
Self-Stabilizing Distributed Queuing ∗

Srikanta Tirthapura †

Dept. of Electrical and Computer Engg.

Iowa State University

Ames, IA, USA, 50011

snt@iastate.edu

Maurice Herlihy

Computer Science Department

Brown University,

Providence, RI, USA, 02912

mph@cs.brown.edu

February 15, 2006

Abstract

Distributed queuing is a fundamental coordination problem, aris-

ing in a variety of applications, including distributed shared memory,

distributed directories, and totally ordered multicast. A distributed

queue can be used to order events, user operations, or messages in a

distributed system.

∗A preliminary version of this article has appeared in the Proceedings of the 15th

International Symposium on Distributed Computing (DISC) 2001, pages 209–223
†Contact Author

1

This paper presents a new self-stabilizing distributed queuing pro-

tocol. This protocol adds self-stabilizing actions to the arrow dis-

tributed queuing protocol, a simple path-reversal protocol that runs on

a spanning tree of the network. We present a proof that the protocol

stabilizes to a stable state irrespective of the (perhaps faulty) initial

state, and also present an analysis of the time till convergence.

The self-stabilizing queuing protocol is structured as a layer that

runs on top of any self-stabilizing spanning tree protocol. This addi-

tional queuing layer is guaranteed to stabilize in time bounded by a

constant number of message delays across an edge, thus establishing

that the stabilization time for distributed queuing is not much more

than the stabilization time for spanning tree maintenance. The key

idea in our protocol is that the global predicate defining the legality

of a protocol state can be written as the conjunction of many purely

local predicates, one for each edge of the spanning tree.

Keywords: distributed queue, arrow protocol, self-stabilization

1 Introduction

To motivate distributed queuing, consider the problem of synchronizing ac-

cesses to a mobile object in a computer network. The mobile object might

be a shared file, which may be concurrently desired by many users. If a

user requests the object, and the object is not on the local node, then the

request must be transmitted to the current location of the object, and the

object should be moved to the user. If multiple users concurrently request the

object from different nodes, then the user requests must be queued in some

order, and the object should travel from one user to another down the queue.

The hard part here is the management of the distributed queue. First, the

user requests must all be totally ordered into a queue. Second, users must

receive some minimal information about the queue: each user needs to know

the location of the next requesting user in the queue, so that it knows where

2

to pass the object after it has used it. Distributed queuing, defined below,

abstracts out the essential part of the above synchronization problem.

In the distributed queuing problem, processes in a message-passing net-

work asynchronously and concurrently request to join a total order (or a dis-

tributed queue). Upon joining the queue, each participating process informs

its predecessor about itself. It is the task of the queuing algorithm to order

these requests into a single queue, and provide the necessary coordination.

This queue is “distributed” in two senses. Firstly, it can be manipulated by

nodes in a distributed system. Secondly, the knowledge of the queue itself

is distributed. No single processor, or a small group of processors, needs

to have a global view of the queue. Each processor only needs to know its

successor in the queue, and thus has a very local view of the queue.

Distributed queuing is a key building block for a variety of applications.

For example, it can be used in ordering messages for totally ordered multi-

cast [12], synchronizing accesses to a mobile object [13], distributed mutual

exclusion [18], or in distributed counting. See [20] for further discussion of

applications of distributed queuing.

Arrow Protocol: The arrow protocol [18] (also known as Raymond’s al-

gorithm) is a simple distributed queuing protocol based on path reversal on

a network spanning tree. This protocol has been used to manage mobile

objects in the Aleph Toolkit [9], where it was found to significantly outper-

form conventional centralized directory schemes under high contention [13].

Subsequent theoretical and experimental analyses [20] have shown that the

protocol has excellent performance, especially under conditions of heavy con-

tention to the queue.

However, the arrow protocol is not fault-tolerant, because it assumes

that nodes and links never fail. For this important protocol to be more

widely used, a good fault-tolerance mechanism is imperative. There are

many possible faults: lost messages, edge failures, and node failures, and

combinations thereof. The number of combinations of faults are too many,

3

so it would be infeasible to build a comprehensive fault-tolerance scheme by

enumerating the faults and acting on them separately.

Self-Stabilization: We present a unified approach to fault-tolerance of

the arrow protocol by making the protocol self-stabilizing. Informally, a

distributed system is self-stabilizing [5] if, starting from an arbitrary initial

global state, it eventually reaches a “legal” global state, and henceforth re-

mains in a legal state. Self-stabilization is a general correctness condition:

by proving stabilization starting from an arbitrary state, we have effectively

proved stabilization from any set of faults. Our self-stabilizing protocol is

scalable and local: each node interacts only with its immediate neighbors,

and there is no need for central control.

The difficulty in building a self-stabilizing queuing protocol is as follows.

The predicate which defines whether the system is in a legal state or not is

an inherently global predicate, which depends on the state of all the nodes,

and on the messages in transit on every link. The key idea in our solution

is as follows. We show that the global predicate defining the legality of a

queuing protocol state can be written as the conjunction of many purely local

predicates, one for each edge of the spanning tree. Using this decomposition

into local predicates, we can focus on stabilizing each local element into a

legal local state, which is a far simpler task. Finally, we show that the

delay needed to stabilize the arrow protocol differs from the delay needed

to stabilize a rooted spanning tree by only a constant number of message

delays.

Our decomposition of the global predicate into the conjunction of local

predicates makes the protocol locally checkable according to the definition

of Awerbuch, Patt-Shamir and Varghese [3]. Thus, we could use the general

technique devised there (in [3]) to correct the protocol state locally. However,

this general technique would lead to a stabilization time of the order of the

diameter of the spanning tree. We present a more efficient local stabilization

algorithm that has a stabilization time of only a constant number of message

4

delays.

