Response-Time Analysis for globally scheduled Symmetric M ultiprocessor
Platforms *

Marko Bertogna, Michele Cirinei
Scuola Superiore Sant’Anna, Pisa, Italy
E-mail: marko@sssup.it, cirinei@gandalf.sssup.it

Abstract (MPSoC) are mainly technological. The computing power
of a chip can be increased either by raising the operating

In the last years, a progressive migration from single frequency or by using more computing units that can work
processor chips to multi-core computing devices has takenin parallel. Current electronic manufacturing process be-
place in the general-purpose and embedded system markefoW 65nm impose strong constraints on the operating fre-
The development of Multi-Processor Systems is already aduencies of computing devices, due to the more than lin-
core activity for the most important hardware companies. €ar increase of the consumed power and the temperature
A lot of different solutions have been proposed to overcomereached inside a chip. A way to circumvent this problem
the physical limits of single core devices and to address theis to distribute the computing effort to multiple units and
increasing computational demand of modern multimedia dedicated processing elements that are operated in paralle
applications. The Real-Time community followed this trend at lower frequencies. This is the solution adopted by, for
with an increasing number of results adapting the classical instance, TI's OMAP [28], NXP's Nexperia [26], STM's
scheduling analysis to parallel computing systems. Nomadik [27], ARM’s MPCore [25], Sony-IBM-Toshiba’s

This paper will contribute to refine the schedulability Cell [30], and many others.
analysis for Symmetric Multi-Processor (SMP) Real-Time  From the Real-Time community perspective, this kind of
systems composed by a set of periodic and sporadic tasksplatforms represents an interesting workbench upon which
We will focus on both fixed and dynamic priority global Validate the scheduling theory for multi-processor system
scheduling algorithms, where tasks can migrate from one Newly proposed mechanisms allow to mitigate the cost of
processor to another during execution. By increasing the cache misses, task preemptions and inter-processor migra-
complexity of the analysis, we will show that an improve- tions, allowing to overcome the drawbacks of existing sys-
ment is possible over existing schedulability tests, §igni tem models. For instance, ARM's MPCore has a mech-
cantly increasing the number of schedulable task sets de-2nism that allows to retrieve a data that is not present in
tected. The added computational effort is comparable to the local CPU’s cache, fetching it directly from the local
the cost of techniques widely used in the uniprocessor casecache of other processing units. Solution of this kind could
We believe this is a reasonable cost to pay, given the intrin- then reduce the penalties associated to migration-based al

sically higher complexity of multi-processor devices. gorithms, suggesting the usegibbalschedulers instead of
statically partitioning the tasks to the available prooess

A global scheduler maintains a single scheduling queue
. from which tasks are extracted to be dynamically executed
1. Introduction on the available CPUs. Taking "centralized” scheduling de-
cision at system level will allow a better view of the whole
In the last decade, an increasing number of multi-core system, dealing more efficiently with dynamic load varia-
systems has been proposed in the embedded system daions and temporary overload conditions. Indeed, a well-
main as well as in the high level computing market. The known result from the queueing theory is that using a sin-
major hardware providers are already developing the sec-gle queue scheduler results in lower average response times
ond generation of multi-processor chips, and are spendinghan having a queue for every single processor [22]. Intu-
a considerable amount of resources in the research for nextitively, this is motivated by the fact that with a global sdhe
generation parallel architectures. uler no processor is idled when there is backlogged work to
The integration of multiple processors on a single chip do, ie. the scheduler isork-conservingOn the other side,
constitutes one of the most important innovations in the de-when tasks are statically partitioned to the CPUs, it is very
sign and development of embedded real-time systems. Thdikely that an unbalanced load distribution will result ost
reasons for moving to Multi-Processor Systems on Chip ing the work-conserving behavior of the system. Further
motivations on the advantages of the global approach can

*This research has been supported



be found in [2], where a convincing argument shows that _ Symbol [ Description

the average number of preemptions in a partitioned system — m Number of processors in the platform
is typically higher than in a globally scheduled system. n Number of tasks in the task set
However, the superiority of global approaches cannot be T Task set

so easily extended to real-time scheduling performances. 7 k-th taske 7

Even if global schedulers have lower response times on  JJ j-th job of taskry,

average, the same cannot be said about worst-case perfor- ¢, Worst-case computation time of

mances. Instead, it has been shown that no approach dom- p, Relative deadline ofy,

inates the other [18], ie. there are task sets that are sehedu T3, Period or minimum interarrival time af,

lable only with partitioned solutions and others that can be r Release time of joby}

scheduled only using a global scheduler. Due to the com- J Finishing time of jobJ?

plexity and the dimensions of the problem, a complete the- ! Absolute deadline of job?

