Probabilistic Model (DPM) is exploited to implement a
probabilistic database view. The main drawback of this class of
techniques is that they inherently have relative high computa-
tional cost. To improve compression of the data communicated,
some stochastic models exploit sophisticated spatial correlations
of data in neighboring nodes. However, the more sophisticated
the model, the more communications are required among sensor
nodes themselves for coordination [2]. Therefore, possible
improvements in this direction may focus on deriving simplified
distributed models for obtaining the desired trade-off between
the energy efficiency and the data accuracy according to users’
requirements.

The most representative time series methods include Moving
Average (MA), Auto-Regressive (AR) and Auto-Regressive Moving
Average (ARMA) models. These models are quite simple, and can
be used in many practical cases. Probabilistic Adaptable Query sys-
tem (PAQ) [8] uses a combination of AR models to probabilistically
answer queries. This model is used globally to predict the readings
of individual sensors at the sink node, and locally to detect when
sensor nodes produce outlier readings or when the model ceases
to properly fit the data at a sensor node. The Similarity-based
Adaptive Framework (SAF) [9] uses a simple linear time series
model that consists of a time-varying function, also called trend
component, and a stationary AR component representing the diver-
gence of the phenomenon from the time-varying function over
time. SAF can detect both outliers and inconsistent data. Le-Borgne
et al. [10] propose an adaptive multi-model selection mechanism,
which uses a lightweight, online algorithm that allows a sensor
node to autonomously determine a satisfactory model from a set
of candidate models. As sensed data are collected, based on a
weight metric, it is possible to select the model that offers at each
instant the highest achievable communication savings. Time series
forecasting methods can provide sufficient accuracy, and their
implementation in sensor devices is simple and lightweight. How-
ever, it is difficult to find an appropriate model that can tackle the
long-term trend and short-term noise of data sequences simulta-
neously while providing a tunable trade-off between energy effi-
ciency and data accuracy.

Algorithmic approaches aggregate data by exploiting the
heuristic or behavioral characteristics of the sensing phenomena.
PREMON [10] views a snapshot of the sensor network as an image
– the readings of individual sensors corresponding to the intensity
value of pixels in the image. Monitoring operations are considered
as receiving a sequence of the snapshots on a continuous basis.
When the sink node gets the initial reading from a sensor node,
it computes the model by evaluating correlations between
macro-blocks and deriving a motion vector relative to each block.
After obtaining the model, the sensor node sends the model back
to the sink node. From this time on, the sensor node compares each
sample with the prediction derived from the model. When sensed
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data are close to the prediction within a user-specified tolerance,
the sensor node does not transmit the data to the sink node. The
model is periodically updated. Goel et al. [11] propose a buddy pro-
tocol to extend the PREMON approach by establishing a collabora-
tive buddy relationship between sensor and sink nodes. It is
suitable for cluster structured wireless sensor networks. By includ-
ing a periodic polling scheme in cluster operations, the proposed
buddy protocol can guarantee that each node in the network is
reachable within the specified maximum delay constraints. Han
et al. [12] present an Energy Efficient Data Collection (EEDC) mech-
anism for data prediction. EEDC is effective in active inquiry-based
applications, in which each node associates an upper and a lower
bound, whose difference represents the accuracy of the sensed
data. These bounds are sent to the sink node, which stores them
for each sensor node in the network. These bounds can be updated
according to source-initiated and sink-initiated requests. However,
the algorithmic techniques are too complex in computation and
may also incur a great deal of communication overhead [2].

Compared to the above mentioned data aggregation methods,
the data collection protocol and data aggregation approaches pro-
posed in this paper have the following advantages. (1) They can pro-
vide high prediction accuracy without a large amount of training
data and a priori knowledge of the distribution of sensed data, and
eliminate more redundant transmissions. (2) They are more adap-
tive to dynamic changes in the distribution of sensed data. In addi-
tion, they are more scalable and structure-free, therefore, they can
be used to couple with other route or topology-based data aggrega-
tion protocols. (3) They are relatively lightweight in terms of compu-
tational complexity to resource-constrained sensor nodes.

3. Prediction-based data collection protocol

In the application layer of a wireless sensor network, data col-
lection can be classified into three schemes: Pull, Push, and Integra-
tion of Pull and Push. In the Pull scheme, the sensor node acquires
data from physical layer and caches it locally. The cached data is
collected only when the sensor node receives a query from the sink
node. In this case, the sensor network looks like a database. In the
Push scheme, the sensor node periodically senses data and imme-
diately delivers it to the sink node. The sink node acts as a passive
data collector. The Integration scheme provides capabilities of ac-
tive data pushing and passive data acquisition by integrating the
Pull scheme with the Push scheme.