Self-stabilization is appropriate for some applications and not for others.

For example, one natural application of distributed queuing is in ordered mul-

ticast [12], a type of multicast where all participating nodes should receive

the same set of messages in the same order. A self-stabilizing queuing proto-

col might omit messages or deliver them out of order in the initial, unstable

phase of the protocol, but would eventually stabilize and deliver all subse-

quent messages in order. Our protocol is appropriate only for applications

that can tolerate such transient inconsistencies.

The rest of the paper is organized as follows. We first describe the arrow

protocol in Section 2 and define the computation model in Section 3. Sec-

tion 4 gives the key ideas and an informal description of the self-stabilizing

protocol. The full protocol is presented in Section 5 and stabilization proof

and the time till convergence are established in Section 6.

2 The Arrow Protocol

The arrow protocol was invented by Kerry Raymond [18] for solving dis-

tributed mutual exclusion. It has since been used to solve other problems,

including distributed directories for mobile objects [4] and scalable ordered

multicast [12]. We present a brief and informal description of the arrow pro-

tocol, in the context of building distributed directories for mobile objects.

More detailed descriptions and analyses appear in [4, 20].

The network is modeled as a graph G = (V, E) where V is the set of

processors, and E is the set of point to point communication links between

processors. The protocol runs on a fixed spanning tree T of G. Each node

v ∈ V stores a pointer or an “arrow” denoted by p(v), which can point either

to itself, or to any of its neighbors in T . If p(v) = v then v is tentatively

the tail of the queue; i.e. it either has the object or the object will soon

arrive at v. Otherwise, if p(v) = u where u is a neighbor, this means that the

object currently resides in the component of the spanning tree containing u.

5

Informally, except for the node which holds the object, the other nodes only

know the “direction” in which the object lies.

The protocol is based on path reversal. Initially, the node where the

object resides is selected to be the tail of the queue (since there are no

other elements in the queue). The arrows are initialized so that following

the arrows from any node leads to the tail. To request the object, a node

v sends a find(v) message to node p(v), and “flips” p(v) to point to itself.

Suppose a node x receives a find(v) message from tree neighbor w. There

are two possible cases (1)If p(x) = x, then the request is queued behind x.

The object will move to v after it arrives at x (if it is not already present at

x). (2)If p(x) 6= x, then the find is forwarded to p(x). In both cases (1) and

(2), p(x) is flipped to point to w, and the two actions of forwarding the find

and flipping the pointer are done atomically.

For a proof that the protocol is correct, we refer to [4]. We note that

in many applications of distributed queuing, after v is queued behind x, a

message is sent from x to v, but we do not consider that message as a part

of the queuing protocol itself.

2.1 Related Work

There has been much work on the analysis of the arrow protocol. Demmer

and Herlihy [4] gave a formal proof of correctness of the protocol, and a per-

formance analysis of the sequential case i.e. when no two queuing requests

are simultaneously active. Herlihy, Tirthapura and Wattenhofer [11] pre-

sented an analysis of the more interesting concurrent one-shot case, when all

the queuing requests were issued simultaneously. They showed that the cost

of the arrow protocol was always within a factor of s · log |R| of the “optimal”

queuing protocol, where R is the set of nodes issuing queuing requests, and s

is the stretch of the tree on which the protocol operates (i.e. the overhead of

routing on the tree as opposed to routing on the graph). They also provided

an almost matching lower bound. Recently, Kuhn and Wattenhofer [15], pre-

sented an analysis of the more general dynamic case: if nodes are allowed to

6

initiate requests at arbitrary times, the arrow protocol is within a factor of

O(s · log D) of the optimal, where s is the stretch of the spanning tree and

D is the diameter of the tree. They also presented an almost matching lower

bound.

Choosing good spanning trees for the protocol is also an important re-

search problem. While Demmer and Herlihy [4] suggested using a minimum

spanning tree, Peleg and Reshef [17] showed that the protocol overhead (at

least for the sequential case) is minimized by using a minimum communica-

tion spanning tree [14]. They further showed that if the probability distri-

bution of the origin of the next queuing operation is known in advance, then

it is possible to find a tree whose expected communication overhead for the

sequential case is 1.5.

To our knowledge, our work is the first attempt to make the protocol

fault-tolerant.

3 Model

Self-stabilizing protocols can be built in a layered fashion, for example,

see [19]; this is sometimes referred to as fair-composition of self-stabilizing

algorithms ([6], page 22). The protocol presented here is layered on top of

a self-stabilizing spanning tree protocol such as the ones in [1, 2, 7], which

stabilizes the arrow spanning tree. In this paper, we focus only on the upper

layer, assuming that our protocol runs on a fixed rooted spanning tree. If

the tree is corrupted in any way, then the spanning tree is stabilized first,

and then our protocol will rebuild the state in the upper layer thereafter. In

such a case, the total time for stabilization is equal to the time required for

the tree to stabilize plus the time for the upper layer to stabilize. In our

analysis, we only consider the time for stabilization of the arrow protocol. In

particular, we show how to stabilize the arrows and the find messages.

We make the following assumptions for our self-stabilization algorithm.

• The program executing at a node is fixed and incorruptible. Thus, we

7

assume that each node is in a legal local state (for example, integer

variables have integer values). Any inconsistencies in the local state

can be caught and corrected by the program. However, local states at

different nodes may be inconsistent with each other.