ory of real-time scheduling for multi-processor systems is Sk min ,;__(d — f7), ie. minimum slack ofr,

still to come. Besides, in literature there are more efficien e b TR ,

schedulability tests for the partitioned case. Since tiegy r Ry max ;. (fi — %), ie. response time af;

on well known uniprocessor techniques, the performances  Usx Cy [Tk, utilization of

of the existing schedulability tests for partitioned sysse Umax | MaX,e-(Ui)

are slightly better than those provided by the few results ad Ut > ,c-(Ui), ie. total utilization of task set

dressing the global case. Even if this field recently obthine Ak Cy /Dy, density ofry,

an increasing interest, there is still a lot of space left for Amax max., e+ (i)

improvements. This paper will contribute filling this gap. Atot > -,e-(Ai), ie. total density of task set
Ix(a,b) | Interference omy ininterval[a, b)

1.1. Contribution Ii(a,b) | Interference ofr; onry ininterval[a, b)
erx(a,b) | Carry-in ofry ininterval[a, b)
zr(a,b) | Carry-out ofry ininterval[a, b)

We will develop a new approach to analyze the timely W, (a,b) | Worst-case workload of;, in [a, b)
properties of Real-Time systems scheduled upon identical
multiprocessor platforms. We will show the limits of exist- Figure 1. Notation used throughout the paper.
ing results and overcome their major disadvantages enhanc-
ing techniques widely used for the uniprocessor schedula-
bility analysis. The Response Time Analysis (RTA) will
be adapted to systems composed by more than one CPU, ) o )
allowing to derive schedulability tests that dramaticaity We consider a set of n periodic and sporadic tasks [14]
prove over all recently proposed algorithms. to be scheduled om identical processors using a global al-

This work will be mainly focused on globally scheduled 9°rithm. Each tasky = (Cy, Dy, Ty) € 7 is characterized
real-time systems composed by a set of periodic and spo-PY & worst-case computation tinig, a period or minimum
radic tasks. The effectiveness of the proposed analysis wil Interarrival time7};,, and a relative deadling;.. Unless oth-
be tested using representative migration-based schedulin €7Wise stated, we will assume every task hadogstrained
algorithms, such as Earliest Deadline Fisbg) and Fixed ~ deadlines, ie. every deadline is less than or equal to the cor
Priority (FP), and proved with convincing arguments and esponding period. Results fanplicit deadline systems —
extensive simulations. However, we believe that the tech-having deadline equal to period — can be easily derived as
niques hereafter described can be easily adapted to othefPeCial cases of the constrained deadline model.
kinds of g|oba| Schedu“ng a|gorithms_ The utilization of a task is defined al;, = %, while

The rest of the paper is organized as follows. In Section 2 the densityas \;, = g—';, representing the “worst-case” re-
we introduce the terminology and notation. In Section 3, a quest of a task in a generic time interval. U&hay (resp.
panoramic view of the existing schedulability tests fofglo ) .) be the largest utilization (resp. the largest density)
ally scheduled multiprocessor systems is presented. Secamong all tasks:Upax = max,,c,; {U;} (resp. Amax =
tion 4, we present our new analysis, adapting iElur_and max,, cr {\;}).

FP schgduled systems. General cqn5|derat|ons will be ex- A task 7, is a sequence of jobg/, where each job is
posed in Section 5, while the effectiveness of the proposed _ . o Y
approach will be validated in Section 6 through a set of ex- characterized by an arrival timg and a finishing timef;.
periments. Finally, in Section 7 we present our conclusions We say that a job iseadyat timet, if ¢ € [r}, f;). More-
over, each job has an absolute deadlifje= r, + Dy,
which represents the latest time instant at which we can ac-
2. System model cept the job to complete execution. Thgnimum slacks,
of a taskr, is defined as the minimum distance between

The notation described in this Section and used in the the absolute deadline and the finishing time of jobs;qf
rest of the paper is summarized in Figure 1. ie. s, = minJiGTk (d}. — fi). Finally, theresponse time




R, of taskry, is the worst-case finishing time among all its <k jobs of the body k.

jobs, ie. Ry = max ;. (f{ — 7). Note that when a task L YN |
: o - [ T s IR 7
set is schedulable, each task has a non-negative slack and-a o ‘
response time lower than or equal to the deadline. carried-in job carried-out jelg
The global schedulers analyzed in this paper maintain a 1 [

system-wide queue in which ready tasks are inserted and

ordered following some kind of policyepF, fixed priority,

etc.). When a processor is idle, a dispatcher will extract

from top of this queue the highest priority task, and will Figure 2. Body, carried-in and carried-out jobs

schedule it on the available CPU until it completes execu-  of task 7 in interval [a, b].