In this paper, a prediction-based data collection protocol is pro-
posed for the Push scheme. The proposed protocol is different from
data collection protocols in the MAC layer, since it only focuses on
the prediction-based cooperation between the sensor node and the
sink node without taking into consideration network topology,
node density, link quality and radio transceiver parameters. In gen-
eral, the main challenges in designing a prediction-based data col-
lection protocol include: (1) how to keep the data series at the sink
node and the sensor node synchronous. In our approaches, both
sensor node and sink node must use the same data series and
the same prediction algorithm. However, the sensor has real
sensed data while the sink node does not. The reason is that some
sensed data have not been sent to the sink node since related suc-
cessful predictions are done previously; (2) how to avoid cumula-
tive error in continuous predictions. Since the data used for
performing predictions may contain predicted value, cumulative
error will inherently be produced; and (3) how to differentiate suc-
cessful prediction and data loss when the sink node does not re-
ceive the sensed data. When the sensed data is out of threshold,
it must be sent to the sink node. Nonetheless, the sink node may
fail to receive the sensed data due to packet loss induced by unre-
liable communication. From the viewpoint of the sink node, this
case is very similar to the successful prediction scenario.
To solve above problems, the proposed cooperative data collec-
tion protocol is presented in detail as follows.

Prerequisites:

� (1.1) Each sensor node’s lifetime is divided into equal periods. A
sensor node produces only one sensed data in one period.
� (1.2) Both the sink node and the sensor node use the same pre-
diction algorithm. The sink node is assumed to have sufficient
computing power, storage, and energy.
� (1.3) A reliable data delivery is defined as an end-to-end data

intercommunication in which the receiver must send an
acknowledgement message back to the sender.

Initialization:

� (2.1) The sink node broadcasts its acceptable prediction error
threshold e and cumulative error threshold h to all sensor nodes
according to the requirement of specific application by using
reliable data deliveries. e and h are tunable parameters, pre-con-
figured at the sink node. When their values are modified, the
fresh e and h must be re-broadcast to all sensor nodes.
� (2.2) Each sensor node constructs two data queues, actual data
queue (ADQ) and predicted value queue in sensor end (PVQsensor).
ADQ stores actual data series and is used to control cumulative
error. PVQsensor stores the data series that is used to do the same
predictions in both the sensor node and the sink node. PVQsensor

may contain predicted data value. This is called the Double
Queue Mechanism. The length of ADQ and PVQsensor are equal
and both are specified by the applied prediction algorithm
(denoted as l). The sink node constructs a corresponding queue
for each sensor node, called PVQsink, PVQsink(i) = PVQsensor(i) for
sensor node i.
� (2.3) Each sensor node stores the first l sensed data into its ADQ

and PVQsensor, and sends them to the sink node to construct
PVQsink via reliable delivery. Let xj denote the data item in a
queue. In the initial stage, ADQ(i) = PVQsensor(i) = PVQsink(i) =
{x1,x2, . . . ,xl} for an arbitrary sensor node i.

Prediction:

� (3) Let xl+1, x0lþ1 and x00lþ1 denote the actual sensed data, predicted
value using ADQ, and predicted value using PVQsensor(i), respec-
tively. It is noticeable that the sink node can also obtain x0lþ1

from the PVQsink(i) queue. If absðx00lþ1 � xlþ1Þ < e, the prediction
error is considered as in threshold; otherwise out of threshold.
If abs x00lþ1 � x0lþ1

� �
< h, the cumulative error is considered as in

threshold; otherwise out of threshold. When prediction error
and cumulative error are in their thresholds simultaneously,
the prediction of this period is considered successful. For a suc-
cessful prediction, the sensor node does not need to send xl+1 to
sink node. The sink node considers the predicted value x00lþ1 as
xl+1 in this period. After a successful prediction, the queues are
updated by following rules: (a) ADQ(i) = {x2,x3, . . . ,xl+1}; (b)
PVQsensorðiÞ ¼ fx2; x3; . . . ; x00lþ1g; and (c) PVQsinkðiÞ ¼ fx2; x3; . . . ;

x00lþ1g.

Exceptions:

� (4.1) The actual sensed data xl+1 must be sent to the sink node
using reliable delivery in the following cases: (a) a failed predic-
tion occurs; and (b) the number of continuous successful pre-
dictions exceeds a pre-configured number.

� (4.2) After an exceptional data delivery, the queues are updated
by following rules: (a) ADQ(i) = {x2,x3, . . . ,xl+1}, (b) PVQsensor(i) =
{x2,x3, . . . ,xl+1}, and (c) PVQsink(i) = {x2,x3, . . . ,xl+1}.
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4. Grey model based data aggregation (GMDA)

A system is called a white system if all information about it is
known, and a black system if no information about it is known. A
grey system is intervenient between the white system and the
black system, in which poor, incomplete, or uncertain data is pro-
vided [1]. The grey model provides a powerful tool for modeling
discrete series with a few data items and for forecasting based
on determination of an exponential pattern. A sensor node can
be treated as an uncertain grey system in the data aggregation pro-
cess, since only a small sample and poor information is stored and
provided. In this paper, the single variable first-order grey model
GM(1,1) [1] is used to capture the long-term trend of the sensed
data sequence by exploring and extracting valuable information
from recently sensed data.

Before predicting, a few historical sensed data should be stored
in the sensor node to construct the initial data sequence for
GM(1,1) model, denoted as Y(0).

