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Abstract. An important issue for the Semantic Web is how to combine
open-world ontology languages with closed-world (non-monotonic) rule
paradigms. Several proposals for hybrid languages allow concepts to be
simultaneously defined by an ontology and rules, where rules may refer to
concepts in the ontology and the ontology may also refer to predicates de-
fined by the rules. Hybrid MKNF knowledge bases are one such proposal,
for which both a stable and a well-founded semantics have been defined.
The definition of Hybrid MKNF knowledge bases is parametric on the
ontology language, in the sense that non-monotonic rules can extend any
decidable ontology language. In this paper we define a query-driven pro-
cedure for Hybrid MKNF knowledge bases that is sound with respect to
the original stable model-based semantics, and is correct with respect to
the well-founded semantics. This procedure is able to answer conjunctive
queries, and is parametric on an inference engine for reasoning in the on-
tology language. Our procedure is based on an extension of a tabled rule
evaluation to capture reasoning within an ontology by modeling it as
an interaction with an external oracle and, with some assumptions on
the complexity of the oracle compared to the complexity of the ontology
language, maintains the data complexity of the well-founded semantics
for hybrid MKNF knowledge bases.

1 Introduction

Ontologies and Rules offer distinctive strengths for the representation and trans-
mission of knowledge in the Semantic Web. Ontologies offer the deductive advan-
tages of first-order logics with an open domain while guaranteeing decidability.
Rules offer non-monotonic (closed-world) reasoning that can be useful for for-
malizing scenarios under (local) incomplete knowledge; they also offer the ability
to reason about fixed points (e.g. reachability) which cannot be expressed within
first-order logic. Interest in both and their combination is demonstrated by the
pervasive interest in Ontology languages for the Semantic Web and the growing
interest on Rule languages for the Semantic Web, cf. the RIF and the RuleML
initiatives.

The two most common semantics for rules are the well-founded semantics
(WFS) [19] and the answer-sets semantics [6]. Both semantics are widely used;
both offer closed-world reasoning and allow the representation of fixed points;



furthermore the relationship between the two semantics has been fully explored.
Of the two, the well-founded semantics is weaker (in the sense that it is more
skeptical), but has the advantage that its lower complexity allows it to be inte-
grated into the general-purpose programming language Prolog. Thus in addition
to its features for knowledge representation, WFS rules can provide a reactive
or procedural component missing from ontologies. Several formalisms have con-
cerned themselves with combining decidable ontologies with WFS rules [3, 5, 9].
Among these, the Well-Founded Semantics for Hybrid MKNF knowledge bases
(MKNFWFS), introduced in [9] and overviewed in Section 2 below, is the only one
which allows knowledge about instances to be fully inter-definable between rules
and an ontology that is taken as a parameter of the formalism. Using this pa-
rameterized ontology, MKNFWFS is defined using a monotonic fixpoint operator
that computes in each iteration step, besides the usual immediate consequences
from rules, the set of all atoms derivable from the ontology whose ABox is aug-
mented with the already proven atomic knowledge. The least fixpoint of the
MKNFWFS operator coincides with the original WFS [19] if the DL-component
is empty, and when dealing with tractable description logics MKNFWFS retains
a tractable data complexity. Furthermore, MKNFWFS is sound wrt. to that of
[12] for MKNF knowledge bases, which is based on answer-set semantics and
coincides with the answer-sets semantics if the DL-part is empty.

In one sense, the fixpoint operator of MKNFWFS provides a way to compute,
in a naive bottom-up fashion, all consequences of a knowledge base. However,
such an approach is far from practical for large knowledge bases, as in the Se-
mantic Web context. As a concrete example, consider a medical knowledge base
about patients in a large research study. Such a knowledge base might use a
standard OWL-ontology representing pathologies, treatment procedures, phar-
maceuticals, and so on (e.g. http://www.mindswap.org/2003/CancerOntology).
At the same time rules may be used to represent complex temporal constraints
that a research study imposes on a given patient, to interface with a patient’s
electronic health record, and even to extend the ontology with local procedures
or policies. To be practical this requires efficient techniques to answer queries
about patients, health-care workers, and other objects of interest.

This paper presents a querying mechanism, called SLG(O), that is sound
and complete for MKNFWFS , and sound for MKNF knowledge bases of [12].
SLG(O) accepts DL-safe conjunctive queries, (i.e. conjunctions of predicates
with variables where queries have to be ground when processed in the ontology),
returning all correct answer substitutions for variables in the query. To the best
of our knowledge, this is the first query-driven, top-down like, procedure for
knowledge bases that tightly combine an ontology with non-monotonic rules.

The gist of the approach

The main element of our approach addresses the interdependency of the ontology
and rules. In particular, our program evaluation method SLG(O), presented in
Section 4, extends SLG resolution [2], which evaluates queries to normal logic
programs (i.e. sets of non-disjunctive non-monotonic rules) under WFS. SLG



is a form of tabled resolution that handles loops within the program, and does
not change the data complexity of WFS. It does that by resorting to already
computed results, in a forest of derivation trees, a technique also known as
tabling. To adjoin an ontology to rules, the first thing that needs to be done is to
allow an SLG evaluation to make calls to an inference engine for the ontology.
Since MKNF is parametric on any given decidable ontology formalism1, the
inference engine is viewed in SLG as an oracle. In fact, every time SLG selects
an atom that is (perhaps jointly) defined in the ontology, the oracle’s inference
engine must be called, in case the atom is not provable by the rules alone. Such a
queried atom, say P (a), might thus be provable but only if a certain set of atoms
in turn is provable via rules. Our approach captures this by allowing the oracle
to return a new program clause, say P (a) :- Goals, which has the property that
(possibly empty) Goals, in addition to the axioms in the ontology and the atoms
already proven by the program would be sufficient to prove P (a). SLG(O) then
treats these new clauses just as if they were program clauses.

Note that, getting these conditional answers does not endanger decidability
(or tractability, if it is the case) of reasoning in the ontology alone. In fact, it is
easy to conceive a modification of a tableaux based inference engine for an ontol-
ogy, that is capable of returning these conditional answers and is decidable if the
tableaux algorithm is: add all those atoms that are defined in the program to the
ABox; then proceed with the tableaux as usual, but collect all those added facts
that have been used in the proof. Under some assumptions on the complexity
of the oracle, it is shown (in Section 5 along with some other properties) that
SLG(O) also retains tractability.

The other element of our approach arises from the need to combine the clas-
sical negation of an ontology with the non-monotonic negation of rules. This
problem is similar to the issue of coherence that arises when adding strong nega-
tion to logic programs [6, 13, 14]: the strong (or classical) negation must imply
negation by default. In our case, if the ontology entails that some atom A is
false, then perforce the default negation not A must hold in the program. The
derivation must accordingly be modified since the proof of not A cannot simply
rely on the failure of the proof of A as it is usual in logic programming. For sim-
plicity, instead of modifying SLG(O), our proposal (in Section 3) transforms the
original knowledge base K to ensure coherence. SLG(O) is then applied to the
transformed K. This transformation itself provides an alternative formulation of
MKNFWFS and is another original result of the paper.