tion, or is preempted by another task. Whenever a task with

priority higher than one of the executing tasks is released,

the task having lowest priority among the executing ones is

preempted and re-inserted in the ready queue. This mecha-  to the workload in that interval with a complete execu-

nism guarantees that the highest priority ready tasks are tion timeCy;

always the ones executing on the multi-processor platform. . o ,
Depending on the policy used to sort the ready queue, ® Carry-in: the contribution of at most one job (called

a b

global schedulers will be divided into static-priority, éit- carried-in job) with release time beforeand deadline
job-priority and dynamic-job-priority schedulers. Staii- in [a, b); this job contributes with thearry-in e, i.e.
ority systems are often shortly calléiged priority, omitting the fraction of its execution time actually executed in

to explicitly refer to task priorities. Similarly, schedus the interval.

that don’t change the priority of a job during its execution

)~ , e carry-out the contribution of at most one job (called
are also callegbriority-driven.

carried-out job with release time beforéu,b) and
deadline aftem; this job contributes with thearry-
2.1. Interference and workload out zx, i.e. the fraction of its execution time actually
executed in the interval.
To analyze the interactions among tasks concurrently ex- . ) .
ecuting upon a multiprocessor platforms, we hereafter de-  If it would be possible to derive correct values for all
fine two parameters that will be useful in the schedulability interferences or workloads with a limited computational ef

analysis of the considered system: therferenceand the ~ fort, then a schedulability test would easily follow. How-
workload ever, as we will see in Section 4, this is not so easy in the

multiprocessor case.

Interference The interferencdy(a,b) on a taskr;, over
an intervalfa, b] is the cumulative length of all intervals in
whichy is backlogged but cannot be scheduled on any pro-

2.2. Timedivision

cessor due to the contemporary executiomoliigher pri- Despite the fact that for mathematical convenience, time-
ority tasks. instants and interval lengths are often modeled using real
We also define the interferend@(a, b) of a taskr; on numbers, in an actual system time is not infinitely divisible

a taskr;, over an intervala, b] as the cumulative length of The times of event occurrences and durations between them
all intervals in whichr;, is backlogged but cannot be sched- cannot be determined more precisely than one tick of the

uled on any processor, whitg is executing. Notice that by ~ System’s most precise clock. Therefore, any time value
definition: involved in scheduling is assumed to be a non-negative in-

_ teger value and is viewed as representing the entire ifterva
Ii(a,b) < Ix(a,b), Vi, k,a,b. (1) [t,t+1).
This convention allows the use of mathematical induc-
We underline here that for fixed priority systems the in- tion on clock ticks for proofs, avoids potential confusion
terference caused by lower priority tasks is always null, ie around end-points, and prevent impractical schedulgbilit
itis: I} (a,b) = 0,V; with priority lower thanr;,. results that rely on being able to slice time at arbitrary
points.

Workload TheworkloadWy(a, b) of ataskr in aninter-
val[a, b) represents the amount of computation that the task3 Rel ated Work
requires in[a, b) in a given situation. As in [7], we define
Wi (a,b) taking into account three different contributions ] ] ] ] ]
(see Figure 2): Response Time Analysis (RTA) is an effective technique
that has been widely used to derive schedulability tests
e body the contribution of all jobs with both release and properties for various different models of task systems
time and deadline in the interval; each job contributes scheduled on a single processor. Even if RTA has initially



been applied to fixed priority uniprocessor systems [6, 17],
later works addressed as well theF case [31, 29]. Ba-
sically, uniprocessor RTA relies on the conceptstical
instantandbusy period A critical instant of a task is an
arrival time of an instance such that it suffers the worst pos
sible interference. This allows to find the worst possible
response time for the considered task. For fixed priority
scheduling, the simultaneous activation of all tasks repre
sents a critical instant [23]. F@DF, things slightly change,

A better approach to refine carry-in and carry-out esti-
mations has been proposed by Baker for both fixed prior-
ity [10] and EDF [9] global scheduling, and later improved
in [33]. Goossengt al. [21] addressed the schedulability
problem by a different point of view, deriving simple and
effective utilization bounds to be used with implicit dead-
line systems scheduled with glok=bF. Their analysis has
been later adapted to constrained deadline systems in [15],

where as well other methods to bound the worst-case inter-

ie. the worst-case is not necessary given by an instancederence have been proposed for e case. Density and

arriving when all other tasks are contemporarily released.