• All communication links are FIFO, and there is an upper bound on

the message delay on an edge. In particular, a node can time out if

it is waiting for a response. If the time out occurs, it means that the

message has been lost, and no response will be forthcoming. Prior

work [8] has shown that self-stabilization is impossible without such a

timeout assumption.

• Network edges can hold a finite number of messages.

3.1 Definitions

A global state of the protocol consists of the value of p(v) for every vertex v

of T (i.e. the orientations of all the arrows) and the sequence of find messages

in transit on the edges of T .

It is natural to define a legal protocol state as one that arises during a

normal, fault-free execution of the protocol. The following standard actions

of the arrow protocol are called as find transitions. A legal execution of the

protocol moves from one global state to another via a find transition.

• A node v initiates a queuing request by sending a find message to itself.

• When a node v gets a find message,

– If p(v) 6= v, then it forwards the find message in the direction of

p(v) and flips p(v) to point to the direction from where the find

came from.

– If p(v) = v then the find has been queued behind v’s most recent

request, and is not forwarded any further; p(v) is flipped to point

in the direction from where the find came from.

8

Figure 1: On the left is the spanning tree. On the right is a legal quiescent

state of the protocol.

Figure 2: On the left is a legal state which is not quiescent. On the right is

an illegal state

A sink is defined as a node whose arrow points to itself. In the initial

quiescent state of the protocol, following the pointers from any node leads to

a unique sink.

Definition 3.1 A global protocol state is quiescent if (1)following the arrows

from any node leads to an unique sink and (2)there are no find messages in

transit.

Definition 3.2 A global protocol state is legal if either (1)it is a quiescent

state or (2)it can be reached from a quiescent state by a finite sequence of

find transitions.

In a possible (illegal) initial state, p(v) may point to any neighbor of v

in T , and each edge may contain an arbitrary (but finite) number of find

9

messages in transit in either or both directions. See Figures 1 and 2 for

examples of quiescent and non-quiescent states.

Discussion on the Correctness Conditions: The above correctness

condition defines whether the current state of the protocol is legal or not.

Further correctness conditions may be layered on top of this stabilization

layer, according to the needs of the application. For example, if the appli-

cation needs to maintain a single token, and pass it down the queue, then

additional actions are necessary to ensure that there is exactly one token

present at every instant, and that every node that wants the token eventu-

ally gets it. In this paper, we have focused on stabilizing the layer of the

protocol which grants access to the queue. A complete design and analysis

of a self-stabilization algorithm for maintaining a single token is beyond the

scope of this paper, since the problem of maintaining a single token subsumes

the problem of self-stabilizing distributed mutual exclusion [16], and token

regeneration.

4 Local Stabilization

Though the predicate defining whether a protocol state is legal or not is a

global predicate, which depends on the values of all the pointers and the finds

in transit, we now show that it can be written as the conjunction of many

local predicates, one for each edge of the spanning tree.

Suppose the protocol was in a quiescent state with no find messages in

transit. Let e be an edge of the spanning tree connecting nodes a and b. Edge

e divides the spanning tree into two components, one containing a and the

other containing b. There is a unique sink which either lies in the component

containing a or in the component containing b. Since all arrows point in the

direction of the sink, either b points to a or vice versa, but not both.

If the global state was not quiescent, and there was a find message in

transit from a to b, it must be true that a was pointing to b before it sent the

10

find message, but the actions of the protocol caused a to point away from b

when the find was forwarded across e. Thus nodes a and b both point away

from each other when the find is in transit.

The above cases motivate the following definition. Denote the number of

find messages in transit on e by F (e). For node a and incident edge e, we

define p(a, e) as: p(a, e) = 1 if a points on e (i.e to b) and 0 otherwise. The

function p(b, e) is defined similarly. For an edge e = (a, b), φ(e) is defined as:

φ(e) = p(a, e) + p(b, e) + F (e) (1)

Definition 4.1 Edge e is defined to be in a legal state if φ(e) = 1; i.e. either

(1)p(a) = b, or (2)p(b) = a, or (3)a find is in transit on e, but no two cases

occur simultaneously.

We now state and prove the main theorem of this section.

Theorem 4.1 A protocol state is legal if and only if every edge of the span-

ning tree is in a legal state.

Proof: Follows from Theorems 4.2 and 4.4.

Theorem 4.2 If a protocol state is legal, then every edge of the spanning

tree is in a legal state.

Proof: First consider the case when the protocol is in a quiescent state. In

a quiescent state, there are no finds in transit and we claim that for every

tree edge (a, b), either a points to b or b points to a, but not both. The proof

is as follows. Clearly, a and b cannot both point to each other since there will

not a unique sink in that case. Now suppose that both a and b pointed away

from each other. Then it is possible to construct a cycle in the spanning tree

as follows. By the definition of a quiescent state, following the arrows from

either a or b leads to the sink. These arrows induce undirected paths from a

to the sink, denoted by pa and from b to the sink, denoted by pb. Since both

pa and pb end at the sink, they must intersect at some node in the tree, say

11

t. The cycle consists of: edge e, the undirected path from a to t, and the

undirected path from t to b. Since a cycle is impossible on a spanning tree,

it is not possible that a and b point away from each other. Thus, it must be

true that either a points to b, or b points to a, but not both. It follows that

if the protocol is in a quiescent state, then φ(e) = 1 for every edge e.

Next, we show that any find transition preserves φ(e) for every edge e.

Since every legal state is reached from a quiescent state by a finite sequence

of find transitions, this will prove that every edge is in a legal local state if

the protocol state is legal. To prove that a find transition preserves φ(e) for

every edge e, we observe that a find transition could be one of the following.

