
Response-Time Analysis for globally scheduled Symmetric Multiprocessor
Platforms ∗

Marko Bertogna, Michele Cirinei
Scuola Superiore Sant’Anna, Pisa, Italy

E-mail: marko@sssup.it, cirinei@gandalf.sssup.it

Abstract

In the last years, a progressive migration from single
processor chips to multi-core computing devices has taken
place in the general-purpose and embedded system market.
The development of Multi-Processor Systems is already a
core activity for the most important hardware companies.
A lot of different solutions have been proposed to overcome
the physical limits of single core devices and to address the
increasing computational demand of modern multimedia
applications. The Real-Time community followed this trend
with an increasing number of results adapting the classical
scheduling analysis to parallel computing systems.

This paper will contribute to refine the schedulability
analysis for Symmetric Multi-Processor (SMP) Real-Time
systems composed by a set of periodic and sporadic tasks.
We will focus on both fixed and dynamic priority global
scheduling algorithms, where tasks can migrate from one
processor to another during execution. By increasing the
complexity of the analysis, we will show that an improve-
ment is possible over existing schedulability tests, signifi-
cantly increasing the number of schedulable task sets de-
tected. The added computational effort is comparable to
the cost of techniques widely used in the uniprocessor case.
We believe this is a reasonable cost to pay, given the intrin-
sically higher complexity of multi-processor devices.

1. Introduction

In the last decade, an increasing number of multi-core
systems has been proposed in the embedded system do-
main as well as in the high level computing market. The
major hardware providers are already developing the sec-
ond generation of multi-processor chips, and are spending
a considerable amount of resources in the research for next-
generation parallel architectures.

The integration of multiple processors on a single chip
constitutes one of the most important innovations in the de-
sign and development of embedded real-time systems. The
reasons for moving to Multi-Processor Systems on Chip

∗This research has been supported

(MPSoC) are mainly technological. The computing power
of a chip can be increased either by raising the operating
frequency or by using more computing units that can work
in parallel. Current electronic manufacturing process be-
low 65nm impose strong constraints on the operating fre-
quencies of computing devices, due to the more than lin-
ear increase of the consumed power and the temperature
reached inside a chip. A way to circumvent this problem
is to distribute the computing effort to multiple units and
dedicated processing elements that are operated in parallel
at lower frequencies. This is the solution adopted by, for
instance, TI’s OMAP [28], NXP’s Nexperia [26], STM’s
Nomadik [27], ARM’s MPCore [25], Sony-IBM-Toshiba’s
Cell [30], and many others.

From the Real-Time community perspective, this kind of
platforms represents an interesting workbench upon which
validate the scheduling theory for multi-processor systems.
Newly proposed mechanisms allow to mitigate the cost of
cache misses, task preemptions and inter-processor migra-
tions, allowing to overcome the drawbacks of existing sys-
tem models. For instance, ARM’s MPCore has a mech-
anism that allows to retrieve a data that is not present in
the local CPU’s cache, fetching it directly from the local
cache of other processing units. Solution of this kind could
then reduce the penalties associated to migration-based al-
gorithms, suggesting the use ofglobalschedulers instead of
statically partitioning the tasks to the available processors.

A global scheduler maintains a single scheduling queue
from which tasks are extracted to be dynamically executed
on the available CPUs. Taking ”centralized” scheduling de-
cision at system level will allow a better view of the whole
system, dealing more efficiently with dynamic load varia-
tions and temporary overload conditions. Indeed, a well-
known result from the queueing theory is that using a sin-
gle queue scheduler results in lower average response times
than having a queue for every single processor [22]. Intu-
itively, this is motivated by the fact that with a global sched-
uler no processor is idled when there is backlogged work to
do, ie. the scheduler iswork-conserving. On the other side,
when tasks are statically partitioned to the CPUs, it is very
likely that an unbalanced load distribution will result in los-
ing the work-conserving behavior of the system. Further
motivations on the advantages of the global approach can

be found in [2], where a convincing argument shows that
the average number of preemptions in a partitioned system
is typically higher than in a globally scheduled system.

However, the superiority of global approaches cannot be
so easily extended to real-time scheduling performances.
Even if global schedulers have lower response times on
average, the same cannot be said about worst-case perfor-
mances. Instead, it has been shown that no approach dom-
inates the other [18], ie. there are task sets that are schedu-
lable only with partitioned solutions and others that can be
scheduled only using a global scheduler. Due to the com-
plexity and the dimensions of the problem, a complete the-
ory of real-time scheduling for multi-processor systems is
still to come. Besides, in literature there are more efficient
schedulability tests for the partitioned case. Since they rely
on well known uniprocessor techniques, the performances
of the existing schedulability tests for partitioned systems
are slightly better than those provided by the few results ad-
dressing the global case. Even if this field recently obtained
an increasing interest, there is still a lot of space left for
improvements. This paper will contribute filling this gap.

1.1. Contribution

We will develop a new approach to analyze the timely
properties of Real-Time systems scheduled upon identical
multiprocessor platforms. We will show the limits of exist-
ing results and overcome their major disadvantages enhanc-
ing techniques widely used for the uniprocessor schedula-
bility analysis. The Response Time Analysis (RTA) will
be adapted to systems composed by more than one CPU,
allowing to derive schedulability tests that dramaticallyim-
prove over all recently proposed algorithms.

This work will be mainly focused on globally scheduled
real-time systems composed by a set of periodic and spo-
radic tasks. The effectiveness of the proposed analysis will
be tested using representative migration-based scheduling
algorithms, such as Earliest Deadline First (EDF) and Fixed
Priority (FP), and proved with convincing arguments and
extensive simulations. However, we believe that the tech-
niques hereafter described can be easily adapted to other
kinds of global scheduling algorithms.