However the notion of critical instant may still be useful,

utilization bounds for fixed priority global schedulers are
derived in [16].

since it can be proved [14] that the worst-case response time When considering scheduling algorithms that may

for a task can be found inside a continuously backlogged in-

terval starting with the synchronous arrival of all taskkisT
interval is often calledbusy periogor problem window

change the priority of an executing job, Pfair [13, 1] al-
gorithms are optimal for implicit deadline systems, allow-
ing a schedulable utilization equal to the available sys-

A schedulability test for periodic and sporadic task sets is tem capacity. However, such systems can have a number
then easily derived checking the response times of all tasksof context changes significantly higher than priority-ériv

in an interval starting with a critical instant and in which

schedulers. Instead, if the priority of an executing job is

jobs are released as soon as possible, and comparing it tfixed, the number of preemptions in an interval is bounded

the corresponding deadlines.
However, when trying to adapt these technique to multi-

by the number of jobs arrivals in the same interval. Re-
cently, dynamic-job-priority algorithms have been progubs

processor systems, there are various anomalies to consideto achieve high schedulability performances, at a lower pre
There are situations [24] in which the synchronous case isemption cost [5]. A dynamic-job-priority algorithm that

not the worst one, and others [3] in which enlarging the in-

has the same worst-case number of preemptionspet

terarrival time of the jobs of a task can render the systembut much better scheduling performances for multiproces-

unfeasible. This is a big problem when analyzing multi-

processor platforms, since it is not so easy to find a "rep-

sor systems igDzL [19, 20].
We believe the above list of results well represents the

resentative” interval where to check if deadlines are met in state-of-the-art of global scheduling analysis for thek tas

the worst case situation.
If a multiprocessor system is the target platform, only

model described in Section 2. We omitted other results that
have been obsoleted by the cited papers, or that assumed

sufficient results can then be derived in a reasonable amoungifferent system models.

of time. The few existing results applying Response
Time Analysis to globally scheduled multiprocessor sys-

tems were only a first attempt to generalize the uniproces-

Since, due to space reasons, it is not possible to apply
our analysis to every major global scheduling algorithm, we
decided to show two representative cagas: andFP. Re-

sor techniques to the more complex case under considerasults for other kinds of algorithms could then be derived in
tion. Sufficient RTA-based schedulability tests are shown similar ways.

in [24, 4, 17] for multiprocessor system scheduled with
fixed priority. We hereafter recall the main result.

Theorem 1 (from [24, 4, 17]) Given a task set scheduled

with fixed priority, a bound on the maximum response time

R of a taskr, € 7 is given by the fixed point reached,
iteratively repeating the following operation with initia
value R"™ = C:

1 Rmax
RI™— Crp+— Y (“ﬁ W0j+0j> )

m j
T;€hp(k) -

wherehp(k) is the set of tasks with priority higher thep's.

A sufficient schedulability condition is then obtained ckec
ing if R"™ < Dy for everyr, € 7. Basically, with Equa-

tion 2, a bound on the maximum response time is derived
considering the maximum possible contributions, ie. equal

to the task WCET, for both the carried-in and carried-out

4. Schedulability analysis

As explained in Section 3, to find the worst case response
times of tasks scheduled wiDF or fixed priority on a sin-
gle CPU, it is possible to consider only a particutatical
situation. However, when analyzing multiprocessor plat-
forms, finding a worst-case situation in which the response
time of a task is maximized is not as easy. To the best of our
knowledge, it is not possible to find the worst-case behavior
of a task without simulating the system. For the sporadic
case this would require to check every possible legal drriva
of jobs for every task in the system, which is computation-
ally intractable for non-trivial task sets.

Since we don’t have a critical instant where to start the
analysis, an alternative can be to consider an upper bound
on the interference a task might be subject to.

jobs. This is an overly pessimistic assumption, leading to a Bounding thelInterference An upper bound on the inter-

significant number of rejected task sets.

ference is represented by the workload, as the next theorem



states. | T,—D; T !

Theorem 2 The interferencd; (a, b) of a taskr; on a task | ‘ i | | l %j l
T, In an interval[a, b) cannot be higher than the workload h L gh pht ghtl ph+2 dht?
Wi(a, b) of r; in [a, b) ’ . i ! ! ! !

a L b
Proof: Obviously, a task can interfere only when it is exe-
cuting. The theorem follows from the definition of interfer- , , ) )
ence and workload in Section 2. Figure 3. Scenario described in the proof of

We can further restrict the interference on a tagkby Theorem 4.

noting that no interfering task can contribute to the resgon

time of 7, for more thanR;, — C). To formally state this

result we first need the following lemma, provedin [15].  Proof: The situation is represented in Figure 3. Since a

job J! can be ready only ifr}, d/) and for at most; time

units, it is immediate to see that the depicted situation pro

vides the highest amount of execution possible in interval

Lia,b)>r = Zmin (Li(% b), x) >ma [a, ). Moving backwards the interval, the carry-in cannot
prrd increase, Whl|§ the carry-out can on_ly decrease. Instead,

advancing the interval, the carry-in will decrease, wHile t

The following part of the analysis will consider the partic- Carry-out can increase by at most the same amount. The
ular instance of task; that is subjected to the maximum Situation is periodicll _ _

possible interference. Even if we don’t know the location of =~ We now compute the workload of taskin an interval

this instance, nor the conditions at which it is maximally in [a-b) of length L, in the situation considered in Theorem 4