2 Preliminaries

2.1 Syntax of Hybrid MKNF Knowledge Bases

We presume a basic understanding of the well-founded semantics [19] and first-
order logics, in particular notions related to logic programming and resolution

1 The limitation to decidability is theoretically not strictly necessary but a choice to
achieve termination and complexity results in accordance with the decidable ontology
languages like OWL (http://www.w3.org/2004/OWL/)



(see e.g. [11]). Hybrid MKNF knowledge bases as introduced in [12] are es-
sentially formulas in the logics of minimal knowledge and negation as failure
(MKNF) [10], i.e. first-order logics with equality and two modal operators K
and not allowing inspection of the knowledge base: intuitively, given a first-order
formula ϕ, Kϕ asks whether ϕ is known while notϕ is used to check whether
ϕ is not known. Hybrid MKNF knowledge bases consist of two components, a
decidable description logics (DL) knowledge base2, translatable into first-order
logics, and a finite set of rules.

Definition 2.1. Let O be a DL knowledge base built over a language L with
distinguished sets of countably infinitely many variables NV , and finitely many
individuals NI , and predicates NC. An atom P (t1, . . . , tn) where P ∈ NC and
ti ∈ NV ∪NI is called a DL-atom if P occurs in O, otherwise it is called non-
DL-atom. An MKNF rule r has the following form where Hi, Ai, and Bi are
atoms: KH ← KA1, . . . ,KAn,notB1, . . . ,notBm. H is called the (rule) head
and the sets {KAi}, and {notBj} form the (rule) body. Literals3 are positive
literals KA or negative literals notA. A rule r is positive if m = 0 and a fact
if n = m = 0. A program P is a finite set of MKNF rules and a hybrid MKNF
knowledge base K is a pair (O,P).

We will usually omit the modal operators K in the rule head and the positive
body, though they remain implicit however. Furthermore, we sometimes also
omit the terms ti of an atom as well (in the context of description logics).

For decidability DL-safety is applied which basically constrains the use of
rules to individuals actually appearing in the knowledge base under considera-
tion. Formally, an MKNF rule r is DL-safe if every variable in r occurs in at least
one non-DL-atom KB occurring in the body of r. A hybrid MKNF knowledge
base K is DL-safe if all its rules are DL-safe4. Likewise, to ensure decidability,
grounding the knowledge base, i.e. its rules, is restricted to individuals appearing
in the knowledge base and not to the whole infinite domain5. Therefore, given
a hybrid MKNF knowledge base K = (O,P), the ground instantiation of K is
the KB KG = (O,PG) where PG is obtained from P by replacing each rule r
of P with a set of rules substituting each variable in r with constants from K
in all possible ways (for more details we refer to [12] and [9]). DL-safety is also
imposed on (conjunctive) queries:

Definition 2.2. A conjunctive query q is a non-empty set, i.e. conjunction, of
literals where each variable in q occurs in at least one non-DL atom in q. We
also write q as a rule q(Xi) ← A1, . . . , An,notB1, . . . ,notBm where Xi is the
(possibly empty) set of variables, appearing in the body, which are requested.

2 For a thorough introduction on description logics we refer to [1].
3 In [9], the term modal atom is used and modal atoms in MKNF are in general not

restricted to first-order atoms but in this paper it is essentially their only appearance.
4 In the following all hybrid MKNF knowledge bases are assumed to be DL-safe.
5 As well-known, description logics semantics usually require an infinite domain to

admit the intended semantics for statements involving unknown individuals.



The restriction of conjunctive queries to DL-safety is not always necessary: for
DLs like SHIQ conjunctive query answering is possible ([7]) and we may also
make use of such existing algorithms, however, when there is no algorithm for
conjunctive query answering yet or it is even not decidable (like for EL++ [15])
then the limitation is required to achieve decidability in the combined approach.

2.2 Well-founded Semantics of Hybrid MKNF Knowledge Bases

The well-founded MKNF semantics as presented in [9] is based on a complete
three-valued extension of the original MKNF semantics. However, here we are
not interested in obtaining the entire semantics where a model consists of two
sets of sets of first-order interpretations. Instead we limit ourselves here to the
computation of what is called the well-founded partition in [9]: basically the
literals which are true and false. For that reason, and in correspondence to logic
programming, we will name this partition the well-founded model. At first, we
recall some notions from [9] which will be useful in the definition of the operators
for obtaining that well-founded model.

Definition 2.3. Consider a hybrid MKNF knowledge base K = (O,P). The set
of K-atoms of K, written KA(K), is the smallest set that contains (i) all positive
literals occurring in P, and (ii) a literal Kξ for each literal notξ occurring in
K. Furthermore, for a set of literals S, SDL is the subset of DL-atoms of S, and
Ŝ = {ξ | Kξ ∈ S}.

Basically all literals appearing in the rules are collected in KA(K) as a set of
positive literals and the other two notions provide restrictions on such a set.

To guarantee that all atoms that are false in the ontology are also false by
default in the rules, we introduce new positive DL atoms which represent first-
order false DL atoms, and another program transformation making these new
literals available for reasoning in the respective rules.

Definition 2.4. Let K be a hybrid MKNF knowledge base. We obtain K+ =
(O+, P ) from K by adding an axiom ¬P ⊑ NP for every DL atom P which
occurs as head in at least one rule in K where NP is a new predicate not already
occurring in K. Moreover, we obtain K∗ from K+ by adding notNP (t1, . . . , tn)
to the body of each rule with a DL atom P (t1, . . . , tn) in the head.

By K+, NP represents ¬P (with its corresponding arguments) and K∗ introduces
a restriction on each rule with such a DL atom in the head saying intuitively
that the rule can only be used to conclude the head if the negation of its head
does not hold already6.

We continue now by defining an operator TK which allows to draw conclusions
from positive hybrid MKNF knowledge bases.

6 Note that K
+ and K

∗ are still hybrid MKNF knowledge bases, so we only refer to
K

+ and K
∗ explicitly when it is necessary.



Definition 2.5. For K a positive hybrid MKNF knowledge base, RK, DK, and
TK are defined on the subsets of KA(K∗) as follows:

RK(S) = S ∪ {KH | K contains a rule of the form (1) such that KAi ∈ S
for each 1 ≤ i ≤ n}

DK(S) = {Kξ | Kξ ∈ KA(K∗) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, . . . , bn) |
KQ(a1, . . . , an) ∈ S \ SDL, KQ(b1, . . . , bn) ∈ KA(K∗), and

O ∪ ŜDL |= ai ≈ bi for 1 ≤ i ≤ n}
TK(S) = RK(S) ∪DK(S)

RK derives consequences from the rules while DK obtains knowledge from the
ontology O, respectively from non-DL-atoms and the equalities occuring in O.

The operator TK is shown to be monotonic in [9] so, by the Knaster-Tarski
theorem, it has a unique least fixpoint, denoted lfp(TK), which is reached after
a finite number of iteration steps.

The computation follows the alternating fixpoint construction [18] of the
well-founded semantics for logic programs which neccesitates turning a hybrid
MKNF knowledge base into a positive one to make TK applicable.

Definition 2.6. Let KG = (O,PG) be a ground hybrid MKNF knowledge base
and let S ⊆ KA(KG). The MKNF transform KG/S = (O,PG/S) is obtained by
PG/S containing all rules H ← A1, . . . , An for which there exists a rule KH ←
KA1, . . . ,KAn,notB1, . . . ,notBm in PG with KBj 6∈ S for all 1 ≤ j ≤ m.