The rest of the paper is organized as follows. In Section 2
we introduce the terminology and notation. In Section 3, a
panoramic view of the existing schedulability tests for glob-
ally scheduled multiprocessor systems is presented. In Sec-
tion 4, we present our new analysis, adapting it toEDF and
FP scheduled systems. General considerations will be ex-
posed in Section 5, while the effectiveness of the proposed
approach will be validated in Section 6 through a set of ex-
periments. Finally, in Section 7 we present our conclusions.

2. System model

The notation described in this Section and used in the
rest of the paper is summarized in Figure 1.

Symbol Description

m Number of processors in the platform
n Number of tasks in the task set
τ Task set
τk k-th task∈ τ

Jj

k j-th job of taskτk

Ck Worst-case computation time ofτk

Dk Relative deadline ofτk

Tk Period or minimum interarrival time ofτk

rj

k Release time of jobJj

k

f j

k Finishing time of jobJj

k

dj

k Absolute deadline of jobJj

k

sk min
J

j

k
∈τ

(dj

k − f j

k), ie. minimum slack ofτk

Rk max
J

j

k
∈τ

(f j

k − rj

k), ie. response time ofτk

Uk Ck/Tk, utilization ofτk

Umax maxτi∈τ (Ui)
Utot

∑

τi∈τ (Ui), ie. total utilization of task setτ
λk Ck/Dk, density ofτk

λmax maxτi∈τ (λi)
λtot

∑

τi∈τ
(λi), ie. total density of task setτ

Ik(a, b) Interference onτk in interval [a, b)
Ii

k(a, b) Interference ofτi on τk in interval [a, b)
εk(a, b) Carry-in ofτk in interval [a, b)
zk(a, b) Carry-out ofτk in interval [a, b)
Wk(a, b) Worst-case workload ofτk in [a, b)

Figure 1. Notation used throughout the paper.

We consider a setτ of n periodic and sporadic tasks [14]
to be scheduled onm identical processors using a global al-
gorithm. Each taskτk = (Ck, Dk, Tk) ∈ τ is characterized
by a worst-case computation timeCk, a period or minimum
interarrival timeTk, and a relative deadlineDk. Unless oth-
erwise stated, we will assume every task havingconstrained
deadlines, ie. every deadline is less than or equal to the cor-
responding period. Results forimplicit deadline systems –
having deadline equal to period – can be easily derived as
special cases of the constrained deadline model.

The utilization of a task is defined asUk = Ck

Tk
, while

thedensityasλk = Ck

Dk
, representing the “worst-case” re-

quest of a task in a generic time interval. LetUmax (resp.
λmax) be the largest utilization (resp. the largest density)
among all tasks:Umax = maxτi∈τ {Ui} (resp. λmax =
maxτi∈τ {λi}).

A task τk is a sequence of jobsJj
k , where each job is

characterized by an arrival timerj
k and a finishing timef j

k .
We say that a job isreadyat timet, if t ∈ [rj

k, f
j
k). More-

over, each job has an absolute deadlined
j
k = r

j
k + Dk,

which represents the latest time instant at which we can ac-
cept the job to complete execution. Theminimum slacksk

of a taskτk is defined as the minimum distance between
the absolute deadline and the finishing time of jobs ofτk,
ie. sk = min

J
j

k
∈τk

(dj
k − f

j
k). Finally, theresponse time

2

Rk of taskτk is the worst-case finishing time among all its
jobs, ie.Rk = max

J
j

k
∈τk

(f j
k − r

j
k). Note that when a task

set is schedulable, each task has a non-negative slack and a
response time lower than or equal to the deadline.

The global schedulers analyzed in this paper maintain a
system-wide queue in which ready tasks are inserted and
ordered following some kind of policy (EDF, fixed priority,
etc.). When a processor is idle, a dispatcher will extract
from top of this queue the highest priority task, and will
schedule it on the available CPU until it completes execu-
tion, or is preempted by another task. Whenever a task with
priority higher than one of the executing tasks is released,
the task having lowest priority among the executing ones is
preempted and re-inserted in the ready queue. This mecha-
nism guarantees that them highest priority ready tasks are
always the ones executing on the multi-processor platform.

Depending on the policy used to sort the ready queue,
global schedulers will be divided into static-priority, fixed-
job-priority and dynamic-job-priority schedulers. Static pri-
ority systems are often shortly calledfixed priority, omitting
to explicitly refer to task priorities. Similarly, schedulers
that don’t change the priority of a job during its execution
are also calledpriority-driven.

2.1. Interference and workload

To analyze the interactions among tasks concurrently ex-
ecuting upon a multiprocessor platforms, we hereafter de-
fine two parameters that will be useful in the schedulability
analysis of the considered system: theinterferenceand the
workload.

Interference The interferenceIk(a, b) on a taskτk over
an interval[a, b] is the cumulative length of all intervals in
whichτk is backlogged but cannot be scheduled on any pro-
cessor due to the contemporary execution ofm higher pri-
ority tasks.

We also define the interferenceIi
k(a, b) of a taskτi on

a taskτk over an interval[a, b] as the cumulative length of
all intervals in whichτk is backlogged but cannot be sched-
uled on any processor, whileτi is executing. Notice that by
definition:

Ii
k(a, b) ≤ Ik(a, b), ∀i, k, a, b. (1)

We underline here that for fixed priority systems the in-
terference caused by lower priority tasks is always null, ie.
it is: Ii

k(a, b) = 0, ∀τi with priority lower thanτk.

Workload TheworkloadWk(a, b) of a taskτk in an inter-
val [a, b) represents the amount of computation that the task
requires in[a, b) in a given situation. As in [7], we define
Wk(a, b) taking into account three different contributions
(see Figure 2):

• body: the contribution of all jobs with both release
time and deadline in the interval; each job contributes

...