Y ð0Þ ¼ yð0Þð1Þ; yð0Þð2Þ; . . . ; yð0ÞðtÞ
� �

: ð1Þ

In Eq. (1), y(0)(j), j = 1, 2, . . . , t, represents a data element. t de-
notes the number of elements in the sequence. t is an invariant,
which represents the length of the data sequence. The GM(1,1)
model uses data of most recent t periods. To eliminate the influ-
ence of oscillation in the initial data sequence, the natural loga-
rithm and the exponential function are used to get the adjusted
sequence for GM(1,1) model, as described in Eq. (2).

ln Y ð0Þ
� �1=M

¼ ln yð0Þð1Þ
� �1=M

; ln yð0Þð2Þ
� �1=M

; . . . ; ln yð0ÞðtÞ
� �1=M

n o
:

ð2Þ

In Eq. (2), M is an integer invariant. In general, 1 < M < 10. Let
x(0)(j) = (lny(0)(j))1/M and X(0) denotes the prediction data sequence,
as described in Eq. (3).

Xð0Þ ¼ xð0Þð1Þ; xð0Þð2Þ; . . . ; xð0ÞðtÞ
� �

: ð3Þ

Let X(1) be the 1-AGO (accumulated generating operator) se-
quence of X(0), as described in Eq. (4).

Xð1Þ ¼ xð1Þð1Þ; xð1Þð2Þ; . . . ; xð1ÞðtÞ
� �

: ð4Þ

Therefore, the GM(1,1) model can be established as Eq. (5) (a
differential equation).

dxð1Þ

dt
þ axð1Þ ¼ b: ð5Þ

Let A ¼
xð0Þð2Þ
xð0Þð3Þ
� � �

xð0ÞðtÞ

0BB@
1CCA and B ¼

�zð1Þð2Þ 1
�zð1Þð3Þ 1
� � � � � �

�zð1ÞðtÞ 1

0BB@
1CCA, where

zð1ÞðkÞ ¼ 1
2 xð1ÞðkÞ þ xð1Þðk� 1Þ
� �

when k = 2, . . . , t. Therefore,

½â; b̂�T ¼ ðBT BÞ�1BT A. Using the Least Squares Method, the values of
the parameters a and b can be obtained. Therefore, x̂ð1Þðkþ 1Þ can
be obtained by using Eq. (6).

x̂ð1Þðkþ 1Þ ¼ e�ak xð1Þð1Þ � b̂
â

 !
þ b̂

â
: ð6Þ

Therefore, the predicted data x̂ð1Þðkþ 1Þ of the data sequence
X(0) can be computed by Eq. (7).

x̂ð0Þðkþ 1Þ ¼ x̂ð1Þðkþ 1Þ � x̂ð1ÞðkÞ: ð7Þ

Finally, the final predicted data ŷð0Þðt þ 1Þ can be obtained by
Eq. (8).
ŷð0Þðt þ 1Þ ¼ ex̂ð0Þðtþ1Þ
� �M

: ð8Þ

Let Dðt þ 1Þ ¼ jŷð0Þðt þ 1Þ � yð0Þðt þ 1Þj and e represent the pre-
diction error and the threshold of the prediction error, respectively.
For simplicity, cumulative error is not taken into consideration
here. After obtaining the predicted data and the prediction error,
the sensor node compares the error with e. If D(t + 1) < e, the sen-
sor node does not need to transmit y(0)(t + 1) to the sink node.
Otherwise, it must send y(0)(t + 1) to the sink node. At the other
end, the sink node runs the same prediction program with the
same prediction data sequence. Therefore, it obtains the same pre-
dicted data as the sensor node predicted. However, the sink node
can not compute the prediction error since it does not have
y(0)(t + 1). If there is no data coming from the sensor node in a fixed
time T0, the sink node sets D(t + 1) < e and considers ŷð0Þðt þ 1Þ as
y(0)(t + 1) in the current sensing period. T0 should be longer than
the maximum transmission latency, but shorter than the length
of a sensing period. It is important to synchronize the prediction
data sequences, PVQsensor and PVQsink. When D(t + 1) P e, the sensor
node must use the predicted data ŷð0Þðt þ 1Þ as the data of (t + 1)th
period in its next prediction sequence, because the sink node does
have y(0)(t + 1).
5. Kalman-Filter-based Data Aggregation (KFDA)

The Kalman Filter [13] is an efficient recursive filter that esti-
mates the state of a linear dynamic system from a series of noisy
measurements. It presents high prediction accuracy based on a
small quantity of information. It has been used to design adaptive
routing mechanisms in mobile wireless sensor networks [14,15].
Olfati-Saber [17] proposes a peer-to-peer continuous-time distrib-
uted Kalman Filter that uses local aggregation of the sensor data
but attempts to reach a consensus on estimates with other nodes
in the network. Yu et al. [18] also design a distributed consensus
filter, in which each sensor can communicate with the neighboring
sensors, and filtering can be distributed among nodes. By using a
pinning control scheme, only a small fraction of sensors need to
measure the target information. In this paper, the Kalman Filter
is used to estimate the data sequence for each sensor node rather
than to choose sensor nodes.
5.1. Kalman-Filter-based prediction model

In a sensor node, continuous data forms a discrete time data se-
quence, which can be modeled by the following Linear Stochastic
Difference equation:
XðkÞ ¼ AðkÞXðk� 1Þ þ BðkÞUðkÞ þWðkÞ: ð9Þ