This resembles the transformation known from answer-sets [6] of logic programs
and the following two operators are defined.

Definition 2.7. Let K be a hybrid MKNF knowledge base and S ⊆ KA(K∗).

ΓK(S) = lfp(T
K

+

G
/S) Γ ′

K(S) = lfp(TK∗

G
/S)

Both operators are shown to be antitonic [9] and form the basis for defining
the well-founded MKNF model. Here we present its alternating computation.

P0 = ∅ N0 = KA(K∗)
Pn+1 = ΓK(Nn) Nn+1 = Γ ′

K
(Pn)

Pω =
⋃

Pn Nω =
⋂

Nn

Note that by finiteness of the ground knowledge base the iteration stops before
reaching ω. It was shown in [9] that the sequences are monotonically increasing,
decreasing respectively, and that Pω and Nω form the well-founded MKNF
model.

Definition 2.8. Let K = (O,P) be a hybrid MKNF knowledge base and let
PK,NK ⊆ KA(K) with PK being Pω and NK being Nω, both restricted to the
literals only occurring in KA(K). Then MWF = {KA | A ∈ PK} ∪ {Kπ(O)} ∪
{notA | A ∈ KA(K) \NK} is the well-founded MKNF model of K.

All literals in MWF are true, its counterparts are false (e.g. if KH is true then
notH is false) and all other literals from KA(K) are undefined. Note that Kπ(O)
appears in the model for conciseness with [9].



3 Alternative Computation of MKNFWFS

As we have seen, the bottom-up computation of the well-founded MKNF model
requires essentially two operators each with its own transformation of the knowl-
edge base. Using directly this as a basis for the top-down procedure, would com-
plicate it, in that we would have to consider two different copies of the program,
and use them alternately in different parts of the procedure. This is why, in
this section, we define that computation in a different way. Namely, we double
the rules in K using new predicates, transform them appropriately, and dou-
ble the ontology , so that we can apply just one operator and still obtain the
well-founded MKNF model.

Definition 3.1. Let K = (O,P) be a hybrid MKNF knowledge base. We in-
troduce new predicates, i.e. a predicate Ad for each predicate A appearing in
K, and define Kd as the knowledge base obtained by adding O+ to O where
each predicate A in O is substituted by Ad, and transforming each H(ti) ←
A1, . . . , An,notB1, . . . ,notBm occuring in P, ti representing the arguments of
H, into the following two rules:
(1) H(ti)← A1, . . . , An,notBd

1 , . . . ,notBd
m and either

(2a) Hd(ti)← Ad
1, . . . , A

d
n,notB1, . . . ,notBm,notNH(ti) if H is a DL-atom; or

(2b) Hd(ti)← Ad
1, . . . , A

d
n,notB1, . . . ,notBm otherwise

Note that the predicate notNH is in fact the one introduced by K+.
We can now define a new operator Γ d on Kd only7.

Definition 3.2. Let K = (O,P) be a hybrid MKNF knowledge base and S ⊆
KA(Kd). We define Γ d

K
(S) = lfp(TKd

G
/S) and ΥK(S) = Γ d

K
(Γ d

K
(S)).

The operator Γ d
K

is antitonic just like ΓK, and so ΥK is a monotonic operator.
Therefore ΥK also has a least and a greatest fixpoint and we can formulate their
iteration in the same manner as for Pω and Nω.

Pd
0 = ∅ Nd

0 = KA(Kd)
Pd

n+1 = Γ d
K
(Nd

n) Nd
n+1 = Γ d

K
(Pd

n)
Pd

ω =
⋃

Pd
n Nd

ω =
⋂

Nd
n

We can now state the relation of the least and the greatest fixpoint of ΥK to
Pω and Nω, from which the well-founded MKNF model is obtained.

Theorem 3.1. Let K = (O,P) be a hybrid MKNF knowledge base and let Pd
ω

be the least fixpoint of ΥK and Nd
ω be the greatest fixpoint of ΥK. We have:

– A ∈ Pω if and only if A ∈ Pd
ω

– B 6∈ Nω if and only if Bd 6∈ Nd
ω

Proof. We show by induction on n that the following (*) holds:

– A ∈ Pn if and only if A ∈ Pd
n

– B 6∈ Nn if and only if Bd 6∈ Nd
n

7 Note that the operators in Definition 2.5 are now defined for subsets of KA(Kd).



This is sufficient since the grounded knowledge base is finite so the fixpoints are
in fact always corresponding to Pn, respectively Nn, for some n.

The base case for n = 0 is straightforward since P0 and Pd
0 are empty while

N0 and Nd
0 do contain their entire Herbrand base.

So suppose that the claim (*) holds for n, we show the induction step for
n + 1. At first, suppose that A ∈ Pn+1 but A 6∈ Pn (otherwise we obtain
the result by induction hypothesis immediately) and we show that A ∈ Pd

n+1.
Then A ∈ ΓK(Nn) and thus A ∈ lfp(T

K
+

G
/Nn

). So A ∈ T
K

+

G
/Nn

↑ m for some

m and we show by induction on m that A ∈ TKd

G
/Nn

↑ m which shows that

A ∈ Pd
n+1. The base case for m = 0 holds immediately. Assume the claim

holds for m we show it for m + 1. Suppose that A ∈ T
K

+

G
/Nn

↑ (m + 1) then

A ∈ T
K

+

G
/Nn

(T
K

+

G
/Nn

↑ m). Then either A ∈ R
K

+

G
/Nn

(T
K

+

G
/Nn

↑ m) or A ∈

D
K

+

G
/Nn

(T
K

+

G
/Nn

↑ m). We start with the first case. So there is a rule A ←

A1, . . . , An,notB1, . . . ,notBm with all Ai ∈ T
K

+

G
/Nn
↑ m for all i and notBj 6∈

Nn. For each such rule A ← A1, . . . , An,notB1, . . . ,notBm in K+

G there is a
rule A ← A1, . . . , An,notBd

1 , . . . ,notBd
m in Kd

G according to Definition 3.1.
Since by induction hypothesis we have that B 6∈ Nn if and only if Bd 6∈ Nd

n

we obtain that each rule in K+

G/Nn has its correspondent in Kd
G/Nd

n. Then
we obtain by the nested induction hypothesis that A ∈ TKd

G
/Nn

↑ (m + 1).

Otherwise A ∈ D
K

+

G
/Nn

(T
K

+

G
/Nn
↑ m) and we obtain A ∈ DKd

G
/Nn

(TKd

G
/Nn
↑ m)

immediately by induction hypothesis. The other direction (A ∈ Pd
n+1 implies

A ∈ Pn+1) follows by the same argument ignoring the rules with a head of the
form Hd.

To show the second part of the claim we suppose that B 6∈ Nn+1 but B ∈
Nn (otherwise the claim would follow immediately by induction hypothesis)
and show that Bd 6∈ Nd

n+1. So B 6∈ lfp(TK∗

G
/Pn

) but B ∈ lfp(TK∗

G
/Pn−1

) (with

the special case of B ∈ N0 for n = 0) and we show that Bd 6∈ lfp(TKd

G
/Pn

).