...

a b

carried-in job carried-out job

jobs of the bodyεk zk

Figure 2. Body, carried-in and carried-out jobs
of task τk in interval [a, b].

to the workload in that interval with a complete execu-
tion timeCk;

• carry-in: the contribution of at most one job (called
carried-in job) with release time beforea and deadline
in [a, b); this job contributes with thecarry-in εk, i.e.
the fraction of its execution time actually executed in
the interval.

• carry-out: the contribution of at most one job (called
carried-out job) with release time before[a, b) and
deadline afterb; this job contributes with thecarry-
out zk, i.e. the fraction of its execution time actually
executed in the interval.

If it would be possible to derive correct values for all
interferences or workloads with a limited computational ef-
fort, then a schedulability test would easily follow. How-
ever, as we will see in Section 4, this is not so easy in the
multiprocessor case.

2.2. Time division

Despite the fact that for mathematical convenience, time-
instants and interval lengths are often modeled using real
numbers, in an actual system time is not infinitely divisible.
The times of event occurrences and durations between them
cannot be determined more precisely than one tick of the
system’s most precise clock. Therefore, any time valuet
involved in scheduling is assumed to be a non-negative in-
teger value and is viewed as representing the entire interval
[t, t + 1).

This convention allows the use of mathematical induc-
tion on clock ticks for proofs, avoids potential confusion
around end-points, and prevent impractical schedulability
results that rely on being able to slice time at arbitrary
points.

3. Related Work

Response Time Analysis (RTA) is an effective technique
that has been widely used to derive schedulability tests
and properties for various different models of task systems
scheduled on a single processor. Even if RTA has initially

3

been applied to fixed priority uniprocessor systems [6, 17],
later works addressed as well theEDF case [31, 29]. Ba-
sically, uniprocessor RTA relies on the concepts ofcritical
instantandbusy period. A critical instant of a task is an
arrival time of an instance such that it suffers the worst pos-
sible interference. This allows to find the worst possible
response time for the considered task. For fixed priority
scheduling, the simultaneous activation of all tasks repre-
sents a critical instant [23]. ForEDF, things slightly change,
ie. the worst-case is not necessary given by an instance
arriving when all other tasks are contemporarily released.
However the notion of critical instant may still be useful,
since it can be proved [14] that the worst-case response time
for a task can be found inside a continuously backlogged in-
terval starting with the synchronous arrival of all tasks. This
interval is often calledbusy period, or problem window.

A schedulability test for periodic and sporadic task sets is
then easily derived checking the response times of all tasks
in an interval starting with a critical instant and in which
jobs are released as soon as possible, and comparing it to
the corresponding deadlines.

However, when trying to adapt these technique to multi-
processor systems, there are various anomalies to consider.
There are situations [24] in which the synchronous case is
not the worst one, and others [3] in which enlarging the in-
terarrival time of the jobs of a task can render the system
unfeasible. This is a big problem when analyzing multi-
processor platforms, since it is not so easy to find a ”rep-
resentative” interval where to check if deadlines are met in
the worst case situation.

If a multiprocessor system is the target platform, only
sufficient results can then be derived in a reasonable amount
of time. The few existing results applying Response
Time Analysis to globally scheduled multiprocessor sys-
tems were only a first attempt to generalize the uniproces-
sor techniques to the more complex case under considera-
tion. Sufficient RTA-based schedulability tests are shown
in [24, 4, 17] for multiprocessor system scheduled with
fixed priority. We hereafter recall the main result.

Theorem 1 (from [24, 4, 17]) Given a task setτ scheduled
with fixed priority, a bound on the maximum response time
Rmax

k of a taskτk ∈ τ is given by the fixed point reached,
iteratively repeating the following operation with initial
valueRmax

k = Ck:

Rmax
k ← Ck +

1

m

∑

τj∈hp(k)

(⌈

Rmax
k

Tj

⌉

Cj + Cj

)

(2)

wherehp(k) is the set of tasks with priority higher thenτk ’s.

A sufficient schedulability condition is then obtained check-
ing if Rmax

k ≤ Dk for everyτk ∈ τ . Basically, with Equa-
tion 2, a bound on the maximum response time is derived
considering the maximum possible contributions, ie. equal
to the task WCET, for both the carried-in and carried-out
jobs. This is an overly pessimistic assumption, leading to a
significant number of rejected task sets.

A better approach to refine carry-in and carry-out esti-
mations has been proposed by Baker for both fixed prior-
ity [10] and EDF [9] global scheduling, and later improved
in [33]. Goossenset al. [21] addressed the schedulability
problem by a different point of view, deriving simple and
effective utilization bounds to be used with implicit dead-
line systems scheduled with globalEDF. Their analysis has
been later adapted to constrained deadline systems in [15],
where as well other methods to bound the worst-case inter-
ference have been proposed for theEDF case. Density and
utilization bounds for fixed priority global schedulers are
derived in [16].

When considering scheduling algorithms that may
change the priority of an executing job, Pfair [13, 1] al-
gorithms are optimal for implicit deadline systems, allow-
ing a schedulable utilization equal to the available sys-
tem capacity. However, such systems can have a number
of context changes significantly higher than priority-driven
schedulers. Instead, if the priority of an executing job is
fixed, the number of preemptions in an interval is bounded
by the number of jobs arrivals in the same interval. Re-
cently, dynamic-job-priorityalgorithms have been proposed
to achieve high schedulability performances, at a lower pre-
emption cost [5]. A dynamic-job-priority algorithm that
has the same worst-case number of preemptions ofEDF,
but much better scheduling performances for multiproces-
sor systems isEDZL [19, 20].