X(k) represents the predicted data at the period k. A(k) repre-
sents the state transition model which is applied to the data of
the previous period (k � 1). B(k) represents the control-input mod-
el applied to the control vector U(k). W(k) represents the noise of
the prediction period, which is assumed to follow a zero mean
multivariate normal distribution with the covariance Q(k). Let
Z(k) denote the actual sensed data sequence at the period k:
ZðkÞ ¼ HðkÞXðkÞ þ VðkÞ; ð10Þ

H(k) is the observation model which maps the predicted data
space into the actual sensed data sequence. V(k) is the noise which
is assumed to be Zero Mean Gaussian white Noise with covariance
V(k).
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5.2. Kalman-Filter-based prediction algorithm

The Kalman Filter has two distinct phases: prediction and up-
date. The prediction phase uses the data estimated from the previ-
ous sensing period to produce an estimation of the data at the
current period. The prediction model and its covariance model
are illustrated as Eqs. (11) and (12), respectively. In the update
phase, measurement information at the current period is used to
refine this prediction to achieve a new, more accurate data esti-
mate, again for the current period. The updated prediction model
and its covariance model are illustrated as Eqs. (13) and (14),
respectively. And the Optimal Kalman Gain can be computed using
Eq. (15).
bXðkþ 1jkÞ ¼ AðkÞXðkjkÞ þ BðkÞUðkÞ; ð11Þ

Pðkþ 1jkÞ ¼ AðkÞPðkjkÞAðkÞT þ QðkÞ; ð12Þ

bXðkþ 1jkþ 1Þ ¼ bXðkþ 1jkÞ þ Kgðkþ 1ÞðYðkÞ
� Hðkþ 1ÞbXðkþ 1jkÞÞ; ð13Þ

Pðkþ 1jkþ 1Þ ¼ ðI � Kgðkþ 1ÞHðkþ 1ÞÞPðkþ 1jkÞ; ð14Þ

Kgðkþ 1Þ ¼ Pðkþ 1jkÞHðkÞT ½Hðkþ 1ÞPðkþ 1jkÞHðkþ 1ÞT þ RðkÞ��1
:

ð15Þ

bXðnjmÞ represents the estimate of X at period n, given sensed
data sequence of recent m periods. P(njm) represents the error
covariance matrix according to bXðnjmÞ.

In this section, the Kalman Filter is viewed as a single measure-
ment of a single model for temperature prediction. To simplify the
computation, we let A(k) = 1, B(K) = Q(k) = 0, R(k) = H(k) = I, and
P(0j0) = 1. Let Y(k) = {y(1),y(2), . . . ,y(k)} represent the historical
sensed data sequence.

As a single-prediction-method-based approach, the KFDA is
similar to the GMDA. The only difference is that they use different
prediction algorithms.
6. CoGKDA

6.1. Modeling

In this section, GMDA and KFDA are combined to improve the
accuracy of the prediction. Since the grey model is very effective
for predicting data series with secular trends [1] and the Kalman
Filter is useful for improving the prediction accuracy on the data
series that may oscillate frequently in a short-term, the combina-
tion of the grey model and the Kalman Filter reduces randomness
and improves prediction accuracy simultaneously. The main idea
of CoGKDA is to combine the two independent prediction technol-
ogies to avoid potential deficiencies that a single prediction tech-
nology may lead to. In the combination, weights are used to
leverage the two prediction approaches. The optimal weights can
be computed by minimizing the sum of prediction error squares
of the meta approaches.

Without loss of generality, let W = (w1,w2, . . . ,wm)T represent the
weight vector of m prediction models,

Pm
i¼1wi ¼ 1. Let Y(t) represent

the actual sensed data sequence of the recent t periods and bY jðtÞ
(t = 1,2, . . . ,n and j = 1,2, . . . ,m) represent the corresponding pre-
dicted data sequences of the m prediction models. The predicted
data sequence of the combined approach is bY ðtÞ; t ¼ 1;2; . . . ;n.
Therefore, the sum of prediction error squares can be denoted as
J(t) in Eq. (16).
JðtÞ ¼
Xm

j¼1

wj ðf ðbY ðtÞÞÞp � ðgðbY jðtÞÞÞp
h i2

; ð16Þ

where P – 0, f and g are continuous differentiable functions. To
compute the extremum of W, we let @JðtÞ

@bY ðtÞ ¼ 0. The combined predic-
tion model is defined as Eq. (17).

bY ðtÞ ¼ f�1
Xm

j¼1

wjðgðbY jÞÞp
 !1=p
24 35: ð17Þ

In this paper, with the consideration of constrained computing re-
sources, we let f ðbY ðtÞÞ ¼ bY ðtÞ, gðbY jðtÞÞ ¼ bY jðtÞ, and p = 1 to simplify
the model. As a result, the combined prediction model changes to
the weighted arithmetic average of the meta prediction models.