Intuitively, the sequence of Pi is increasing, consequently, some literals in Pn \
Pn−1 cause the removal of B or a self-dependency within a set of such literals
which all get removed. In detail, if B 6∈ Nn+1 but B ∈ Nn then there is no m
such that B ∈ TK∗

G
/Pn
↑ m which also means that there is no m such that either

B ∈ RK∗

G
/Pn

(TK∗

G
/Pn
↑ m) or B ∈ DK∗

G
/Pn

(TK∗

G
/Pn
↑ m). For n − 1, B was

still derivable, so at least one of the two cases did hold. In case of the operator
D, the removal in Nn+1 would mean that some positive literal A is no longer
available for deriving conclusions in DK. But since the sequence Pi increases,
this vanished A has to be one of those literals which get removed in Nn+1. In
Kd, we obtain a similar dependency only that it is now wrt. some literal Ad.
For the second case, consider any rule B ← A1, . . . , An,notB1, . . . ,notBm in
K∗

G. For each such rule there is also a rule Bd ← Ad
1, . . . , A

d
n,notB1, . . . ,notBm

in Kd
G. Note that in case B is a DL-atom that we have an additional notNB

in both rule bodies. If the head B in such a rule is no longer true then some
literal in the body has become false. If this atom is an Ai then we can apply
the same argument as in the prior case (where the removal was caused by the
ontology), i.e. a dependency on some literal Ad

i exists which gets removed in



Nn+1 as well. Otherwise, the removal was caused by some notBj . So one Bj

becomes true in Pn but then Bd
j also became true in Pd

n by induction hypothesis.

We conclude that Bd 6∈ Nd
n+1 since the other two cases before depend on that

one. The argument for the other direction is identical.

It follows immediately from this theorem that we can use ΥK to compute the
well-founded MKNF model. We also derive from the theorem that we have to
use the new predicates Ad if we query for negative literals.

Example 3.1. The following example shows that essentially the sets of computed
literals A and Ad are identical unless an inconsistency is occuring. Consider the
following knowledge base K which we already have augmented with the relevant
additions for K∗ limited to the predicate R since the corresponding statements
for Q or P would not have any effect.

Q ⊑ ¬R

¬R ⊑ NR

Q ⊑ P

R(a)← notR(a)(,notNR(a))

Q(a)←

P (a)← P (a)

We can compute the two sequences Pi and Ni. We obtain P0 = ∅, P1 =
{Q(a), NR(a), P (a)} = P2 and P3 = {Q(a), NR(a), P (a), R(a)}, and N0 =
{Q(a), NR(a), P (a), R(a)} = N1 and N2 = {Q(a), NR(a), P (a)} = N3. The
knowledge base is in fact inconsistent since we derive that R(a) is true and false
at the same time.

Now we apply the alternative computation and for that we provide at first the
altered knowledge base in which we do not have to double the second ontology
statement since NRd does not appear in the rules anyway.

Q ⊑ ¬R

¬R ⊑ NR

Q ⊑ P

Qd ⊑ ¬Rd

Qd ⊑ P d

R(a)← notRd(a)(,notNRd(a))

Q(a)←

P (a)← P (a)

Rd(a)← notR(a)(,notNR(a))

Qd(a)←

P d(a)← P d(a)

We compute the two sequences and obtain that Pd
0 = ∅, Pd

1 = {Q(a), NR(a), P (a),
Qd(a), P d(a)} = Pd

2 and Pd
3 = {Q(a), NR(a), P (a), R(a), Qd(a), P d(a)} and



Nd
0 = {Q(a), NR(a), P (a), R(a), Qd(a), P d(a), Rd(a)} = Nd

1 and Nd
2 = {Q(a),

NR(a), P (a), R(a), Qd(a), P d(a)} = Nd
3.

In fact, the doubled predicates appear correspondingly to the original ones,
only the inconsistent case of R(a) is different: in the increasing sequence, only
R(a) is added and in the decreasing sequence only Rd(a) is removed. The de-
tection of inconsistencies is thus even more straightforward by means of the
alternative computation. We also note that only the doubling of O allows to
derive Qd(a).

4 Tabled SLG(O)-resolution for Hybrid MKNF

Now we present the new SLG-resolution, SLG(O), for Hybrid MKNF Bases
which extends [2]. We should mention that the definition of SLG(O) is quite in-
volved and requires that certain definitions are interlinked with each other (links
are provided in each of these cases). It is based on sets of trees of derivations
(forests). Tree nodes contain sets of literals which we also call goals (cf. Def.4.2).
To deal with termination, some literals must be delayed during the tabled res-
olution, and so we have to define delay literals (cf. Def.4.1). Also, a notion of
completely evaluated goals in a forest is needed for termination (cf. Def.4.4). The
trees, and the delaying of literals, are constructed according to the set of oper-
ations in Def.4.8. Some of these operations require resolution of selected literals
with program rules and, since delayed literals may exist, a slightly changed res-
olution is required (cf. Def.4.3). For dealing with the ontology, derivation steps
must also take into account an oracle; thus, a suitable definition of what is ex-
pected from the oracle is required (cf. Def.4.7). We begin the presentation of
SLG(O) by defining the delay literals, and then forests:

Definition 4.1. A negative delay literal has the form not A, where A is a
ground atom. Positive delay literals have the form ACall

Answer, where A is an atom
whose truth value depends on the truth value of some literal Answer for the
literal Call. If θ is a substitution, then (ACall

Answer)θ = (Aθ)Call
Answer.

Positive delay literals can only appear as a result of resolution. Its special form
as indicated by the names is meant to keep track of the answer and call used for
that resolution and possible substitutions are thus only applied to A itself.

Definition 4.2. A node has the form

Answer Template :- Delays|Goals or fail.

In the first form, Answer Template is an atom, Delays is a sequence of
(positive and negative) delay literals and Goals is a sequence of literals. The
second form is called a failure node. A program tree T is a tree of nodes whose
root is of the form S :- |S for some atom S: S is the root node for T and T
is the tree for S. An SLG forest F is a set of program trees. A node N is an
answer when it is a leaf node for which Goals is empty. If Delays of an answer
is empty it is termed an unconditional answer, otherwise, it is a conditional
answer. Program trees T may be marked as complete.



Whenever Goals contains various elements we effectively have to select one
of them, by using a selection function. The only requirement for such a selection
function, is that DL-atoms are not selected until they are ground (which is always
possible given DL-safety).

The definition of answer resolution is slightly different from the usual one to
take delay literals in conditional answers into account.

Definition 4.3. Let N be a node A :- D|L1, ..., Ln, where n > 0. Let Ans =
A′ :- D′| be an answer whose variables have been standardized apart from N . N
is SLG resolvable with Ans if ∃i, 1 ≤ i ≤ n, such that Li and A′ are unifiable
with an mgu θ. The SLG resolvent of N and Ans on Li has the form:

(A :- D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A :- D, Li
Li

A′ |L1, ..., Li−1, Li+1, ..., Ln)θ

We delay Li rather than propagating the answer’s delay list. This is necessary,
as shown in [2], to ensure polynomial data complexity8.

At a certain point in SLG(O) resolution, a set of goals may be completely
evaluated, i.e. it can produce no more answers.