We believe the above list of results well represents the
state-of-the-art of global scheduling analysis for the task
model described in Section 2. We omitted other results that
have been obsoleted by the cited papers, or that assumed
different system models.

Since, due to space reasons, it is not possible to apply
our analysis to every major global scheduling algorithm, we
decided to show two representative cases:EDF andFP. Re-
sults for other kinds of algorithms could then be derived in
similar ways.

4. Schedulability analysis

As explained in Section 3, to find the worst case response
times of tasks scheduled withEDF or fixed priority on a sin-
gle CPU, it is possible to consider only a particularcritical
situation. However, when analyzing multiprocessor plat-
forms, finding a worst-case situation in which the response
time of a task is maximized is not as easy. To the best of our
knowledge, it is not possible to find the worst-case behavior
of a task without simulating the system. For the sporadic
case this would require to check every possible legal arrival
of jobs for every task in the system, which is computation-
ally intractable for non-trivial task sets.

Since we don’t have a critical instant where to start the
analysis, an alternative can be to consider an upper bound
on the interference a task might be subject to.

Bounding the Interference An upper bound on the inter-
ference is represented by the workload, as the next theorem

4

states.

Theorem 2 The interferenceIi
k(a, b) of a taskτi on a task

τk in an interval[a, b) cannot be higher than the workload
Wi(a, b) of τi in [a, b).

Proof: Obviously, a task can interfere only when it is exe-
cuting. The theorem follows from the definition of interfer-
ence and workload in Section 2.1.

We can further restrict the interference on a taskτk, by
noting that no interfering task can contribute to the response
time of τk for more thanRk − Ck. To formally state this
result we first need the following lemma, proved in [15].

Lemma 1 (from [15]) For any global scheduling algo-
rithm it is:

Ik(a, b)≥x ⇐⇒
∑

i6=k

min
(

Ii
k(a, b), x

)

≥mx

The following part of the analysis will consider the partic-
ular instance of taskτk that is subjected to the maximum
possible interference. Even if we don’t know the location of
this instance, nor the conditions at which it is maximally in-
terfered, we can anyway denote it withJ∗

k . Sincef∗
k = Rk,

computing an upper bound on the finishing time ofJ∗
k will

lead to a valid upper bound on the response time ofτk.
With these notations and with the above lemma, a result

that will be useful to bound the worst-case interference im-
posed by each task is hereafter derived.

Theorem 3 A taskτk has a response time upper bounded
byRub

k if

∑

i6=k

min
(

Ii
k(r∗k, r∗k+Rub

k), Rub
k−Ck+1

)

< m(Rub
k−Ck +1)

Proof: If the inequality holds forτk, from Lemma 1 we
have

Ik(r∗k, r∗k + Rub
k) < (Rub

k − Ck + 1)

thereforeJ∗
k will be interfered for at mostRub

k − Ck time
units. From the definition of interference, it follows thatJ∗

k

(and therefore every other job ofτk) will complete at most
at timeRub

k .
To effectively use Theorems 2 and 3 in our response time

analysis, we need to derive an estimation of the workload in
a window[r∗k, r∗k + Rub

k).

Bounding the Workload Also evaluating the worst-case
workload is a complex task. Again, we will use an upper
bound to avoid the need to simulate the system.

Theorem 4 When no deadline is missed, a bound on the
workload of a taskτi in a generic interval[a, b) can be
computed considering a situation in which the carried-in
job Jε

i starts executing at the beginning of the interval, with
a = dε

i − Ci, and every other instance ofτi is executed as
soon as possible.

r
h
i d

h
i r

h+1

i d
h+1

i
r

h+2

i d
h+2

i

a bL

TiTi−Di

Figure 3. Scenario described in the proof of
Theorem 4.

Proof: The situation is represented in Figure 3. Since a
job J

j
i can be ready only in[rj

i , d
j
i) and for at mostCi time

units, it is immediate to see that the depicted situation pro-
vides the highest amount of execution possible in interval
[a, b). Moving backwards the interval, the carry-in cannot
increase, while the carry-out can only decrease. Instead,
advancing the interval, the carry-in will decrease, while the
carry-out can increase by at most the same amount. The
situation is periodic.

We now compute the workload of taskτi in an interval
[a.b) of lengthL, in the situation considered in Theorem 4
and represented in Figure 3. Note that the first job ofτi

after the carry-in, is released at timea + Ci + Ti − Di.
The next jobs are then released periodically everyTi time
units. Therefore the numberNi(L) of jobs of τi that con-
tribute with an entire WCET to the workload in an interval
of lengthL is at most(bL−(Ci+Ti−Di)

Ti
c+ 1). So,

Ni(L) =

⌊

L + Di − Ci

Ti

⌋

(3)

The contribution of the carried-out job can then be
bounded bymin(Ci, L +Di−Ci− Ni(L)Ti)). A bound
on the workload of a taskτi in a generic interval of length
L is then:

Wi(L) = Ni(L)Ci+min(Ci, L+Di−Ci−Ni(L)Ti) (4)

Note that no assumption on the scheduling algorithm
used has been made in the proof of the above result. There-
fore, the bound of Equation 4 is valid for any scheduling al-
gorithm. Nevertheless, when the algorithm in use is known,
other bounds can be derived. Next paragraphs will consider
theEDF andFP cases.

4.1. Systems scheduled with EDF

When tasks are scheduled withEDF, the workload in in-
terval[r∗k, r∗k+Dk) can be analyzed in a particular situation,
as stated by the next theorem.