6.2. Combination weights

For the ith prediction approach, its predicted data sequence is
ŷi ¼ ðŷi1; ŷi2; . . . ; ŷinÞ, i = 1, 2, . . . , m. Let eij denote the error of the
ith approach in predicting the jth datum, ei denote the error vector
of the ith approach in Eq. (18).

ei ¼ ðei1; ei2; . . . ; einÞ ¼ ðy1 � ŷi1; y2 � ŷi2; . . . ; yn � ŷinÞ: ð18Þ

Using the weight vector W, the combined predicted data se-
quence can be described as Eq. (19).

bY ¼ ðŷ1; ŷ2; . . . ; ŷnÞ ¼
Xm

i¼1

wiŷi1;
Xm

i¼1

wiŷi2; . . . ;
Xm

i¼1

wiŷin

 !
: ð19Þ

Therefore, the error metrics of the combined prediction
feijg eij ¼ yj �

Pm
i¼1wiŷij

� �
and the sum of squares of the combined

prediction errors is J(t):

JðtÞ ¼
Xn

j¼1

yj �
Xm

i¼1

wiŷij

 !
: ð20Þ

Using the Least Squares Method to minimize J(t), the optimal

weight vector can be obtained. W ¼ A�1RT

RA�1RT , where R = (1,1, . . . ,1)T

and A ¼

Pn
i¼1e2

1i

Pn
i¼1e1ie2i � � �

Pn
i¼1e1ieniPn

i¼1e2ie1i
Pn

i¼1e2
2i � � �

Pn
i¼1e2ieni

� � � � � � � � � � � �Pn
i¼1enie1i

Pn
i¼1enie2i � � �

Pn
i¼1e2

ni

0BB@
1CCA.

As described in Eq. (18), the combined prediction in CoGKDA
needs the actual sensed data sequence to compute an optimal
weight vector. Since the sink node does not have the actual sensed
data sequence, it can not compute the optimal weight vector. In
addition, computing an optimal weight vector in every period is
too expensive for a sensor node. In this paper, an empirical and
periodical update mechanism is proposed to solve this problem.
Sensor nodes compute and send their optimal weight vector to
the sink node in their initial prediction period. After a fixed number
of periods (denoted as u), sensor nodes periodically re-compute
and send the fresh weight vector to the sink node to synchronize
their prediction parameters.

6.3. CoGKDA algorithm

The predictions should be based on the same data sequence
(PVQ) at both the sensor node and the sink node. The global thresh-
olds of the prediction error and cumulative error are set before the
predictions, denoted as e and h, respectively. According to the pro-
posed data collection protocol, we let the length of data queues
l = t. For all sensor nodes, the data of the first t sensing periods
must be transmitted to the sink node. Starting with the (t + 1)th
period, the sensor node and the sink node do predictions. For
example, let yðt þ 1Þ; ŷðt þ 1Þ, and ŷ0ðt þ 1Þ represent the currently
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sensed data, the data predicted by using the prediction value
queue in the sensor node (PVQsensor), and the data predicted by
using the actual data queue (ADQ), respectively. In the (t + 1)th per-
iod, Dðt þ 1Þ ¼ absðŷðt þ 1Þ � yðt þ 1ÞÞ is the prediction error and
D0ðt þ 1Þ ¼ absðŷ0ðt þ 1Þ � ŷðt þ 1ÞÞ is the cumulative error. The
sensor node checks the prediction error with the pre-configured
global thresholds. If D(t + 1) < e and D0(t + 1) < h, the sensor node
does not send the actual y(t + 1) to the sink node. The sink node
considers ŷðt þ 1Þ as y(t + 1). The sensor node must set
yðt þ 1Þ ¼ ŷðt þ 1Þ to keep the prediction data sequence PVQsensor

synchronized with the sink node’s PVQsink for future predictions.
Otherwise, the sensor node sends y(t + 1) to the sink node. The
CoGKDA algorithm in the sensor node is described in Table 1.

According to the protocol described in Section 3, when contin-
uous and successful predictions are made in a sensor node, the sink
node will not receive any data from the sensor node for a long time.
In this case, the sensor node is very similar to a dysfunctional (or
failed) sensor node. In addition, as the number of continuous and
successful predictions increases, the cumulative error will increase
correspondingly. To distinguish the two different cases and avoid
excessive cumulative error, we use another threshold v for the
number of continuous and successful predictions. When the num-
ber of continuous and successful predictions is out of v, the sensor
node must send the actual data to the sink node. Therefore, when
the sink node receives actual data from a sensor node in v periods,
Table 1
The CoGKDA algorithm.

Input:
Y(i): current prediction data sequence, YðiÞ ¼ ðŷi�tþ1; ŷi�tþ2; . . . ; ŷiÞ; i P t;
W: static variable, the current optimal weight vector;
yi+1: the sensed data of the (i + 1) th period;
r: static variable, the number of the continuous and successful predictions;
u: static variable, the number of periods for re-computing weight vectors;
v: static variable, a threshold for variable r. If r P v, sensor must send
currently sensed data to sink node;

s: static variable, the age of the current weight vector;
e: static variable, the threshold of prediction error;
h: static variable, the threshold of cumulative error;

Output:
Y(i + 1): next prediction data sequence;

CoGKDA (Y(i),W,yi+1,r,u,v,s,e,h)
{

Perform GMDA prediction and obtain the predicted data ŷg and its error eg;
Perform KFDA prediction and obtain the predicted data ŷk and its error ek;
if s < u � 1{

s = s + 1;
Perform the combination and obtain the predicted data ŷc , prediction error
pec,

and cumulative error cec;
}
else{

Compute new optimal weight vector Wnew;
Send the new weight vector to the sink node;
W = Wnew;
s = 0;

}
if pec < e and cec < h and r < v � 1{

r = r + 1;
ŷiþ1 ¼ ŷc;//Synchronize the next period prediction data sequence with the
sink node.