Definition 4.4. A set S of literals is completely evaluated if at least one of the
conditions holds for each S ∈ S
1. The tree for S contains an answer S :- |; or
2. For each node N in the tree for S:

(a) The underlying subgoal9 of the selected literal of N is completed; or
(b) The underlying subgoal of the selected literal of N is in S and there are no

applicable New Subgoal, Program Clause Resolution, Oracle

Resolution, Equality Resolution, Positive Return, Negative

Return or Delaying operations (Definition 4.8) for N .

Once a set of literals is determined to be completely evaluated, the Comple-

tion operation marks the trees for each literal (Definition 4.2). Such completely
evaluated trees can then be used to simplify other trees in the evaluation.

According to Definition 4.3, if a conditional answer is resolved against the
selected literal in the set Goals of a node, the information about the delayed lit-
erals in the answer is not propagated. However, in certain cases, the propagation
of conditional answers can lead to a set of unsupported answers — conditional
answers that are false in the well founded model (see e.g. Example 1 of [17])10.

Definition 4.5. Let F be an SLG forest, S a root of a tree in F , and Answer be
an atom that occurs in the head of some answer of S. Then Answer is supported
by S in F if and only if:
8 If we propagated the delay lists, we would propagate all derivations which could be

exponential in bad cases.
9 The underlying subgoal of literal L is L if L is positive and S if L = not S.

10 As an aside, we note that unsupported answers appear to be uncommon in practical
evaluations which minimize the use of delay such as [16].



1. S is not completely evaluated; or
2. there exists an answer node Answer :- Delays| of S such that for every

positive delay literal DCall
Ans , Ans is supported by Call.

We can obtain an interpretation from an SLG forest representing the truth
values of the roots of its trees. This interpretation will later also correspond to
MWF (cf. Theorem 5.3).

Definition 4.6. Let F be a forest. Then the interpretation induced by F , IF ,
is the smallest set such that:
– A (ground) atom A ∈ IF iff A is in the ground instantiation of some uncon-

ditional answer Ans :- | in F .
– A (ground) literal not A ∈ IF iff A is in the ground instantiation of a

completely evaluated literal in F , and A is not in the ground instantiation
of any answer in a tree in F .

An atom S is successful (failed) in IF if S′ (not S′) is in IF for every S′ in the
ground instantiation of S. A negative delay literal not D is successful (failed)
in a forest F if D is (failed) successful in F . Similarly, a positive delay literal
DCall

Ans is successful (failed) in a F if Call has an unconditional answer Ans :- |
in F .

In order to describe a tabled evaluation that is parameterized by an oracle,
we need to characterize the behavior of an abstract oracle, O11 that computes
entailment according to a theory, i.e. the ontology. For that purpose, we define
an oracle transition function that in just one step computes all possible atoms
required to prove the goal. In other words, such an oracle, when posed a query S
non-deterministically returns in one step a set of atoms defined in the program
(i.e. atoms for which there is at least one rule with it in the head) such that, if
added to the oracle theory, immediately derives S.

Definition 4.7. Let K = (O,P) be a hybrid MKNF knowledge base, S a goal,
and L a set of ground atoms which appear in at least one rule head in PG. The
complete transition function for O, denoted compTO, is defined by

compTO(IFn
, S, L) iff O ∪ IFn

∪ L |= S

We are now able to characterize SLG(O) operations.

Definition 4.8 (SLG(O) Operations). Let K = (O,P) be a hybrid MKNF
knowledge base. Given a forest Fn of an SLG(O) evaluation of K, Fn+1 may be
produced by one of the following operations.

1. New Subgoal: Let Fn contain a tree with non-root node

N = Ans :- Delays|G, Goals

where G is the selected literal S or not S. Assume Fn contains no tree with
root S. Then add the tree S :- |S to Fn.

11 We overload O syntactically to represent the oracle and the ontology, since seman-
tically they are the same anyway.



2. Program Clause Resolution: Let Fn contain a tree with root node N =
S :- |S and C be a rule Head :- Body such that Head unifies with S with
mgu θ. Assume that in Fn, N does not have a child Nchild = (S :- |Body)θ.
Then add Nchild as a child of N .

3. Oracle Resolution: Let Fn contain a tree with root node N = S :- |S
and S and all G ∈ Goals be DL-atoms. Assume that compTO(IFn

, S, Goals).
If N does not have a child Nchild = S :- |Goals in Fn then add Nchild as a
child

4. Equality Resolution: Let Fn contain a tree with root node N = S :- |S
where S and G ∈ Goal are ground non-DL-atoms with the identical predicate.
Assume that compTO(IFn

, S, Goal). If N does not have a child Nchild =
S :- |Goal in Fn then add Nchild as a child

5. Positive Return: Let Fn contain a tree with non-root node N whose se-
lected literal S is positive. Let Ans be an answer for S in Fn and Nchild be
the SLG resolvent of N and Ans on S. Assume that in Fn, N does not have
a child Nchild. Then add Nchild as a child of N .

6. Negative Return: Let Fn contain a tree with a leaf node, whose selected
literal not S is ground

N = Ans :- Delays|not S, Goals.

(a) Negation Success: If S is failed in F then create a child for N of the
form: Ans :- Delays|Goals.

(b) Negation Failure: If S succeeds in F , then create a child for N of the
form fail.

7. Delaying: Let Fn contain a tree with leaf node N = Ans :- Delays|not S, Goals,
such that S is ground, in Fn, but S is neither successful nor failed in Fn.
Then create a child for N of the form Ans :- Delays, not S|Goals.

8. Simplification: Let Fn contain a tree with leaf node N = Ans :- Delays|,
and let L ∈ Delays
(a) If L is failed in F then create a child fail for N .
(b) If L is successful in F , then create a child Ans :- Delays′| for N , where

Delays′ = Delays− L.
9. Completion: Given a completely evaluated set S of literals (Definition 4.4),

mark the trees for all literals in S as completed.
10. Answer Completion: Given a set of unsupported answers UA, create a

failure node as a child for each answer Ans ∈ UA.

The only thing now missing is the formalization of the initialization of an
SLG evaluation process.

Definition 4.9. Let K be a hybrid MKNF knowledge base and let q be a query
of the form q(Xi) ← A1, . . . , An,notB1, . . . ,notBm where Xi is the (possibly
empty) set of requested variables. We set F0 = {q(Xi) : − | q(Xi)} to be the
initial forest of an SLG(O) evaluation of Kd for q.

Of course, if the query is atomic we can usually simply start with that atomic
query. Note that since we use Kd, the technically correct way to query negative
literals is to use notBd instead of notB for any atom B.