Theorem 5 For EDF-scheduled systems, when no deadline
is missed, the interference of a taskτi on a taskτk in an
interval of lengthDk is at most

I
i
k(Dk) = DBFi

k + min(Ci, max(0, Dk−DBFi
k

Ti

Ci

)), (5)

5

......
rh
i dh

i r
h+1

i d
h+1

i r
h+2

i d
h+2

i

r
j

k
d

j

k

Dk

εi Ti

Rk

Figure 4. Scenario described in the proof of
Theorem 5.

where DBFi
k

.
=

(⌊

Dk−Di

Ti

⌋

+ 1
)

Ci.

Proof: Follows from Lemma 5 in [15]. Basically, the
worst-case situation is described in Figure 4, where the
carried-out jobJz

i has its deadline at the end of the inter-
val, ie. coincident with a deadline ofτk, and every other
instance ofτi is executed as late as possible. The bound
on the interference can then be easily derived analyzing the
above situation, and is composed by theDBF, representing
the body, and themin, representing the carry-in ofτi in the
considered interval.

Note that the bound of Theorem 5, differently from the
previously derived bounds, is valid only if the length of the
considered interval isDk, ie. the relative deadline of the
interfered task.

We are now ready to state a first result for theEDF case.

Theorem 6 (RTA for EDF) An upper bound on the re-
sponse time of a taskτk in an EDF-scheduled multipro-
cessor system can be derived by the fixed point iteration
on the valueRub

k of the following expression, starting with
Rub

k = Ck:

Rub
k ← Ck +









1

m

∑

i6=k

Îi
k(Rub

k)







 (6)

with Îi
k(Rub

k) = min(Wi(R
ub
k), Ii

k(Dk), Rub
k − Ck+1).

Proof: The proof is by contradiction. Suppose the iteration
ends with a valueRub

k ≤ Dk, but the response time ofτk is
higher thanRub

k . Since the iteration ends, it is

Rub
k = Ck+









1

m

∑

i6=k

min(Wi(R
ub
k), Ii

k(Dk), Rub
k − Ck+1)









For Theorems 2 and 4,Wi(R
ub
k) ≥ Ii

k(r∗k, r∗k + Rub
k).

Let Ii∗
k

.
= Ii

k(r∗k, r∗k + Rub
k). For Theorem 5,Ii

k(Dk) ≥
Ii
k(Dk) ≥ Ii∗

k as long asRub
k ≤ Dk. Therefore,

Rub
k ≥ Ck +









1

m

∑

i6=k

min(Ii∗
k , Rub

k − Ck+1)









Since, by hypothesis, the response time ofτk is higher than
Rub

k , the inverse of Theorem 3 gives

Rub
k ≥ Ck +

⌊

1

m
m(Rub

k − Ck+1)

⌋

= Rub
k + 1

reaching a contradiction.
It remains to show that the iteration converges in a finite

amount of time. This is assured by the integer time conven-
tion assumed in Section 2.2.

A schedulability test can than be performed by repeating
the iteration described above for every taskτk ∈ τ . If every
iteration ends before the corresponding deadline value, than
the task set is schedulable withEDF.

4.2. Fixed Priority systems

For fixed priority systems the bound on the interference
given by Theorem 5 isn’t applicable. However, another
property allows nevertheless to increase the effectiveness of
the response time analysis. Assume tasks are ordered by de-
creasing priority, ie.i ≤ j iff τi has more priority thanτj .
From the definition of interference, it is clear that no task
can contribute to the interference on a higher priority task,
ie. Ii

k = 0, ∀i ≤ k. The next theorem immediately follows
from this consideration and the proof of Theorem 6.

Theorem 7 (RTA for FP) An upper bound on the response
time of a taskτk in a multiprocessor system scheduled with
fixed priority can be derived by the fixed point iteration
on the valueRub

k of the following expression, starting with
Rub

k = Ck:

Rub
k ← Ck +

⌊

1

m

∑

i<k

Îi
k(Rub

k)

⌋

(7)

with Îi
k(Rub

k) = min(Wi(R
ub
k), Rub

k − Ck+1).

Even if Ii
k(Dk) cannot be inserted inside the minimum

definingÎi
k(Rub

k), we will see that the limitation of the sum
to the firstk − 1 terms compensates by far this loss.

4.3. Exploiting slack values

The performance of our response time analysis can be
significantly improved with a simple consideration. Since
the algorithms of Theorems 6 and 7 allow to find a response
time for a taskτi, when applying the same algorithm to an-
other taskτk it is possible to consider the previously derived
upper bound on the response time ofτi. This can decrease
the possible interference ofτi on τk. Theorems 6 and 7
don’t need to be modified. It is enough to change the upper
bounds given by Equation 4 and 5, including the slacks pre-
viously computed for the interfering tasks. A lower bound
on the slack time of a taskτi is, trivially, slb

i = Di − Rub
i .

Figure 5 represents the worst-case situations with the addi-
tional information on the slack of taskτi. The upper bound

6

rh
i dh

i r
h+1

i
d

h+1

i r
h+2

i d
h+2

i

r
j

k
d

j

k

Dk

L
εi

a b

si

Figure 5. Worst-case situations with slack.

on the workload is updated by changing termNi(L) in the
expression ofWi(L) in the following way:

Wi(L) = Ni(L)Ci+min(Ci, L+Di−Ci−si−Ni(L)Ti)
(8)

with

Ni(L) =

⌊

L + Di − Ci − si

Ti

⌋

.

Instead, the expression of the worst-case interference
I

i
k(Dk) can account for a lower carry-in, and can be given

by

I
i
k(Dk) =DBFi

k+min(Ci, max(0, Dk− DBFi
k

Ti

Ci

− si)).

(9)
Everything else remains unchanged.

Theorems 6 and 7 can then be applied to every task in the
system, using each time the most recently computed values
for the slack of the interfering tasks. The analysis can then
be repeated again starting with the slack values from the
previous iteration. The first task, that at the previous itera-
tion didn’t consider any slack for the interfering tasks, can
this time take advantage of the positive slacks previously
computed for the other tasks, leading to a lower worst-case
response time.