Yðiþ 1Þ ¼ ðŷi�tþ2; ŷi�tþ3; . . . ; ŷiþ1Þ; //Refresh the prediction data sequence
for future predictions.

}
else{

Send yi+1 to the sink node;
r = 0;
Yðiþ 1Þ ¼ ðŷi�tþ2; ŷi�tþ3; . . . ; ŷi; yiþ1Þ;

}
return Y(i + 1);
}

it knows the sensor node is functioning. Otherwise, the sensor
node will be temporarily treated as a dysfunctional node since it
has not sent back data in the pre-configured time. In CoGKDA, v
is a pre-configured parameter, which should be determined by
the trade-off between reducing concurrent error and increasing
communication overhead. It is reasonable to deduce that as v de-
creases, CoGKDA decreases concurrent error but increases commu-
nication overhead.
7. Experiment and performance evaluation

7.1. Experiment setup

In this paper, experiments are based on an environmental mon-
itoring system in a granary. Since grain is liable to mildew when
the humidity and temperature in the storehouse are too high, it
is very important to monitor real-time humidity and temperature.
The data used in our experiments are derived from a real deployed
sensor network. The sensor network is used to collect the temper-
ature and humidity of the grain in a large granary, which consists
of 30 storehouses. Each storehouse is a detached building, which is
divided into 24 volumes. The grain is stored in the volumes. In each
volume, there are four sensor nodes buried in the grain. The sensor
field of a volume is divided into four zones: top, middle-top, mid-
dle-bottom, and bottom. All sensor nodes in a storehouse form a
tree-structured network with three layers: sensor layer, intermedi-
ate layer and sink layer. Nodes in the intermediate layer and the
sink layer are external powered, while nodes in the sensor layer
are only powered by battery. Each intermediate node receives data
from four sensor nodes in one volume and sends them to the sink
node (intermediate nodes just relay data between sensor and sink
nodes). One sink node is deployed in one storehouse to collect data
from intermediate nodes. Sensor nodes sense and return tempera-
ture and humidity data every thirty minutes. This system has
worked for three years and has collected a large volume of data.

To evaluate the proposed data aggregation approaches, these
approaches are implemented in our test bed system, in which all
sensor nodes are designed based on TinyOS 2 and the IEEE
802.15.4 protocol. All experiments are carried out based on a real
data set. Since these prediction-based data aggregation approaches
are structure-free and topology-free, a sensor node was randomly
chosen for the experiments and only its temperature data is used.
A data sequence (denoted as D) that includes 720 continuous data
items (data for half a month) was randomly extracted from the ori-
ginal temperature data stream for the following experiments.

In the proposed approaches, e and h represent users’ require-
ments on data accuracy. They are application-specific parameters.
In the temperature monitoring of a granary, the tolerated error of
the predicted data is relatively small, since the grain is sensitive
to temperature changes. Therefore, in our experiments, we let
e = 0.5 and e = 1 represent users’ high and low on data accuracy
requirements, respectively. For simplicity, we let e = h.
7.2. GMDA

Compared to other prediction-based approaches, GMDA is very
lightweight. The predicted data sequence of GMDA can be repre-
sented as Y(0) = (y(0)(1),y(0)(2), . . . ,y(0)(t)), where parameter t de-
notes the length of the sequence used for predictions. In general,
longer sequences lead to more accurate predictions. However,
greater length consumes more sensor storage and leads to higher
computational complexity. To choose a suitable t value, we evalu-
ate the growth rate of prediction accuracy while t changes from 3
to 9. The results are shown in Fig. 1. First, we randomly extracted
three sub-sequences from the original data set. Each sub-sequence
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Fig. 1. Evaluation of parameter t in GMDA.
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Table 2
Performance comparison between GMDA, KFDA, CoGKDA and Auto-Regressive
method when the threshold e = 1 and e = 0.5, where ts denotes the number of data
of the training set in Auto-Regressive method.

Approaches Communication energy savings

GMDA: t = 5, e = 0.5 25.22%
GMDA: t = 5, e = 1 43.77%
KFDA: e = 0.5 33.62%
KFDA: e = 1 58.41%
Auto-Regressive method: ts = 60, e = 0.5 27.35%
Auto-Regressive method: ts = 60, e = 1 40.62%
CoGKDA: e = 0.5 35.21%
CoGKDA: e = 1 59.85%

G. Wei et al. / Computer Communications 34 (2011) 793–802 799
consists of thirty continuous data items. Second, using each t value,
we performed GMDA on the three sub-sequences, respectively, and
then we obtained the average prediction accuracy of each t value.
Finally, we computed the growth rate of prediction accuracy while
t increases. The prediction accuracy is measured by e = 1 and
e = 0.5, respectively. Since the growth rate of prediction accuracy
achieves its maximum value when t = 5, as shown in Fig. 1, we
choose t = 5 in following GM(1,1) algorithm experiments.