Example 4.1. In order to illustrate the actions of SLG(O) we consider a deriva-
tion of an answer to the query ?- discount(bill) to the KB due to [12]12:

NonMarried ≡ ¬Married ¬Married ⊑ HighRisk
∃Spouse.T ⊑Married bill ∈ (∃Spouse.michelle)
NonMarried(X) ← not Married(X).
discount(X) ← not HighRisk(X)

Note that both TBox and ABox information are each distributed over both
the description logic and the program. Figure 4.1 shows the final forest for this
evaluation, where elements are marked in the order they are created. The ini-
tial forest for the evaluation consists of node 0 only. Since the selected literal
of node 0, discount(bill) is a non-DL-atom and there are no equalities in
the KB, we can only apply Program Clause Resolution which produces
node 1, followed by a New Subgoal to produce node 2. Node 2 is a DL-atom,
there are no rules applicable for HighRisk(bill), but an Oracle Resolution

operation can be applied to derive bill ∈ NonMarried (node 3). Then via a
New Subgoal operation node 4 is obtained. The selected literal for node 4,
NonMarried(bill) is a DL-atom that also is the head of a rule, so the oracle
and the program evaluation may both try to derive the atom. On the program
side, Program Clause Resolution produces nodes 5 and 6. The selected
literal of node 6, Married(bill), is a DL-atom that is not the head of a pro-
gram rule, so once again the only possibility is to use Oracle Resolution,
and derive Married(bill); using this a Negative Return operation produces
node 8, and the tree for Married(bill) can be early completed. The tree for
NonMarried(bill) which does not have an answer must be completed (step
10), and the same for HighRisk(bill) (step 11). Once this occurs, a Negative

Return operation is enabled to produce node 12.
The evaluation illustrates several points. First, the evaluation makes use of

classical negation in the ontology along with closed world negation in the rules.
From an operational perspective, the actions of the description logic prover and
the program are interleaved, with the program “calling” the oracle by creating
new trees for DL-atoms, and the oracle “calling” the rule system through Or-

acle Resolution operations. As a result, trees for DL-atoms must either be
early-completed, or explicitly completed by the tabulation system.

5 Properties

Theorem 5.1. Let q = L be a query to a hybrid MKNF knowledge base K. Then
any SLG(O) evaluation of q will terminate after finitely many steps, producing
a finite final forest.

Proof. The proof is straightforward since we know already that SLG, i.e. SLG(O)
without Oracle Resolution and Equality Resolution terminates finitely

12 We adopt that only DL-atoms start with a capital letter. Also, to ease the reading,
and since it has no influence in this example, instead of Kd we operate on K directly.



12. discount(bill):−

7. Married(bill)

6. Married(bill):− Married(bill)

5. NonMarried(bill):− not Married(bill)

4. NonMarried(bill):− NonMarried(bill)

3. HighRisk(bill):− NonMarried(bill)

2. HighRisk(bill):− HighRisk(bill)

1. discount(bill):− | not HighRisk(bill)

8. fail

0. discount(bill):− |discount(bill)

9. complete

10. complete

11. complete

Fig. 1. Final Forest for query ?- discount(bill) to K1

for programs with bounded term-depth, and transfinitely otherwise (cf. Theorem
5.10 of [2]). Since Definition 2.1 ensures that hybrid MKNF kowledge bases do
not contain recursive terms, they will have bounded term depth. Accordingly,
we only have to ensure that the two new operations do not invalidate finite ter-
mination. Essentially both operations can be applied in the same situation as
Program Clause Resolution, namely when creating a new child for a root of
a tree. In addition, both create a single new child per application. Now, since the
knowledge base K is finite, the number of (ground) DL-atom rule heads is finite
and so is the number of non-DL atoms in K. Thus, 1) the number of children
possibly created with either Oracle Resolution or Equality Resolution

for any arbitrary root is finite; and 2) the size of the nodes created will also be
finite. We conclude that termination holds for SLG(O).

The way SLG(O) is defined there is no real order in which to apply any of
the operations possible in a forest Fi. Some orders of application are in general
more efficient than others but it was shown in [2] that any order yields the same
outcome for any query. We adopt this statement here to SLG(O).

Theorem 5.2. Let E1 and E2 be two SLG(O) evaluations of a query q = L to
a hybrid knowledge based Kd

G. Let F1 be the final forest of E1 and F2 be the final
forest of E2. Then, IF1

= IF2
.

Proof. (Sketch) This is a well-known property for SLG when it is defined using
the operations of Definition 4.8 excluding Oracle Resolution and Equality

Resolution (cf. Theorem 5.7 of [2]). Accordingly, we consider cases in which
E1 and E2 make use of these operations that have been introduced in SLG(O).
First consider the case in which E1 and E2 have no Equality Resolution op-
erations, but differ in their application of an Oracle Resolution operation
to create the child of a subgoal S. We construct an induction on the number of
Oracle Resolution operations in E1 and E2 to show that IF1

= IF2
. The base

case follows from the properties of SLG (cf. Theorem 5.7 of [2]). Accordingly,
consider that the two final forests are equal whenever E1 contains at most n
Oracle Resolution operations. First, suppose that compTO(IFn

, S, Goals) is



computed using the same interpretation IFn
in both evaluations.. In this case,

the child produced by the Oracle Resolution operation is similar to that
produced by a Program Clause Resolution operation, and so the fact that
the differing order of the operation in E1 and E2 will not affect their final forest
follow from an argument similar to that used for Program Clause Resolu-

tion. Next, suppose that the operations are performed in forests with different
interpretations. Specifically, in E1 an Oracle Resolution operation produces
Goals1 such that compTO(IFn1

, S, Goals1) while in E2 it produces Goals2 such
that compTO(IFn2

, S, Goals2). In this case there can be a G ∈ Goals1 such that
G 6∈ Goals2 or a G ∈ Goals2 such that G 6∈ Goals1. The two cases are dual, so
consider the first case where G ∈ Goals1 and G 6∈ Goals2. However, by Defini-
tion 4.7 this must mean that G ∈ IFn1

. Note that the subgoal G must have been
proved by m < n applications of the Oracle Resolution operation, so that
the subderivations of E1 and E2 to produce G will ensure that G has the same
truth value in IFn1

and IFn2
. This completes the induction step.

Showing the equality of final interpretations when evaluations use Equality

Resolution operations is essentially the same as when Oracle Resolution

operations are used.

This theorem will also be helpful when it comes to proving that SLG(O) is
in fact a query procedure for MKNFWFS and may terminate within the same
complexity bounds as the semantics defined in [9]. At first, we will show that
the procedure presented in the previous section coincides with MKNFWFS . In-
tuitively, what we have to show is that the well-founded MKNF model, as pre-
sented in section 2 and based on the computation presented in Section 3, and
the interpretation IF induced by Fn for some query q to Kd coincide for each
ground literal appearing in Kd

G. We can simplify that by showing for each literal
L appearing in Kd

G that L ∈ MWF if and only if L ∈ IF with query q = L and
Fn for some n. Additionally, we prove that the same correspondence holds for
(positive)13 atoms only appearing in the ontology.

Theorem 5.3. Let K be a hybrid MKNF knowledge base and L be a modal
atom which appears in Kd

G. SLG(O)resolution is correct and complete wrt.
MKNFWFS , i.e. L ∈ MWF if and only if L ∈ IF where IF is induced by the
forest F of an SLG(O)evaluation of Kd

G for query q = L and, for atoms P not
appearing in any rule, MWF |= P if and only if P ∈ IF .