Lemmal (from [15]) For any global scheduling algo-
rithm it is:

terfered, we can anyway denote it wifj). Sincef; = Ry, and represented in Figure 3. Note that the first jolr;of
computing an upper bound on the finishing timeJgfwill after the carry-in, is released at time+ C; +T; — D;.
lead to a valid upper bound on the response time, of The next jobs are then released periodically evEryime

With these notations and with the above lemma, a resultUnits. Therefore the numbe¥; (L) of jobs of r; that con-
that will be useful to bound the worst-case interference im- tfibute with an entire WCET tg the workload in an interval

; : i L—(Ci+Ti—Ds)
posed by each task is hereafter derived. of lengthL is at most(| =———-——] +1). So,

Theorem 3 A taskr, has a response time upper bounded Ni(L) = L+D;-C; (3)
by Ry® if ’ T;
. i % u ” ” The contribution of the carried-out job can then be
D min (I (rf, ritREY), B Cit 1) <m(RE-Cit 1) poode e O Lt Dy o NALIT)). A bound
7k on the workload of a task; in a generic interval of length
L is then:

Proof: If the inequality holds forry, from Lemma 1 we
have , , Wi (L) = Ni(L)C;+min(Cy, L+D;—C;— Ni(L)T) (4)
Li(ri. v+ REY) < (REY = Cr +1)
thereforeJ; will be interfered for at mosfzy® — Cj, time
units. From the definition of interference, it follows tht

Note that no assumption on the scheduling algorithm
used has been made in the proof of the above result. There-
. . fore, the bound of Equation 4 is valid for any scheduling al-
(and therefore every other job of) will complete at most gorithm. Nevertheless, when the algorithm in use is known,

i b
attime Iy '_. , .___other bounds can be derived. Next paragraphs will consider
To effectively use Theorems 2 and 3 in our response timéhe epr andep cases.

analysis, we need to derive an estimation of the workload in

. * ok ub
awindow(r;, r; + Rp:). 4.1. Systems scheduled with EbF
Bounding the Workload Also evaluating the worst-case When tasks are scheduled wibF, the workload in in-
workload is a complex task. Again, we will use an upper tgrya| [r, 5+ Dy) can be analyzed in a particular situation,
bound to avoid the need to simulate the system. as stated by the next theorem.

Theorem 4 When no deadline is missed, a bound on the Theorem 5 For EDF-scheduled systems, when no deadline
workload of a taskr; in a generic intervalla, b) can be is missed, the interference of a taskon a taskr; in an
computed considering a situation in which the carried-in interval of lengthD;, is at most

job J¢ starts executing at the beginning of the interval, with

a = di — Cj, and every other instance of is executed as 3% (Dy) = DBF,, + min(C;, max(0, Dk—DBF};E)), (5)
soon as possible. C;



—

) A

! o om | wm |

! PO T i a+
= nil
ri Ry : dgc

Figure 4. Scenario described in the proof of
Theorem 5.

where DBF!

(22| +1) e

Proof: Follows from Lemma 5 in [15]. Basically, the

worst-case situation is described in Figure 4, where the

carried-out jobJ? has its deadline at the end of the inter-
val, ie. coincident with a deadline of,, and every other

Since, by hypothesis, the response time;ois higher than
R, the inverse of Theorem 3 gives

1
R >y + bm(Rgb— Ck+1)J =R"+1

reaching a contradiction.

It remains to show that the iteration converges in a finite
amount of time. This is assured by the integer time conven-
tion assumed in Section 2.1

A schedulability test can than be performed by repeating
the iteration described above for every tagke 7. If every
iteration ends before the corresponding deadline valag, th
the task set is schedulable witibr.

4.2. Fixed Priority systems

For fixed priority systems the bound on the interference
given by Theorem 5 isn't applicable. However, another

instance ofr; is executed as late as possible. The bound Property allows nevertheless to increase the effectiveoks
on the interference can then be easily derived analyzing thethe response time analysis. Assume tasks are ordered by de-

above situation, and is composed by th&F, representing
the body, and thenin, representing the carry-in ef in the
considered intervall

Note that the bound of Theorem 5, differently from the
previously derived bounds, is valid only if the length of the
considered interval iDy, ie. the relative deadline of the
interfered task.

We are now ready to state a first result for #oe case.