The experiments for GMDA are carried out based on the data se-
quence D. The results are shown in Figs. 2 and 3. As described in
Section 3, the sensor node does not need to send actual data to
the sink node when the error of the related prediction is within
the threshold e, thereby reducing transmissions and power con-
sumption. In Fig. 2, the cumulative distribution function (CDF) of
the prediction errors produced by GMDA is 25.22%. When we let
e = 1, the CDF value of GMDA’s prediction errors achieves 43.77%.

Since GMDA causes no overhead communication, the CDF value
of its prediction errors on the corresponding threshold is approxi-
mately equal to the percentage of communication energy saving,
as shown in Table 2. As illustrated in Figs. 2 and 3, when the
threshold of the prediction error decreases, energy consumption
increases. The reason is that a smaller threshold causes a lower
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Fig. 2. Cumulative distribution functions of the prediction errors of GMDA, KFDA
and CoGKDA when e = 0.5.
prediction success rate. In other words, more failed predictions
cause more actual data communication.

7.3. KFDA

Using the same data sequence D for GMDA, the experiments on
KFDA were carried out. The results show that KFDA obtains a high-
er prediction success rate than GMDA, as illustrated in Figs. 2 and
3. The CDF value of the prediction errors produced by KFDA is
much higher than GMDA’s CDF value for both e = 0.5 and e = 1.
According to the data collection protocol described in Section 3,
in the experiments on KFDA, no communication overhead is pro-
duced. Table 2 shows that the percents of communication energy
savings are 33.62% and 58.41% when e = 0.5 and e = 1, respectively.

For data sequence D, KFDA behaves better than GMDA and bet-
ter conserves power. Nonetheless, by comparing their prediction
models (as described in Sections 6.1 and 6.2), KFDA requires more
computation than GMDA in the process of data collection.

7.4. CoGKDA

To simplify the computation, we let f ðbY ðtÞÞ ¼ bY ðtÞ,
gðbY jðtÞÞ ¼ bY jðtÞ and p = 1 in Eq. (16). Therefore, the CoGKDA model
changes to a simple weighted arithmetic average of the two meta
prediction models. The pivotal problem in CoGKDA is that the sen-
sor node must compute optimal weights periodically and keep its
weight vector synchronized with sensor nodes in predictions. The
parameter u is used to control the interval of weight refresh.
According to the proposed data collection protocol in Section 3,
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the smaller u is, the higher the corresponding successful prediction
rate will be and the more communication overhead CoGKDA will
produce. To find a suitable u value, we carried out a simple exper-
iment to evaluate the successful prediction rate and communica-
tion overhead while increasing u from 10 to 40 stepped by 5. In
this experiment, we used the first 3u data items in D for predic-
tions and computed prediction success rate and communication
overhead for each u value. As illustrated in Fig. 4, the result shows
u = 25 is the best choice for both e = 1 and e = 0.5. In CoGKDA, an-
other parameter v is used to reduce long concurrent errors. To find
a suitable v value, we carried out another simple experiment, in
which we computed the percentage of overhead in communication
energy consumption while changing v from 2 to 16. The result in
Fig. 5 shows that communication overhead is 0 when (e = 1,
v = 16) and (e = 0.5, v = 8). It is noticeable that the percentage of
overhead in communication energy is less than 1% for both e = 1
and e = 0.5 when v = 10 (The percentage is approximate 0.87%
when e = 1, and 0 when e = 0.5).

Based on above evaluations, we let t = 5, v = 8 and u = 10. Using
the same data sequence D, we carried out experiments on CoGKDA.
As illustrated in Figs. 2, 3 and Table 2, the results show that CoG-
KDA obtained a higher prediction success rate than GMDA and
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Fig. 5. Communication overhead as v changes from 2 to 16.
KFDA. The CDF value of the prediction errors produced by CoGDA
is higher than those of KFDA and GMDA for both e = 0.5 and
e = 1. From Figs. 2 and 3, it can be observed that performance of
CoGDA is better than that of KFDA when the tolerable prediction
error is in the low interval (range from 0 to 3), and close to that
of KFDA when the tolerable prediction error is in the high interval
(range from 3 to 5). Table 2 also shows that CoGKDA achieves en-
ergy savings of 35.21% and 59.85% while e = 0.5 and e = 1, respec-
tively. It demonstrates that by combining KFDA and GMDA,
CoGKDA improves communication energy saving with an insignif-
icant increase in overhead.