Let v denote a node of the tree.

• Node v receives a find from itself; it forwards the find to p(v) and sets

p(v) = v.

• Node v receives a find from u 6= v and p(v) 6= v; it forwards the find to

p(v) and sets p(v) = u.

• Node v receives a find from u 6= v and p(v) = v; it queues the request

at v and sets p(v) = u.

In each of the above cases, it is easy to verify that for every edge e of the

tree φ(e) is preserved.

We now prove that if every edge in the spanning tree is legal, then the

protocol state is legal. Let L be a protocol state where every edge of the

spanning tree is in a legal state. Consider the directed graph AL induced by

the arrows p(v) in L. We will need the following helper lemma.

Lemma 4.3 The only directed cycles in AL are of length one, i.e. they are

self loops.

Proof: Any cycle of length greater than two would induce a cycle in the

underlying spanning tree, which is impossible. A cycle of length two implies

an edge e = (a, b) with p(a) = b and p(b) = a. This would cause φ(e) to be

greater than one and this case is also ruled out.

12

Theorem 4.4 If L is a protocol state where every edge of the spanning tree

is in a legal state then the L is a legal protocol state.

Proof: Since each vertex in AL has out-degree 1, starting from any vertex,

we can trace a unique path. This path could be non-terminating (if we

have a cycle of length greater than 1) or it could end at a self-loop. From

Lemma 4.3, we have that every directed cycle in AL is of length one, so that

every directed path in AL must end in a self-loop.

We now show that there exists a legal quiescent state Q and a finite se-

quence of find transitions, seq, that takes Q to L. We use proof by induction

on k, the number of find messages in transit in L.

Base case: The base case of the induction is k = 0, i.e no find messages

in transit. We show that L has a unique sink and is a quiescent state itself

and thus seq is the null sequence. Proof by contradiction. Suppose L has

more than one sink and s1 and s2 are two sinks such that there are no other

sinks on the path connecting them on the tree T . There must be an edge

e = (a, b) on this path such that neither p(a) = b nor p(b) = a. To see this,

let n be the number of nodes on the path connecting s1 and s2 (excluding

s1 and s2). The arrows on these nodes point across at most n edges. Since

there are n + 1 edges on this path there must be at least one edge e which

does not have an arrow pointing across it. For that edge e, φ(e) = 0, making

it illegal and we have a contradiction.

Inductive case: Assume that the result is true for all k < `. Suppose that

L had ` find messages in transit. Suppose a message was in transit on edge

e from node a to node b (see Figure 3). Since φ(e) = 1, a should point away

from b and b away from a. We know from Lemma 4.3 that the unique path

starting from a in AL must end in a self-loop. Let the path P , which is the

sequence of vertices a, w = u1, u2 . . . v = ux, u be that path where u has a

self-loop.

Clearly, there cannot be a find message in transit on any edge on P ,

13

u

awv b

find

e

Figure 3: Global State L has a find on e and a self-loop on u

awv b
e

u

Figure 4: Global State L′ has one find message less than L. L can be reached

from L′ by a sequence of find transitions

because that would cause φ of that edge to be greater than one (an arrow

pointing across the edge plus a find message in transit). Consider a protocol

state L′ (see Figure 4) where u did not have a self-loop. Instead, p(u) = v

and all the arrows on path P were reversed i.e. p(v) = ux−1 and so on till

p(w) = a. Edge e is free of find messages and p(a) = b. The state of the rest

of the edges in L′ are the same as in L.

We show that the φ of every edge in L′ is one. The edges on P and

the edge e all have φ equal to 1, since they have exactly one arrow pointing

across them and no finds in transit. The other edges are in the same state as

they were in L and thus have φ equal to 1. Moreover, L can be reached from

L′ by the following sequence of find transitions seqL′,L: u initiates a queuing

request and the find message travels the path u → v → ux−1 . . . w → a,

reversing the arrows on the path and is currently on edge e.

Since L′ has `− 1 find messages in transit and every edge of T is legal in

L′, we know from induction that L′ is reachable from a quiescent state Q by

a sequence of find transitions seqL′ . The concatenation of seqL′ with seqL′,L

is a sequence of find transitions that takes a legal quiescent state Q to L.

14

5 Self-Stabilizing Protocol

We first give an informal description of the self-stabilizing protocol, followed

by a formal description.

5.1 Informal Description

Armed with Theorem 4.1, our protocol simply stabilizes each edge separately

to a legal local state. Stabilizing each edge to a legal local state is enough

to make the global state legal. Nodes adjacent to an edge e repeatedly check

φ(e) and correct it, if φ(e) 6= 1.

In the following description, we assume that the underlying rooted span-

ning tree has stabilized. For every edge in the spanning tree, we can assign

an unique parent node, which is the endpoint of the edge closest to the root.

Note that the parent node of an edge is fixed, and is different from the di-

rection of the arrow across the edge, which can change. The other endpoint

of the edge is called the child node.

The following design decisions make the protocol and its proof simpler:

• For an edge e, the corrective actions to change φ(e) are designed to

preserve φ(f) for any edge f 6= e. This is crucial since it means that

the effect of corrective actions is local to the edge only and we can

prove stabilization for each edge separately.

• Out of the two adjacent nodes to an edge e, the responsibility of cor-

recting φ(e) rests solely with the parent node of e. The child node

never changes φ(e).

If φ(e) can be determined locally at the parent of e, then we would be

done. However, this is not the case since φ(e) depends on the state of both

endpoints of e and on the number of find messages in transit.