If the target is to verify the schedulability of the system,
the whole procedure can successfully stop when all tasks
are verified to have an upper bound on the response time
lower than their deadline. If a task still didn’t converge
whenRub

k > Dk, it will be temporarily set aside, waiting
for a slack update (ie. increase) of potentially interfering
tasks; in this case, if no update takes place during a whole
run for all tasks in the system, than there is no possibility
for further improvements and the test fails.

On the other hand, if the target is to derive the closest
possible value for every response time, the procedure can go
on until there is no more change in any response time. Note
that every slack function is monotonically non-decreasing
since, at each step, the considered interference from other
tasks can only be lower than or equal to the interference
considered in the precedent step. This allows to bound the
overall complexity of the whole slack-based analysis.

Since introducing the slack updates to our analysis will
significantly improve performances at a reasonable cost, we
suggest the use of this extended RTA version every time

there are no tighter requirements on the affordable run-time
complexity.

5. Considerations

Computational Complexity The complexity of a single
run of the procedure of Theorems 6 and 7 is comparable
to the complexity of similar uniprocessor techniques. Since
the response timeRub

k of a taskτk is updated with integer
values, a single iteration for a taskτk will converge, or fail,
in at most(Dk − Ck) steps.

However, it is possible to further improve the average
behavior of the algorithm, noting that a potential weakness
is given by the contribution(Rub

k − Ck + 1) in the min-
imum of the interferencêIi

k(Rub
k). This value can cause

a slow progression of the iteration towards the final value,
due to the low rate at which the response time is increased at
each step. If the final response time is very late in time, the
iteration will potentially converge after a lot of iterations.
Even if the observed overall speed of the procedure seems
sufficiently high (allowing to positively check millions of
tasks in a few seconds), slight modifications on the algo-
rithm may be desirable for faster run-time admission con-
trol tests. An alternative that provably increases the speed
of the procedure without compromising the performances
can be to split the procedure in two stages. In the first stage,
the value(Rub

k −Ck +1) is replaced by(Dub
k −Ck +1). If

the task nevertheless converges to a valueRub
k ≤ Dk, then

it is possible to refine the derived bound on the response
time in a second stage, using again the minimum on the in-
terference with the original term(Rub

k − Ck + 1), updated
with the value derived in the precedent stage. This allows to
proceed by greater steps towards the final bound, eventually
retreating if the step was too big. The simulations we ran
with this alternative strategy didn’t show significant losses
in the number of schedulable task sets detected in compari-
son with the original algorithm.

Another factor that could affect the overall average com-
plexity is the order in which the minimum slacks are up-
dated. In other words, it is possible to apply the RTA The-
orems sequentially to every tasks, or alternatively re-start
from the first task every time one of the potentially inter-
fering tasks updates its slack value, or, again, follow some
particular order to maximize the slack updates at each step.
We believe that the first sequential approach represents on
average a good compromise. The worst-case complexity of
this approach can be derived noting that to trigger a further
round of analysis on all tasks, at least one task should have
updated its response time. Since every task can increase its
slack lower bound at most(Dk −Ck) times, the worst-case
number of rounds to be performed can then be bounded by
∑

k(Dk − Ck). Each one of this rounds will take at most
∑

k(Dk −Ck) steps to sequentially update the slacks of all
tasks. Therefore a bound on the overall number of steps of
the whole process of finding the best possible estimations
on the response times for every task in the task set is given
by (

∑

k(Dk −Ck))2. This bound can then be lowered not-

7

ing that not every round requires
∑

k(Dk − Ck) steps, but
later rounds will converge sooner. It can be proved that a
tighter bound on the overall number of steps is given by
(
∑

k(Dk−Ck))2

2 , which is is O(n2D2
max). Since every step is

just a sum of at mostn contributions, the overall complexity
of the RTA is O(n3D2

max).
When fixed priority schedulers are used, the complexity

of our RTA is much lower: since the interference from lower
priority tasks is always null, there won’t be any advantage
in performing more than a single round of slack updates.
The overall complexity is therefore O(n2Dmax).

The pseudo-polynomialbound on the worst-case number
of steps of the most complete version of our RTA considers
a very pessimistic situation. We found in our experiments
that average performances are much better than that. To
give an idea, we have been able to perform the full response
time analysis for millions of task sets in a few minutes, for
various different system configurations. This rates suggest
that our test can be a good candidate also for on-line admis-
sion control.

Applicability to other global schedulers The general ap-
proach followed allows to extend the main ideas behind the
proposed analysis to global scheduler different from plain
EDF or fixed priority. As an example, the RTA of Theorem 7
can be applied toany work-conserving global scheduler, by
extending the sum to every task in the system. This some-
what surprising result can be used to analyze systems for
which no schedulability test exists in literature, providing
as well useful timely characteristics like slack and response
time estimations.

Another important class of schedulers to which our re-
sponse time analysis is applicable is given by the so-called
hybrid global scheduling algorithms. These algorithms ex-
ploit the advantages of both static and dynamic priority
schedulers, scheduling some task with fixed priority and
some other withEDF. Examples are given byEDF-US [32],
fpEDF [12], EDFk [21, 8], etc. These solutions allow to over-
come the major drawbacks of plainEDF or FP. However,
existing schedulability tests for these algorithms seem still
very far from necessary conditions, losing a great share of
system capacity to guarantee hard real-time performances,
relying in most of the cases on utilization and density
bounds close to half of the system capacity. The analysis de-
veloped in this paper seems instead very promising in this
sense, needing only minor changes to be adapted to such
systems. Due to the variety of existing hybrid schedulers,
a deeper analysis of these algorithms, as well as of other
interesting solutions likeEDF-ZL [19, 20], is left to future
works.