Theorem 6 (RTA for EDF) An upper bound on the re-
sponse time of a task; in an EDFscheduled multipro-

cessor system can be derived by the fixed point iteration

on the valueR}* of the following expression, starting with
R}éb = Cy:

1

R — Cy + — > LR (6)

i#k
with [ (RY®) = min(20;(RY?), 3: (Dy), R¥— Cr+1).

Proof: The proofis by contradiction. Suppose the iteration
ends with a vaIueR};b < Dy, but the response time of is
higher thanR:*. Since the iteration ends, it is

1 .
RY — )+ ~ > min(2Wi(Ry), 3 (D), R~ Cr+1)
itk

For Theorems 2 and &/Y;(RY) > Ii(ri,r; + RM).
Let Ii* = Ii(r;, 7} + R®). For Theorem 53i(Dy) >
I} (Dy) > I as long asky® < Dy. Therefore,

1 .
Rub>c - : Iz* Rub_c 1
k= Okt m;mm(lm k k+1)

creasing priority, ies < j iff 7; has more priority thanm;.
From the definition of interference, it is clear that no task
can contribute to the interference on a higher priority task
ie. I]i = 0,Vi < k. The next theorem immediately follows
from this consideration and the proof of Theorem 6.

Theorem 7 (RTA for FP) An upper bound on the response
time of a taskr, in a multiprocessor system scheduled with
fixed priority can be derived by the fixed point iteration
on the valueR}* of the following expression, starting with
R}éb = Ok:

R* — Cj + ﬁ > f;i(sz)J (7)

i<k
with [} (RyY) = min(20;(RY?), R¥— Cj+1).

Even if 3 (Dy,) cannot be inserted inside the minimum

definingZ} (R:"), we will see that the limitation of the sum
to the firstk — 1 terms compensates by far this loss.

4.3. Exploiting slack values

The performance of our response time analysis can be
significantly improved with a simple consideration. Since
the algorithms of Theorems 6 and 7 allow to find a response
time for a taskr;, when applying the same algorithm to an-
other taskr, it is possible to consider the previously derived
upper bound on the response timerpf This can decrease
the possible interference af on 7. Theorems 6 and 7
don’t need to be modified. It is enough to change the upper
bounds given by Equation 4 and 5, including the slacks pre-
viously computed for the interfering tasks. A lower bound
on the slack time of a task is, trivially, s!* = D; — R¥.
Figure 5 represents the worst-case situations with the addi
tional information on the slack of task. The upper bound



a I b there are no tighter requirements on the affordable rue-tim

LA : complexity.
| | i | | . .
o di PRI e 5. Considerations
Dy, !
T ] l Computational Complexity The complexity _of a single
rl! o run of the procedure of Theorems 6 and 7 is comparable

to the complexity of similar uniprocessor techniques. 8inc

the response tim&:* of a taskr; is updated with integer
Figure 5. Worst-case situations with slack. values, a single iteration for a task will converge, or fail,

in at most(Dy, — Cy) steps.

However, it is possible to further improve the average
on the workload is updated by changing teNn(L) inthe  behavior of the algorithm, noting that a potential weakness
expression of¥; (L) in the following way: is given by the contributioiR“> — Cj, + 1) in the min-

. imum of the interferencd’ (R“?). This value can cause
(L) = Ni(L)C; +min(C, L+D; = Ci — s _Ni(L)Té) a slow progression of theki(ter%t%on towards the final value,
(8) due to the low rate at which the response time is increased at
L+D;—Cy—s gach_step._lfthe fingl response time is very Iate.in time, the
Ni(L) = L T J iteration will potentially converge after a lot of iteratis.
i Even if the observed overall speed of the procedure seems
Instead, the expression of the worst-case interferencesufficiently high (allowing to positively check millions of
3¢ (Dy) can account for a lower carry-in, and can be given tasks in a few seconds), slight modifications on the algo-
by rithm may be desirable for faster run-time admission con-
T trol tests. An alternative that provably increases the dpee
~i i : i i of the procedure without compromising the performances
3} (Dy) =DBF}, +min(C;, max(0, Dy — DBF. & — 8:))- can ber'zo split the procedure inptwo stagges. InF':he first stage,
_ _ (9)  thevalug Ry — Cy, +1) is replaced by D’ — Oy +1). If
Everything else remains unchanged. the task nevertheless converges to a veﬂgé < Dy, then

Theorems 6 and 7 can then be applied to every task in theit is possible to refine the derived bound on the response
system, using each time the most recently computed valuesime in a second stage, using again the minimum on the in-
for the slack of the interfering tasks. The analysis can thenterference with the original terR}* — Cj, + 1), updated
be repeated again starting with the slack values from thewith the value derived in the precedent stage. This allows to
previous iteration. The first task, that at the previousiter proceed by greater steps towards the final bound, eventually
tion didn’t consider any slack for the interfering taskspca retreating if the step was too big. The simulations we ran
this time take advantage of the positive slacks previously with this alternative strategy didn’t show significant less
computed for the other tasks, leading to a lower worst-casein the number of schedulable task sets detected in compari-
response time. son with the original algorithm.