To determine φ(e), the idea in the protocol is as follows. The parent of

edge e first starts an “observe” phase during which it computes φ(e) through

a round trip to the child and back. The parent does not change φ(e) during

15

the observe phase. Since the child node never changes φ(e), φ(e) remains

unchanged as long as the parent is in the observe phase. At the end of the

observe phase, the parent learns φ(e). An observe phase is followed up by

a “correct” phase during which the parent node corrects the edge if it was

observed to be illegal (φ(e) 6= 1). During an observe phase, a variable at the

parent node a is set to “observe”, and a is said to be in an observe state.

During a correct phase, the variable is set to “correct”, and a is said to be

in a correct state.

The corrective actions are one of the following. We prove in Lemmas 6.1

and 6.2 that these actions change φ(e) but don’t change φ(f) for any other

edge f 6= e in the spanning tree. Suppose a is the parent node and b is the

child node of e.

1. If φ(e) = 0, then inject a new find message onto e without changing

p(a), thus increasing φ(e) to one.

2. If φ(e) > 1, and p(a) = b, then reduce φ(e) by setting p(a) = a.

3. If φ(e) > 1 but p(a) 6= b, then there must be find messages in transit

on e. We show that eventually these find messages must reach node a,

which can reduce φ(e) by simply ignoring them.

It remains to be explained how the parent computes φ(e). At the start of

the observe phase, a sends out an observer message which is sent to the child

and back. Since edges are FIFO, by the time the observer returns to the

parent, the parent has effectively seen all the find messages in transit. The

observer has also seen p(b) on its way back to the parent. The parent com-

putes φ(e) by combining its local information with the information carried

back by the observer. Once the observer returns to the parent, the parent

enters a “correct” state and the appropriate corrective action is taken.

To make the protocol self-stabilizing, an observe phase is started at the

parent in response to a timeout. The timeout is sufficient for two round

trips from the parent to the child and back. Informally, the timeout is long

16

enough for a complete “observe” phase followed by a complete “correct”

phase on the edge. If an observe phase is followed by a successful correct

phase, then the edge will be corrected, and remain in a legal state thereafter.

In the initial state of the system, it is possible there are “spurious” observer

messages which have not been sent by a, or which carry wrong information.

However, such “spurious” observer messages will disappear within one round

trip on the edge, and soon there will be a single observer message, which can

accurately observe the state of the edge.

5.2 Formal Description

We now describe the protocol for a single edge e connecting nodes a and b

where a is the parent node of e.

Variables. Node a has the following variables. The first variable is the

pointer (or arrow) that exists in the original arrow protocol. The next four

are variables added for self-stabilization.

1. p(a) is a’s pointer (or arrow), pointing to a neighbor on the tree or to

itself.

2. state is a boolean variable and is one of observe or correct.

3. sent is an integer variable equal to the number of finds sent by node a

on e since the current observe phase started.

4. φest is an integer variable which is a’s estimate of φ(e) when it is in a

correct state.

The only variable at b relevant to edge e is the arrow, p(b). Of course,

some or all of these variables may be corrupted at the start of execution, in

which case they will be reset to a stable state by the protocol.

17

Messages. There are two types of messages.

1. The usual find message.

2. The other is the observer message, which a uses to observe φ(e). In

response to a timeout, a sends out message observer(), indicating the

start of a new observe phase. Upon receipt of observer(), b replies with

observer(p(b,e)).

5.3 Transitions

All transitions are of the form: (event) followed by (actions). A timeout

event occurs when a’s timer exceeds twice the maximum round trip delay

from a to b. The timer is reset to zero after each timeout.

Note that we only describe transitions at a and b that are relevant to

edge e = (a, b). Node a (or b) may be the endpoint of many edges, and it

needs to execute a similar protocol for each edge incident to it. For example,

consider the following transition: if a received a find from a node c 6= b, and

p(a) 6= b, then the action for this event does not involve sending or receiving

any message on edge (a, b), and thus does not involve edge (a, b) at all. Thus,

we do not describe this transition here as part of the action for a . Instead,

such a transition would be part of the self-stabilizing protocol for some other

edge for which a is an endpoint. Since the self-stabilizing protocol for all

edges are being run simultaneously, the above case is still handled by the

protocol.

5.3.1 Transitions for a (the parent).

1. Event: Timeout /* start a new observe phase */

(a) Reset state← observe

(b) Reset sent← 0

(c) Send observer() on e

18

2. Event: (state = observe) and (receive find from b)

(a) If (p(a) = a) then /* normal arrow protocol action */

i. Set p(a)← b and

ii. The find is queued behind the last request from a

(b) If (p(a) 6= a) and (p(a) 6= b), then

/* normal arrow protocol action */

i. Forward the find to p(a) and

ii. Set p(a)← b

(c) If (p(a) = b) then

/* self-stabilization action designed to keep φ(e) unchanged */

i. Send the find back to b on e

ii. Increment sent

3. Event: (state = observe) and (receive observer(x) on e)

(a) Change state← correct.

(b) φest = sent + x + p(a, e).

/* This is a’s estimate of φ(e), and is eventually accurate */

(c) /* Take corrective actions, if possible. */

i. If φest = 0 then

A. Send find to b

B. Increment φest

ii. If (φest > 1) and (p(a) = b), then

A. p(a)← a

B. Decrement φest.

4. Event: (state = correct) and (receive find from b)

/* In the correct phase, φest is a’s estimate of φ(e). Eventually, state =

correct implies that φest = φ(e) */

19

(a) If φest > 1, then

i. Ignore the find

ii. Decrement φest /* Since the edge has fewer find messages */

(b) Else if (p(a) = b) then

Send the find back to b

/* This means that φest 6= φ(e), and this action is meant to pre-

serve the value of φ(e) until φest has been corrected.*/

(c) Else,

/* normal arrow protocol actions, as in 2(a) and 2(b) */

5. Event: (state = correct) and (receive observer(x) on e)

/* this should not happen in a legal execution */

Ignore the observer message

6. Event: (receive find from adjacent node u 6= b) and (p(a) = b)

(a) /* Normal arrow protocol actions */

Set p(a)← u; Forward the find message to b

(b) Increment sent /* since a find has been sent on e */ .