State-of-the-art prediction-based approaches such as PAQ [8]
and SAF [9] use Auto-Regressive or improved Auto-Regressive
methods to aggregate data in wireless sensor networks. In SAF
and PAQ, prediction models are built at each sensor to predict local
readings. Sensor nodes transmit their local models to a sink node,
which uses them to predict sensor values without need for down-
linking communicating with sensor nodes. When needed, sensor
nodes send information about outlier readings and model updates
to the sink node. To compare CoGKDA with PAQ and SAF, we car-
ried out the same data collection experiments on them by using
the same data sequence D. Since PAQ, SAF and AR need a training
set before prediction, we let their training set contain 60 data items
(the first 60 data items in D). In this experiment, a third order AR
algorithm was used as a benchmark. The experiment results are
shown in Figs. 6 and 7. Fig. 6 shows that CoGKDA presents a higher
success rate and more energy saving than the third order Auto-
Regressive model AR(3), PAQ, and SAF. To compare data accuracy
of successful predictions, we analyze the mean square errors of
successful predictions of these approaches. Fig. 7 shows that CoG-
KDA is also better than SAF and PAQ as the threshold e changes
from 0.2 to 1. Since SAF and PAQ do not have a cooperation mech-
anism to synchronize the data series used for prediction, they pro-
duce a lower communication overhead. However, as illustrated in
Figs. 6 and 7, the prediction errors and mean square errors of
SAF and PAQ are much higher than that of CoGKDA. The reason
is that, in SAF and PAQ, the sink node and the sensor node use dif-
ferent data series to predict, while different data series produce
different prediction errors which cause cumulative error increases.

It is remarkable that: (1) CoGKDA provides high successful pre-
diction rate by using the adjusted predicted data sequence PVQ,
rather than the actual data sequence ADQ; and (2) CoGKDA reduces
energy consumption caused by redundant communications with
insignificant overhead.
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7.5. Complexity and scalability

Main computation in GMDA derives from the GM(1,1) algo-
rithm. According to Eqs. (1)–(8), it can be deduced that the compu-
tational complexity of GMDA is O(t), where t is the number of data
items for the prediction algorithm. For most applications, the com-
putational complexity of GMDA is very low when t = 5.

In the KFDA approach, as described in [16], the order of the Kal-
man Filter is O(2m2n) + O(2mn2) + O(m3) + O(n3). In this paper, m is
the number of dimensions of data prediction sequence at the pre-
diction phase, and n is the number of predicted data items for one
recursion. If n = am, where a > 1, then the number of computations
can be transformed to O[(1 + 2a + 2a2 + a3)m3]. As described in Eqs.
(9)–(15), the computational complexity becomes O(3m3), when
using the equivalent system with A(k) = 1, B(k) = Q(k) = 0,
R(k) = H(k) = I and P(0j0) = 1. Therefore, the computational com-

plexity of KFDA is O 3
1þ2aþ2a2þa3

� �
times the normal KF algorithm.

For example, let a = 2, the computational complexity of KFDA is
only 0.14 times the normal KF algorithm. By analyzing the CoGKDA
algorithm in Table 1, the computation of CoGKDA approach mainly
consists of three parts: GMDA, KFDA and computing weight vector
W. As described in Eqs. (16)–(20), the complexity for computing W
is O(mn2), in which m is the number of meta predictions model and
n is the number of data items in the prediction data sequence. In
CoGKDA, the computational complexity for computing W is
O(2n2). To unify measurements, we let m represent the number
of data items in prediction data sequence. Therefore, adding the
three parts, the computational complexity of CoGKDA is
O(m) + O(3m3) + O(6m2), and the order of CoGKDA’s computation
complexity is approximately O(m3).

It can be seen that CoGKDA is the most complex, KFDA is sim-
pler, and GMDA is the simplest. Although the computational com-
plexity of CoGKDA seems high, in practice, it is acceptable for most
applications when the length of data queues (ADQ and PVQ) is
small, e.g. m = 5.

In the proposed approaches, all computations for data aggrega-
tion are only performed in the sensor node and the sink node. Data
processing in intermediate nodes is not needed. Therefore, the pro-
posed approaches are independent of network scale. Their perfor-
mance is only determined by user’s requirements which are jointly
controlled by parameters e, h, t, u and v. Furthermore, the proposed
approaches can be used in tree-structured, cluster-structured and
peer-structured wireless sensor networks, since the data collection
protocol they used is structure-free. Therefore, they can be used to
couple with other route-based or topology-based data aggregation
protocols. Above analysis indicates the proposed approaches are
scalable for most environmental monitoring applications.

8. Conclusion

Prediction-based data aggregation is a fundamental data-driven
energy conservation approach. The prediction-based approach
saves energy by reducing redundant data communications. Since
the prediction-based approach is structure-free, it can be used to
couple with other route or topology-based data aggregation ap-
proaches. By analyzing energy efficiency and data accuracy, a novel
prediction-based data collection protocol is proposed to specify the
cooperations between the sensor node and the sink node. In the
proposed protocol, a double-queue mechanism is designed to syn-
chronize predicted data at both sensor node and sink node to avoid
cumulative error in continuous predictions. Based on this novel
data collection protocol, three prediction-based data aggregation
approaches are proposed: GMDA, KFDA and CoGKDA. Experiments
have been carried out based on a real data set collected from a tem-
perature and humidity monitoring application in a grain repertory.
The results demonstrate that the proposed approaches can reduce
energy consumption caused by redundant communications with
minimally increased overhead. Experiments also show CoGKDA
achieves better performance compared to traditional prediction-
based approaches (including SAF, PAQ and AR).
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