If the target is to verify the schedulability of the system,  Another factor that could affect the overall average com-
the whole procedure can successfully stop when all tasksplexity is the order in which the minimum slacks are up-
are verified to have an upper bound on the response timejated. In other words, it is possible to apply the RTA The-
lower than their deadline. If a task still didn’t converge orems sequentially to every tasks, or alternatively re-sta
whenRy? > D, it will be temporarily set aside, waiting  from the first task every time one of the potentially inter-
for a slack update (ie. increase) of potentially interfgrin  fering tasks updates its slack value, or, again, follow some
tasks; in this case, if no update takes place during a wholeparticular order to maximize the slack updates at each step.
run for all tasks in the system, than there is no possibility We believe that the first sequential approach represents on
for further improvements and the test fails. average a good compromise. The worst-case complexity of

On the other hand, if the target is to derive the closest this approach can be derived noting that to trigger a further
possible value for every response time, the procedure can geound of analysis on all tasks, at least one task should have
on until there is no more change in any response time. Noteupdated its response time. Since every task can increase its
that every slack function is monotonically non-decreasing slack lower bound at mo$D,, — C) times, the worst-case
since, at each step, the considered interference from othenumber of rounds to be performed can then be bounded by
tasks can only be lower than or equal to the interference", (D), — Cy). Each one of this rounds will take at most
considered in the precedent step. This allows to bound the)~, (D, — C},) steps to sequentially update the slacks of all
overall complexity of the whole slack-based analysis. tasks. Therefore a bound on the overall number of steps of

Since introducing the slack updates to our analysis will the whole process of finding the best possible estimations
significantly improve performances at a reasonable cost, weon the response times for every task in the task set is given
suggest the use of this extended RTA version every timeby (3", (Dy — Ci))?. This bound can then be lowered not-

with




ing that not every round requirés, (D, — C,) steps, but ~ whole system will be sufficiently robust to deal with iso-
later rounds will converge sooner. It can be proved that alated anomalies and overload conditions.

tighter bound on the overall number of steps is given by  Alternatively, it is possible to use the available slack
(Zk(DZ*Ck)V , which is is 0a2D2,_). Since every stepis 10 decrease the frequency of the system clock feeding the

just a sum of at most contributions, the overall complexity CPUs ina synchronous Symmetric Multiprocessor Platform
of the RTA is O@*D2, ). without affecting the overall schedulability. The obvious

When fixed priorﬁyxschedulers are used, the complexity ©utcome of such a solution would be to allow a correspond-

of our RTA is much lower: since the interference from lower Ng more than linear decrease in the power consumed. Ex-
priority tasks is always null, there won't be any advantage plicit relations between robustness properties and slaek p

in performing more than a single round of slack updates. F@meters depend on the global algorithm used, but, due to

The overall complexity is therefore @ D,.x). space limits, will not be treated in this paper.

The pseudo-polynomial bound on the worst-case number
of steps of the most complete version of our RTA considers 6. Experimental Results
a very pessimistic situation. We found in our experiments
that average performances are much better than that. To 5 grger to validate the proposed test and compare its be-
give an idea, we have been able to perform the full response, 5yior with the best existing tests, cited in Section 3, we ra
time analysis for millions of task sets in a few minutes, for 5 |54 series of simulations, using different combinations
various different system configurations. This rates SUgQes o task parameters. We analyzed as well the behavior of our
that our test can be a good candidate also for on-line admis1a varying the number of processors, the number of tasks
sion control. and the total system utilization. Due to space limits, we re-

port here only some of the experiments, which are anyway

Applicability toother global schedulers The generalap-  representative of the general behavior.
proach followed allows to extend the main ideas behind the  The experiments reported in the figures were generated
proposed analysis to global scheduler different from plain based on the following characteristics of the tasks: wtiliz
EDFor fixed priority. As an example, the RTA of Theorem 7 tion extracted according to exponential distribution with
can be applied tany work-conserving global scheduléy mean0.25, re-extracting tasks with utilizatio®; > 1;
extending the sum to every task in the system. This some-period (and, implicitly, the execution time) extracted-uni
what surprising result can be used to analyze systems forformly in [0, 2000]; deadline uniformly extracted between
which no schedulability test exists in literature, promgli ~ C; and P;. Histograms in the figures represén00.000
as well useful timely characteristics like slack and reggon task sets, each one passing the necessary test for fagsibili
time estimations. in [11]. In other words, we excluded from our simulations