5.3.2 Transition for b (the child).

1. Event: receive find from a.

(a) If p(b) = a, then send find back to a

(b) Else If (p(b) = b) then /* normal arrow protocol action */

i. The find is queued behind the last request from b

ii. Set p(b)← a

(c) Else /* (p(b) 6= b); normal arrow protocol action */

i. Forward the find to p(b) and

20

ii. Set p(b)← a

2. Event: (receive find from adjacent node u 6= a) and (p(b) = a)

/* normal arrow protocol action */

(a) Forward the find to a

(b) Set p(b)← u

3. Event: receive observer(). /* a wants to know p(b, e) */

Send observer(p(b,e)) on e.

6 Stabilization Proof

In this section, we present a proof that the algorithm presented in Section 5

stabilizes every edge. More precisely, we show that each edge stabilizes to

a “fully legal state” that we define later in this section. Informally, an edge

is in a “fully legal state” if it is in a legal state, as defined in Section 4,

and in addition, if all the variables and messages that are defined for self-

stabilization are also in a consistent state. We prove two properties for every

edge. The first is closure: if an edge enters a fully legal state then it remains

in one. The second is stabilization: each edge eventually enters a fully legal

state.

Consider an edge e = (a, b) whose parent node is a and child node is b.

We begin with lemmas that formally prove claims made in Section 5.1.

Lemma 6.1 For any edge e, the child node b never changes φ(e).

Proof: This proof follows from a case by case analysis of the transitions

of node b in Section 5.3. First consider Event (1), where b receives a find

message from a. After b responds to this event, either the find message

remains on e and p(b) is unchanged, or the find message is removed from e

and p(b) is flipped to point to a. In both cases, it follows from the definition

of φ() that φ(e) remains unchanged. Action (2) is a normal arrow protocol

21

action, and hence does not change φ(e). Action (3) involves handling an

observer message, and this does not change φ(e) either.

Lemma 6.2 For any edge e = (a, b), the actions of a and b in dealing with

edge e do not change φ(f) for any edge f 6= e.

Proof: We first consider the parent node a, whose actions for edge e could

potentially change φ(f) for some edge f = (a, d) 6= e. In the remaining part

of this proof, when we say “actions of node a”, we mean only those actions

in stabilizing edge e. Note that a has another set of actions to stabilize edge

f , which we do not consider here. Transition (1) is simply a response to a

timeout and clearly does not change φ(f). Transitions 2(a), 2(b), 4(c) and

6 are all normal arrow protocol actions and do not change φ(f), or for that

matter, φ(e′) of any edge e′. We now consider the effect of transitions other

than the normal arrow protocol actions. Among the remaining transitions

of a, none involve sending or receiving find messages on edge f , hence do

not affect the number of find messages in transit on f . Also, we observe

that none ever change p(a) to d. The only remaining case to be checked is if

any transition (other than the normal arrow protocol actions) changed the

direction of the arrow p(a) from d to some other node. It can be verified that

this never happens. Thus, we conclude that the actions of a in dealing with

edge e do not change φ(f).

We now consider node b, whose actions for edge e could potentially change

φ(f) for some edge f = (b, d) 6= e. Except for transitions 1(a) and (3), the

remaining transitions of node b (that are relevant to edge e) are the normal

arrow protocol actions, and thus cannot change φ(f). It can be easily seen

that transitions 1(a) and (3) do not affect φ of edge f , since they do not

change p(b) and do not send/receive find messages on f . Thus, clearly, the

actions of node b for edge e do not change φ(f) for any other edge f 6= e.

Lemma 6.3 Node a does not change φ(e) as long as it is in the observe

state.

22

find1
find3

observer

find4find5

find2

ba

Figure 5: The edge e = (a, b) as a cycle. Messages find1 and find2 belong to

Fal and the other three finds to Fla.

Proof: When a is in the observe state, its possible transitions are Tran-

sitions 1, 2, 3 and 6. Out of these, Transition 1 is a timeout and does not

change φ(e). Transition 3 changes a from the observe to the correct state

and does not change φ(e) when a is in the observe state. Transitions 2(a),

2(b) and 6 are normal arrow protocol actions, hence do not change φ(e). The

only remaining case is Transition 2(c); this does not change p(a) or p(b), and

does not change the number of find messages in transit on e; thus Transition

2(c) does not change φ(e).

We view the edge between a and b as two directed edges, one directed

from a to b and the other from b to a. We assume that each of these directed

edges is FIFO (first in first out). It is further convenient to view the two

directed edges together as a single cycle, from a to b and back (see Figure 5).

We adopt the convention that the messages always travel clockwise on this

cycle. The nodes a and b, and the current position of the observer can all be

thought as points on the circumference of this cycle.