Robustness and sensitivity Note that the minimum slack
valuessk, that are computed as by-products of our schedu-
lability analysis, are not only useful to check the schedu-
lability of a task set, but can also be used to measure the
sensitivityof the system to variation of timely parameters.
If every task has a reasonable minimum slack value, the

whole system will be sufficiently robust to deal with iso-
lated anomalies and overload conditions.

Alternatively, it is possible to use the available slack
to decrease the frequency of the system clock feeding the
CPUs in a synchronous Symmetric Multiprocessor Platform
without affecting the overall schedulability. The obvious
outcome of such a solution would be to allow a correspond-
ing more than linear decrease in the power consumed. Ex-
plicit relations between robustness properties and slack pa-
rameters depend on the global algorithm used, but, due to
space limits, will not be treated in this paper.

6. Experimental Results

In order to validate the proposed test and compare its be-
havior with the best existing tests, cited in Section 3, we ran
a long series of simulations, using different combinations
of task parameters. We analyzed as well the behavior of our
RTA varying the number of processors, the number of tasks
and the total system utilization. Due to space limits, we re-
port here only some of the experiments, which are anyway
representative of the general behavior.

The experiments reported in the figures were generated
based on the following characteristics of the tasks: utiliza-
tion extracted according to exponential distribution with
mean0.25, re-extracting tasks with utilizationUi > 1;
period (and, implicitly, the execution time) extracted uni-
formly in [0, 2000]; deadline uniformly extracted between
Ci andPi. Histograms in the figures represent1.000.000
task sets, each one passing the necessary test for feasibility
in [11]. In other words, we excluded from our simulations
the task sets that are infeasible according to the test in [11].

Each line represents the number of task sets proved
schedulable by one specific test. The curve is drawn con-
necting a series of points, each one representing the collec-
tion of task sets that have total utilization in a range of4%
near the point. ForEDF, we considered a test proposed by
Baker (BAK, in [9]), the density bound test by Goossenset
al. (GFB, in [21]) generalized to constrained deadlines, the
test by Bertognaet al. (BCL, in [15]) and our RTA test.
For FP, we implemented the test proposed by Baker (BC,
in [33]), the schedulability test and density bound test pro-
posed by Bertognaet al. (BCL andDB, respectively, both
in [16]), and our RTA test.

Further simulations and different task generations will be
shown in an extended version of the paper, currently under
preparation. However, we anticipate that the examples we
chose for this section well represents the general behavior.

6.1. Evaluation of experiments

In the upper part of Figure 6, we show the case with
m = 2 for EDF. The RTA-based test clearly outperforms all
existing schedulability tests at every utilization. Compared
to them, RTA is constantly superior and can detect many
schedulable task sets also withUtot ≥ 1. As a side remark,
note that since we are using the constrained deadline model,

8

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

RTA

GFB

BAK

BCL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

RTA

BCL

BC

DB

Figure 6. Experiments with EDF (above) and
DM (below) on m = 2 processors.

no scheduling algorithm can reach a schedulable utilization
in the number of processors. To give anupper boundon
the number of feasible task sets, we included the continu-
ous curve labeled withTOT. This curvedoesn’trepresent
the number ofEDF-schedulable task set, neither it indicates
how many task sets are feasible. We included it just to give
an indication on how many generated task sets aren’t for
sure infeasible, using techniques from [11], at the consid-
ered utilizations. If an exact feasibility test would exist, its
curve would be below theTOT curve. Moreover, consid-
ering thatEDF isn’t optimal for multiprocessors, a hypo-
thetical necessary and sufficient schedulability test forEDF
would have an even lower curve.

Similar considerations are valid as well for theFP case,
depicted in the lower part of Figure 6. The priority assign-
ment used is Deadline Monotonic (DM). This figure is very
meaningful, since it shows that the RTA-based test improves
even over theEDF case, getting closer to the upper bound on
the general feasibility condition represented by the continu-
ous curve.

Increasing the number of processors the results are sim-

ilar. In Figure 7 we show the case withm = 4 processors
both forEDF andFP, plotting only the curves forGFB with
EDF, BC with DM and both our RTA-based tests. We omit-
ted the other curves because they are below the considered
ones. The RTA test for fixed priority outperforms the corre-
spondent test forEDF. This is due to the fact that for fixed
priority systems the interference from lower priority tasks
can be neglected, which cannot be made with plainEDF.
The higher distance from theTOT curve is motivated by
the worse performances ofEDF andDM when the number
of processor increases, and doesn’t seem a weak point of
our RTA.

The above considerations suggest that for multiprocessor
platforms it may be convenient to use fixed priority schedul-
ing instead ofEDF. Even if a common opinion is that the
absolute performances ofEDF are arguably better than the
performances of fixed priority scheduling, we showed that
the superiority ofFP relatively to the best existing schedula-
bility test largely compensate this disadvantage. Since real-
time systems are interested in finding a provable schedu-
lability, and considering the easier implementation of fixed
priority systems, a fixed priority scheduler can be preferable
in many cases. Moreover, since there is no particular reason
in using DM as priority assignment in the multiprocessor
case, an interesting task could be to explore which priority
assignment could further magnify the performances of the
RTA-based schedulability test. We intend to analyze this
issue in future works, together with the analysis of more
general scheduling algorithm, like hybrid or dynamic-job-
priority schedulers, that are expected to have a lower gap
from the necessary condition upper bounded by theTOT
curve.