Proof. ⇒ (Completeness): A first we show that L ∈ MWF implies L ∈ IF . We
suppose L ∈ MWF . We show by induction on n that if L is a positive literal
then L ∈ Pd

n implies that L ∈ IF and if L = notL1 is a negative literal then
L1 6∈ Nd

n implies that L ∈ IF . The induction base holds immediately since Pd
0

is empty and Nd
0 contains all modal atoms appearing in Kd

G. So suppose the
claim holds for n, we show the induction step for n + 1. At first, let L be a
positive literal, so suppose that L ∈ Pd

n+1 but L 6∈ Pd
n (otherwise the claim

13 We cannot query directly for explicit negated atoms, however, a simple transforma-
tion similar to the one yielding K

+ provides a solution to that problem.
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↑ m and all Bj 6∈ Nd

n. We thus know by the two
induction hypotheses that all Ai and all notBj appear in IF . From that we can
construct a tree with root L : − | L and a child obtained by applying Program

Clause Resolution with the rule considered. In the resulting child the set of
goals contains exactly all Ai which can be removed by Positive Return and
all notBj which can be removed by Negative Return. The result is a leaf
node L : − | and we obtain that L ∈ IF for this order of applications. And since
Theorem 5.2 ensures that we achieve the same result if we alter the order of
applications, we know that the statement holds in general.

Now, let L be a negative literal notL1, so suppose that L1 6∈ Nd
n+1 but

L1 ∈ Nd
n (otherwise the claim would follow by induction hypothesis imme-

diately). Therefore, L1 6∈ lfp(TKd

G
/Pd

n
) but L1 ∈ lfp(TKd

G
/Pd

n−1
). Consequently

some modal atoms in Pd
n \ Pd

n−1 cause the removal of L1. In Nd
n, L1 can ei-

ther be obtained from the ontology or from some rule with head L1. In the
first case, the removal in Nd

n+1 would mean that some positive modal atom
is no longer available for deriving conclusions in DKd . But since the sequence
Pd

i increases, this vanished positive modal atom has to be one of those modal
atoms which get removed in Nd

n+1. For the second case consider any rule L1 ←
A1, . . . , An,notB1, . . . ,notBm in Kd

G. If the head L1 in such a rule is no longer
true then some modal atom in the body has become false. If this atom is an Ai

then we can apply the same argument as in the prior case (where the removal
was caused by the ontology), i.e. a dependency on some other modal atom which
got removed in Nd

n+1 exists. Otherwise, the removal was caused by some notBj

which became true in Pd
n. We know by induction hypothesis that all notBj ap-

pear in IF . With this case distinction in mind we can start to construct a tree
with root L1 : − | L1 and obtain a child for each rule whose head unifies with
L1 (Program Clause Resolution) and a child for each successful Oracle

Resolution or Equality Resolution application (for each atom only one
of the two is possible depending on whether is a DL-atom or not). We obtain
a finite set of children and each child contains (at least) one of the beforehand
discussed literals in its goal set - a positive atom in case of a child resulting from
an interaction with the oracle or a literal from the rule body. The set of goals
does not necessarily contain only one element and since the selection function
does not choose them in general at first either we have to remove any literals
blocking the literal in the goal list of each child. We apply thus the following
procedure to each child of L1 until the desired literal is selected. If we encounter
a negative literal, delay it. (*) If it is a positive literal A, create a new subgoal
for it (unless already existing) and continue with this new root A : −|A. When



non of the resolution steps (Program Clause Resolution, Oracle Reso-

lution, or Equality Resolution) work, then A is completely evaluated and
we can apply Completion and so obtain a node which actually substitutes the
one we intended to reach. Otherwise, any of the operations {Program Clause

Resolution, Oracle Resolution, Equality Resolution} applies and we
create children in the tree for A. To each of the new set of goals we apply the
following procedure after delaying all negative literals: if the set of goals is empty
we can use the obtained (maybe conditional) answer A : Delays | with Positive

Return and remove thus A from the list of Goals in the child of L1. Other-
wise, we have some positive goal A′ in such a child and either A′ = A and we
can stop there or A′ 6= A and we continue the argument as for A (see (*)), i.e.
create a new nubgoal and continue with A′ : − | A′. We apply this argument
to all children of A and either reach ultimately the goal required, or detect that
another positive goal in the child which also is false in IF or we eventually reach
A again since the knowledge base is finite. Now to each such required goal of
the form notB we can apply Negative Return and obtain a child fail. We
either obtain thus only failed children and can apply Completion immediately
or we have to repeat the steps for all chosen positive atoms in each child of L1

(unless their tree is already in F . Again, by finiteness of the knowledge base,
we ultimately reach a set of trees whose non-failed children are stalled on one
of the roots in this set and we can apply Completion. And since Theorem 5.2
ensures that we achieve the same result if we alter the order of applications, we
know that the statement holds in general also for negative literals.

The only case left to prove are the atoms P not appearing in any rule. So let
MWF |= P . Note that MWF actually contains O which explains how P can be
proven. We thus construct a tree P : − | P and apply Oracle Resolution as
(finitely) many times as necessary. Now, for all elements in MWF which appear
in any of those children, we apply Positive Return to the positive ones and
Negative Return to the negative ones. And since we know that MWF |= P
we can be sure that at least one of the resulting children is an unconditional
answer. As before, Theorem 5.2 ensures that a different application order again
yields eventually the same result.

⇐ (Soundness): If we consider SLG(O)without an oracle, i.e. without the
operations related to it, namely Oracle Resolution and Equality Reso-

lution, then SLG(O) coincides with SLG. It is well-known that SLG yields
the well-founded model for normal programs (cf. Theorem 5.5 of [2]) and it was
shown in [9] that the well-founded MKNF model coincides with the well-founded
model for normal logic programs if the ontology is empty. We can conclude im-
mediately that correctness holds in case the ontology is empty and thus no oracle
operation is ever used. Now, consider the addition of Oracle Resolution and
Equality Resolution. Both are only applicable in the same situation as Pro-

gram Clause Resolution, namely when creating a new child for a root of a
tree. Each of them is applicable only to a subset of the roots (Oracle Resolu-

tion applies to DL atoms only, while Equality Resolution can only be used
for ground non-DL-atoms) but both add exactly the same to the root as Pro-



gram Clause Resolution - a child with a set of goals, in fact even limited to
positive literals as goals. The correspondent to Program Clause Resolution

is obviously the operator RK (Program Clause Resolution given a goal Q
finds a rule with head Q (or unifiable with Q) and returns the literals in that
body as goals to the new child, while RK given a rule whose body literals are
true accumulates head Q. We now only have to show that Oracle Resolution

and Equality Resolution have its correspondents in the operator DK.
Consider Oracle Resolution: Let Fn contain a root node N = S :- |S

where S and all G ∈ Goals are DL-atoms. Assume that compTO(IFn
, S, Goals).

If N does not have a child Nchild = S :- |Goals in Fn then add Nchild as a
child. According to Definition 4.7 we have compTO(IFn

, S, Goals) iff O ∪ IFn
∪

Goals |= S where Goals is limited to atoms appearing in some rule head. But
this corresponds exactly to the first part of the possible derivations of DK, i.e.,
for a given set S′ of modal atoms, to {Kξ | Kξ ∈ KA(Kd) and O ∪ Ŝ′

DL |= ξ}

where Ŝ′
DL contains IFn

∪Goals from above.
Consider Equality Resolution: Let Fn contain a root node N = S :- |S

where S and G ∈ Goal are ground non-DL-atoms with the identical predi-
cate. Assume that compTO(IFn

, S, Goal). If N does not have a child Nchild =
S :- |Goal in Fn then add Nchild as a child. Again, we have

compTO(IFn
, S, Goals) iff O ∪ IFn

∪Goals |= S

where Goals is limited to atoms appearing in some rule head. Then the cor-
respondent, for a set S′ of modal atoms, is KQ(b1, . . . , bn) ∈ KA(Kd), and

O ∪ Ŝ′
DL |= ai ≈ bi for 1 ≤ i ≤ n} where Ŝ′

DL contains IFn
∪ Goals from

above.