In the initial faulty state of the network, there may be many observer

messages in transit on the same edge e, but the edge will soon reach a state

where it will have no more than one observer in transit. Suppose that there

was only one observed on the edge. Let F denote all the find messages in

23

transit on e. We can divide F into two sets (see Figure 5): (1)Fal, all find

messages in transit on the portion of the edge directed from a to the current

position of the observer (2)Fla, all find messages in transit in the portion of

the edge directed from the current observer to a. From Equation 1, we get:

φ(e) = |Fal|+ |Fla|+ p(a, e) + p(b, e) (2)

If the observer is between b and a, then it contains the value of p(b, e) as

observed when it passed b. We denote this value by pobs(b, e). The following

predicates define consistency conditions needed for self-stabilization.

Predicate 1 R1: There is only one observer on the edge, which is between

a and b, and φ(e) = sent + p(a, e) + p(b, e) + |Fla|.

Predicate 2 R2: There is only one observer on the edge, which is between

b and a, and φ(e) = sent + p(a, e) + pobs(b, e) + |Fla|.

Let P1 denote the predicate corresponding to the AND of the following

conditions.

• Node a is in the observe state

• R1 ∨ R2 is true

Let R denote an upper bound on the round trip message delay on edge

e.

Lemma 6.4 Starting from any state of edge e, within time 3R, predicate P1

will be true.

Let P2 denote the predicate corresponding to the AND of the following

conditions.

• Node a is in the correct state

• There is no observer in transit

24

• φest = φ(e) (i.e. a knows φ(e))

Proof: For convenience, assume that the system starts in an arbitrary state

at time 0. Since R is an upper bound on the round trip delay, within time R,

all observer messages which were in transit at time 0 will have been received

by a. Within time 2R after this, a new observer will be sent out on the edge,

and a will enter an observe state. At the moment the new observer has been

sent out on the edge, sent = 0, and F = Fla. It can be easily seen that at

this moment predicate R1 is true. Since there is only one observer, and a is

in the observe state, P1 is also true.

Lemma 6.5 Once P1 ∨ P2 is true it will continue to remain true.

Proof: We will consider the different possible cases. Since a can be in

either the observe or the correct state, but not both, either P1 or P2 is true,

but not both simultaneously.

Suppose P1 is true. Node a is in the observe state, there is one observer

in transit, and R1 ∨ R2 is true. Suppose R1 is true, so that the observer is

between a and b. It can be verified that when the observer crosses b to enter

the segment between b and a, R2 will become true. Thus, P1 will remain

true as long as the observer has not returned to a.

Consider the state of the edge just before the observer returns to a, and

there are no messages in transit in the segment Fla. At this point, R2 is still

true, so that φ(e) = sent+p(a, e)+pobs(b, e)+|Fla| = sent+p(a, e)+pobs(b, e).

When the observer comes back to a, the node sets φest(e) to be sent+p(a, e)+

pobs(b, e), so that φest(e) = φ(e). Also, there will be no observer in transit,

and the edge is in the correct state, so predicate P2 becomes true.

Once a is in a correct state, there will be no observer message in transit.

By design, the only place where φ(e) can change is at node a (either by

discarding find messages, or by introducing a new find message), thus φest(e)

is changed whenever φ(e) is changes, so that they remain equal. Thus, as

long as the node is in a correct state, predicate P2 will remain true.

25

We only need to show that when a new observe phase begins at a, pred-

icate P1 will become true. The first two conditions (a in observe state, and

only one observer in transit) are true trivially. Next, it can be easily verified

that predicate R1 is true immediately after the observer leaves a, so that

predicate P1 is true.

We now define what it means for an edge to be fully legal. This is a

stronger condition than an edge being legal. We need this definition for the

following reason. The earlier definition of an edge e being legal only required

φ(e) = 1. Though this definition is appropriate for the non stabilizing arrow

protocol, it is not enough for the self stabilizing protocol, since the self stabi-

lizing algorithm has additional messages and state when compared with the

non stabilizing protocol.

Definition 6.1 The edge is said to be in a fully legal state iff the following

conditions are both true: (1)φ(e) = 1 and (2)P1 ∨ P2

Lemma 6.6 Closure: If the edge is in a fully legal state, and no further

faults occur on the edge, it will continue to remain in a fully legal state.

Proof: If the edge is in a legal state, then P1∨P2 is true. From Lemma 6.5,

P1 ∨ P2 will continue to remain true. We only have to prove the closure of

φ(e) = 1. Suppose φ(e) = 1 and P2 was true. This implies that φest(e) = 1.

Since there is no observer in transit, the only messages that a could receive

are the regular find messages, which do not change the value of φ(e) or φest(e).

Thus, φ(e) = 1 is maintained as long as P2 is true.

Suppose φ(e) = 1 and P1 was true. Then a is in the observe state and from

Lemmas 6.3 and 6.1 φ(e) never changes as long as a is in the observe state.

The only case remaining is the transition from P1 to P2 and vice versa; i.e.

a changes from an observe state to a correct state and back. These changes

do not affect the value of φ(e).

Lemma 6.7 Stabilization: Irrespective of the starting state, if no further

faults occur on the edge, edge e will reach a fully legal state within time 5R.

26

Proof: From Lemma 6.4, predicate P1 will be true within time 3R, which

implies that there is exactly one observer in transit on the edge. Within time

R after this, this observer will return back to a. When the observer returns

to a, Transition (3) is triggered for a, as a result of which a changes to the

correct state and φest(e) will equal φ(e) (this is a result of P1, and hence, R2

being true before the observer returns to a). In Transition 3(c), if φest was

0, a corrects it immediately since a find message is sent out on e.

Now, P1∨P2 is true, and will continue to remain true, due to Lemma 6.6.