7. Conclusions

We developed a new approach for the analysis of real-
time task systems globally scheduled on a Symmetric Mul-
tiprocessor Platform. Response times and slack values
are efficiently computed in pseudo-polynomial time, allow-
ing to derive efficient schedulability tests that can easily
be adapted to many different scheduling algorithms. We
showed that the proposed approach dramatically improves
over existing solutions, significantly increasing the num-
ber of schedulable task sets detected. The effectiveness of
the analysis has been extensively proved through exhaustive
simulations.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks. InProceedings of the EuroMicro Con-
ference on Real-Time Systems, Delft, The Netherlands, June 2001.
IEEE Computer Society Press.

[2] B. Andersson and J. Jonsson. Fixed-priority preemptivemultipro-
cessor scheduling: To partition or not to partition. InProceedings of
the International Conference on Real-Time Computing Systems and
Applications, pages 337–346, Cheju Island, South Korea, December
2000. IEEE Computer Society Press.

9

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

FP: RTA

FP: BC

EDF: RTA

EDF: GFB

Figure 7. Comparison between EDF and FP

schedulability tests on 4 processors.

[3] B. Andersson and J. Jonsson. Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling. InProceedings
of the Real-Time Systems Symposium – Work-In-Progress Session,
Orlando, FL, November 2000.

[4] B. Andersson and J. Jonsson. Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling. Technical Re-
port 01-2, Department of Computer Engineering, Chalmers Univer-
sity of Technology, Sweden, 2001. March, 16.

[5] B. Andersson and E. Tovar. Multiprocessor scheduling with few pre-
emptions. InRTCSA, pages 322–334, 2006.

[6] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Soft-
ware Engineering Journal, 8(5):284–293, 1993.

[7] T. Baker. Multiprocessor EDF and deadline monotonic schedulabil-
ity analysis. InProceedings of the IEEE Real-Time Systems Sym-
posium, pages 120–129. IEEE Computer Society Press, December
2003.

[8] T. Baker. A comparison of global and partitioned edf schedulability
tests for multiprocessors. Technical Report TR-051101, FSU Com-
puter Science, November 2005.

[9] T. P. Baker. An analysis of EDF schedulability on a multiprocessor.
IEEE Transactions on Parallel and Distributed Systems, 16(8):760–
768, 2005.

[10] T. P. Baker. An analysis of fixed-priority schedulability on a multi-
processor.Real-Time Systems: The International Journal of Time-
Critical Computing, 32(1–2):49–71, 2006.

[11] T. P. Baker and M. Cirinei. A necessary and sometimes sufficient
condition for the feasibility of sets of sporadic hard-deadline tasks.
rtss, 00:178–190, 2006.

[12] S. Baruah. Optimal utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors.IEEE
Transactions on Computers, 53(6), 2004.

[13] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate
progress: A notion of fairness in resource allocation.Algorithmica,
15(6):600–625, June 1996.

[14] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. InProceedings of the 11th
Real-Time Systems Symposium, pages 182–190, Orlando, Florida,
1990. IEEE Computer Society Press.

[15] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability
analysis of EDF on multiprocessor platforms. InProceedings of the
EuroMicro Conference on Real-Time Systems, pages 209–218, Palma
de Mallorca, Balearic Islands, Spain, July 2005. IEEE Computer So-
ciety Press.

[16] M. Bertogna, M. Cirinei, and G. Lipari. New schedulability tests
for real-time tasks sets scheduled by deadline monotonic onmulti-
processors. InProceedings of the 9th International Conference on
Principles of Distributed Systems, Pisa, Italy, December 2005. IEEE
Computer Society Press.

[17] A. Burns and A. Wellings. Real-Time Systems and Programming
Languages. Addison-Wesley, 3rd edition, 2001.

[18] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In J. Y.-T. Leung, editor,Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. CRC
Press LLC, 2003.

[19] S. Cho, S. K. Lee, and K.-J. Lin. On-line algorithms for real-time
task scheduling on multiprocessor systems. InIASTED International
Conference on Internet and Multimedia Systems and Applications,
pages 395–400, Hawaii, August 2001.

[20] M. Cirinei and T. P. Baker. Edzl scheduling analysis. InECRTS,
Pisa, Italy, July 2007.

[21] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of
periodic task systems on multiprocessors.Real Time Systems, 25(2–
3):187–205, 2003.

[22] D. Gross and C. M. Harris.Fundamentals of Queueing Theory. Wi-
ley Series in Probability and Statistics, 1998.

[23] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment.Journal of the ACM, 20(1):46–61,
1973.

[24] L. Lundberg. Multiprocessor scheduling of age constraint processes.
In RTCSA, pages 42–, 1998.

[25] A. A. MPCore. http://www.arm.com/products/
cpus/arm11mpcoremultiprocessor.html. Web page, July 2007.

[26] P.-N. Nexperia. http://www.nxp.com. Web page, July 2007.

[27] S. Nomadik. www.st.com/nomadik. Web page, July 2007.

[28] T. I. OMAP. www.omap.com. Web page, February 2006.

[29] J. C. Palencia and M. G. Harbour. Response time analysisof edf
distributed real-time systems.Journal of Embedded Computing,
1(2):225–237, 2005.

[30] T. C. P. Sony, IBM. http://cell.scei.co.jp/. Web page,July 2007.

[31] M. Spuri. Analysis of deadline scheduled real-time systems. Tech-
nical Report 2772, Institut National de Recherche en Informatique et
en Automatique, 1996.

[32] A. Srinivasan and S. Baruah. Deadline-based scheduling of periodic
task systems on multiprocessors.Information Processing Letters,
84(2):93–98, 2002.

[33] T.P.Baker and M.Cirinei. A unified analysis of global edf and fixed-
task-priority schedulability of sporadic task systems on multiproces-
sors. Journal of Embedded Computing, 2007. To appear. TR avail-
able at http://www.cs.fsu.edu/research/reports/TR-060401.pdf.

10