Given the soundness of MKNFWFS wrt. the semantics of MKNF knowledge
bases of [12], it follows easily that:

Corollary 5.1. Let K be a consistent hybrid MKNF knowledge base and L be a
modal atom which appears in Kd

G. If L ∈ IF , where IF is induced by the forest F
of an SLG(O) evaluation of Kd

G for query q = L, then L belongs to all MKNF
two-valued models (as in [12]) of K.

In addition to the interpretation of the final forest IF being sound with
respect to the 2-valued MKNF model, the conditional answers in F can be
seen as a well-founded reduct of the rules in K, augmented with conditional
answers derived through Oracle Resolution and Equality Resolution

operations. As a result, the final forest can be seen as a residual program: a
sound transformation not only of the rules, but of information from the oracle,
and can be used to construct a partial 2-valued stable model.

Regarding complexity, it is clear that the complexity of the whole SLG(O)
depends on the complexity of the oracle, and also on the number of results
returned by each call to the oracle. Clearly, the complexity associated to the
computation of one result of the oracle function is a lower-bound of the com-
plexity of SLG(O). Moreover, even if e.g. the computation of one result of the



oracle is tractable, if exponentially many solutions are generated by the ora-
cle (e.g. returning all supersets of a solution), then the complexity of SLG(O)
becomes exponential. This is so, because our definition of the oracle is quite
general, and in order to prove interesting complexity results some assumptions
most be made about the oracle. We start by defining a correct partial oracle:

Definition 5.1. Let K = (O,P) be a hybrid MKNF knowledge base, S a goal,
and L a set of ground atoms which appear in at least one rule head in PG (called
program atoms). A partial oracle for O, denoted pTO, is a relation pTO(IFn

, S, L)
such that if pTO(IFn

, S, L) then O ∪ IFn
∪ L |= S.

A partial oracle pTO is correct iff when replacing compTO in SLG(O) suc-
ceeds for exactly the same set of queries.

Note that the complete oracle is indeed generating unnecessarily many an-
swers, and it can be replaced by a partial one which assures correctness. E.g.
consider a partial oracle that does not return supersets of other results. Such a
partial oracle is obviously correct. Making assumptions on the complexity and
number of results of an oracle, complexity results of SLG(O) are obtained.

Theorem 5.4. Let pTO be a correct partial oracle for the hybrid MKNF knowl-
edge base K = (O,P), such that for every goal S, the cardinality of pTO(IFn

, S, L)
is bound by a polynomial on the number of program atoms. Moreover, assume
that computing each element of pTO is decidable with data complexity C. Then,
the SLG(O) evaluation of a query in Kd

G is decidable with data complexity PC.

Proof. (Sketch) Decidability is guaranteed by Theorem 5.1. As for complexity,
first note that, given the polynomial data complexity of SLG [2], only a poly-
nomial number of calls is made to the oracle. Moreover, since the cardinality
of pTO(IFn

, S, L) is bound by a polynomial, and each of the calls to the oracle
can be seen as adding a new program rule (the result of Oracle Resolution

operation), only polynomially many such rules are added. Now, computing each
such rule amounts to a call to the oracle, which by hypothesis is decidable and
with data complexity C. So, the overall data complexity is PC .

In particular, this means that if the partial oracle is tractable, and only
with polynomial many results, then SLG(O) is also tractable. Clearly, for an
ontology part of the knowledge base which is a tractable fragment, it is possible
to come up with a correct partial oracle that is also tractable. Basically, all it
needs to be done is to proceed with the usual entailment method, assuming that
all program atoms hold, and collecting them for the oracle result. To guarantee
that the number of solutions of the oracle is bound by a polynomial, and still
keeping with correctness, might be a bit more difficult. It amounts to find a
procedure that returns less results, and at the same time does not damage the
completeness proof (similar to that of Theorem 5.3). At least for the tractable
case this is possible, albeit the oracle being the (polynomial complexity) bottom-
up procedure that defines MKNFWFS .



6 Discussion and Conclusions

Together with the alternate computation method of Section 3, SLG(O) provides
a sound and complete querying method for hybrid MKNF knowledge bases, that
unlike others (cf. below) freely allows bidirectional calls between the ontology
and the rules, and that does not impose a burden of complexity beyond that of
the ontology. As such it presents a significant step towards making hybrid MKNF
knowledge bases practically usable for the Semantic Web. In fact, work has be-
gun on a prototype implementation of the SLG(O) method presented here using
XSB Prolog and its ontology management library CDF [8]. Because the CDF the-
orem prover is implemented directly using XSB, the Oracle Resolution and
Equality Resolution operations of Section 4 are more easily implemented
than they would be using a separate prover, as is the detection of when a mu-
tually dependent set of subgoals is completely evaluated (Definition 4.4), and
the guarantee of the polynomial size of the oracle. The resulting implementa-
tion will enable further study into how hybrid MKNF knowledge bases can be
practically used and will indicate needed optimizations. For instance, since XSB
supports constraint processing, temporal or spatial constraints can be added to
the ABox. From a systems perspective, the multi-threading of XSB can allow
for the construction of hybrid MKNF knowledge servers that make use of either
Prolog rules or F-logic rules (via FLORA-2, which is implemented using XSB).
As mentioned in Section 5 the final forest of a SLG(O) evaluation produces a
well-founded reduct of the rules and oracle information. This reduct, which is
materialized in a table in XSB, can be sent to a stable model generator through
XSB’s XASP library to obtain a partial stable MKNF model of [12].

There are two other semantics which define a well-founded model for a com-
bination of rules and ontologies, namely [5] and [3]. The approach of [5] combines
ontologies and rules in a modular way, i.e. keeps both parts and their semantics
separate, thus having similarities with our approach. The interface is done by the
dlv hex system [4]. Though with identical data complexity to the well-founded
MKNF semantics for a tractable DL, it has a less strong integration, having lim-
itations in the way the ontology can call back program atoms (see [5] for details).
Hybrid programs of [3] are even more restrictive in the combination: in fact it
only allows to transfer information from the ontology to the rules and not the
other way around. Moreover, the semantics of this approach differs from MKNF
[12, 9] and also[5] in that if an ontology expresses B1 ∨B2 then the semantics in
[3] derives p from rules p← B1 and p← B2, p while MKNF and [5] do not.

While queries posed to KBs without an ontology are handled in the same
way as in SLG, strictly speaking the queries posed to the (oracle) DL fragment,
are not conjunctive queries in the sense of [7] where boolean queries may contain
anonymous variables which never get instantiated. Here we ask whether a ground
atom holds when querying the oracle. We nevertheless obtain conjunctive queries
up to a certain extent in the sense of [7] only wrt. the entire KB, and our queries
are not limited to fit the tree-shaped models there. One line of future work will
thus be an extension to such queries which is supported by possible anonymous
variables in XSB, the system in which the semantics is currently implemented.
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