It is still possible that there are additional find messages in transit which

cause φ(e) to be greater than 1. These find messages will all return to a

within time R. Since the timeout is ≥ 2R, node a will still be in the correct

state at the time these find messages return to a. When they return to a,

these find messages will be ignored due to action 4(a), since φ(e) > 1. Once

all spurious finds are ignored, φ(e) will equal 1 and will remain unchanged

thereafter, due to Lemma 6.6. Thus, the edge will reach a fully legal state in

time 5R. Informally, the time for stabilization (5R) can be divided into the

following three parts.

(1)R for eliminating all spurious observer messages

(2)2R for a timeout after which predicate R1 is true, and

(3)2R to observe φ(e), and correct it, if necessary.

Message Complexity versus Stabilization Time Tradeoff. By in-

creasing the timeout, it is possible to decrease the message overhead of stabi-

lization at the cost of increased stabilization time. The following is a corollary

of Lemma 6.7.

Corollary 6.8 If the timeout for a is τ ≥ 2R, where R is the round trip

time on the edge e = (a, b), stabilization is still achieved. i.e. if no further

faults occur, edge e will reach a fully legal state within time 3R + τ .

Proof: The proof follows from the proof of Lemma 6.7. The only difference

is that predicate P1 will be true within time R+τ after the initial state, since

27

R is an upper bound on the time required for the spurious observer messages

to return to a, and within τ time steps after that, a new observer is sent out

on the edge. The rest of the proof is identical to the proof of Lemma 6.7,

and the edge stabilizes within 2R time steps after the observer has been sent

out. Thus, the edge reaches a fully legal state within total time 3R + τ .

Thus, node a can send out fewer observer messages (once every τ ≥ 2R

time steps), thus decreasing the communication overhead for stabilization,

at the cost of increased stabilization time (now 3R + τ).

Conclusions We have presented an efficient (in terms of stabilization time)

and locally self-stabilizing arrow queuing protocol. This was possible because

of a decomposition of the global predicate defining “legality” of a protocol

state into the conjunction of a number of purely local predicates, one for

each edge of the spanning tree. The delay needed to self-stabilize the arrow

protocol differs from the delay needed to self-stabilize a rooted spanning tree

by only a constant number of round trip delays on an edge.

Acknowledgments: We are grateful to Steve Reiss for helpful discussions

and ideas.

References

[1] S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree

algorithm. In Proc. 13th Conference on Foundations of Software Tech-

nology and Theoretical Computer Science (FSTTCS), pages 400–410,

1993.

[2] G. Antonoiu and P. Srimani. Distributed self-stabilizing algorithm for

minimum spanning tree construction. In Proc. Euro-par Parallel Pro-

cessing, LNCS:1300, pages 480–487. Springer-Verlag, 1997.

28

[3] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by

local checking and correction. In Proc. 31st Annual IEEE Symposium

on Foundations of Computer Science (FOCS), pages 268–277, 1991.

[4] M. Demmer and M. Herlihy. The arrow directory protocol. In Proc.

12th International Symposium on Distributed Computing (DISC), pages

119–133, 1998.

[5] E. Dijkstra. Self stabilizing systems in spite of distributed control. Com-

munications of the ACM, 17:643–644, 1974.

[6] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[7] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems

assuming only read/write atomicity. Distributed Computing, 7(1):3–16,

1993.

[8] M. Gouda and N. Multari. Stabilizing communication protocols. IEEE

Transactions on Computers, 40(4):448–458, 1991.

[9] M. Herlihy. The aleph toolkit: Support for scalable distributed shared

objects. In Workshop on Communication, Architecture, and Applica-

tions for Network-based Parallel Computing (CANPC), pages 137–149,

1999.

[10] M. Herlihy and S. Tirthapura. Self-stabilizing distributed queuing. In

Proc. 15th International Symposium on Distributed Computing (DISC),

pages 209–223, 2001.

[11] M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent

distributed queuing. In Proc. 20th ACM Symposium on Principles of

Distributed Computing (PODC), pages 127–133, 2001.

[12] M. Herlihy, S. Tirthapura, and R. Wattenhofer. Ordered multicast and

distributed swap. Operating Systems Review, 35(1):85–96, 2001.

29

[13] M. Herlihy and M. Warres. A tale of two directories: implementing dis-

tributed shared objects in java. Concurrency: Practice and Experience,

12(7):555–572, 2000.

[14] T. Hu. Optimum communication spanning trees. SIAM Journal on

Computing, 3(3):188–195, 1974.

[15] F. Kuhn and R. Wattenhofer. Dynamic analysis of the arrow distributed

protocol. In Proc. 16th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA), pages 294–301, 2004.

[16] M. Nesterenko and M. Mizuno. A quorum-based self-stabilizing dis-

tributed mutual exclusion algorithm. J. Parallel Distrib. Comput.,

62(2):284–305, 2002.

[17] D. Peleg and E. Reshef. A variant of the arrow distributed directory

protocol with low average complexity. In Proc. 26th International Col-

loquium on Automata Languages and Programming (ICALP), July 1999.

[18] K. Raymond. A tree-based algorithm for distributed mutual exclusion.

ACM Transactions on Computer Systems, 7(1):61–77, 1989.

[19] M. Schneider. Self-stabilization. ACM Computing Surveys, 25:45–67,

1993.

[20] S. Tirthapura. Distributed Queuing and Applications. PhD thesis, Brown

University, 2002.

[21] G. Varghese. Self-stabilization by counter flushing. In Proc. 13th An-

nual ACM Symposium on Principles of Distributed Computing (PODC),

pages 244–253, 1994.

[22] G. Varghese, A. Arora, and M. Gouda. Self-stabilization by tree correc-

tion. Chicago Journal of Theoretical Computer Science, (3):1–32, 1997.

30