Another important class of schedulers to which our re- the task sets that are infeasible according to the test in [11
sponse time analysis is applicable is given by the so-called Each line represents the number of task sets proved
hybrid global scheduling algorithms. These algorithms ex- schedulable by one specific test. The curve is drawn con-
ploit the advantages of both static and dynamic priority necting a series of points, each one representing the eollec
schedulers, scheduling some task with fixed priority and tion of task sets that have total utilization in a rangel @f
some other witteEDF. Examples are given bypr-us [32], near the point. FOEDF, we considered a test proposed by
fpEDF[12], EDF* [21, 8], etc. These solutions allowto over- Baker BAK, in [9]), the density bound test by Goossets
come the major drawbacks of plagDF or FP. However, al. (GFB, in [21]) generalized to constrained deadlines, the
existing schedulability tests for these algorithms seéfin st test by Bertognat al. (BCL, in [15]) and our RTA test.
very far from necessary conditions, losing a great share ofFor Fp, we implemented the test proposed by Bak&€ (
system capacity to guarantee hard real-time performancesin [33]), the schedulability test and density bound test pro
relying in most of the cases on utilization and density posed by Bertognet al. (BCL andDB, respectively, both
bounds close to half of the system capacity. The analysis de-in [16]), and our RTA test.
veloped in this paper seems instead very promising in this  Further simulations and different task generations will be
sense, needing only minor changes to be adapted to sucBhown in an extended version of the paper, currently under
systems. Due to the variety of existing hybrid schedulers, preparation. However, we anticipate that the examples we
a deeper analysis of these algorithms, as well as of otherchose for this section well represents the general behavior
interesting solutions likebr-zL [19, 20], is left to future

works. 6.1. Evaluation of experiments

Robustness and sensitivity Note that the minimum slack In the upper part of Figure 6, we show the case with
valuessy, that are computed as by-products of our schedu-m = 2 for EDF. The RTA-based test clearly outperforms all
lability analysis, are not only useful to check the schedu- existing schedulability tests at every utilization. Conguh
lability of a task set, but can also be used to measure theto them, RTA is constantly superior and can detect many
sensitivityof the system to variation of timely parameters. schedulable task sets also with: > 1. As a side remark,

If every task has a reasonable minimum slack value, thenote that since we are using the constrained deadline model,



35000

30000 -  GFB --------
BCL
25000

20000

15000

Number of detected task sets

10000

5000

o ) R
1
Task set utilization

15

35000

30000

25000

20000

15000

Number of detected task sets

10000

5000

S

0.5 1

Task set utilization

Figure 6. Experiments with EDF (above) and
DM (below) on m = 2 processors.

no scheduling algorithm can reach a schedulable utilimatio
in the number of processors. To give apper boundon

the number of feasible task sets, we included the continu-
ous curve labeled witfOT. This curvedoesn’trepresent
the number oEDF-schedulable task set, neither it indicates
how many task sets are feasible. We included it just to give
an indication on how many generated task sets aren’t for
sure infeasible, using techniques from [11], at the consid-
ered utilizations. If an exact feasibility test would exiss$
curve would be below th&OT curve. Moreover, consid-
ering thatepr isn’'t optimal for multiprocessors, a hypo-
thetical necessary and sufficient schedulability teseior
would have an even lower curve.

Similar considerations are valid as well for the case,
depicted in the lower part of Figure 6. The priority assign-
ment used is Deadline MonotonioN). This figure is very
meaningful, since it shows that the RTA-based testimproves
even over th&DF case, getting closer to the upper bound on
the general feasibility condition represented by the cunti
ous curve.

Increasing the number of processors the results are sim-

ilar. In Figure 7 we show the case with = 4 processors
both forebF andFp, plotting only the curves foGFB with

EDF, BC with bm and both our RTA-based tests. We omit-
ted the other curves because they are below the considered
ones. The RTA test for fixed priority outperforms the corre-
spondent test foEDF. This is due to the fact that for fixed
priority systems the interference from lower priority task
can be neglected, which cannot be made with pii.

The higher distance from th&8OT curve is motivated by

the worse performances abr andbmM when the number

of processor increases, and doesn’t seem a weak point of
our RTA.

The above considerations suggest that for multiprocessor
platforms it may be convenientto use fixed priority schedul-
ing instead ofeDF. Even if a common opinion is that the
absolute performances abr are arguably better than the
performances of fixed priority scheduling, we showed that
the superiority ofprelatively to the best existing schedula-
bility test largely compensate this disadvantage. Sinak re
time systems are interested in finding a provable schedu-
lability, and considering the easier implementation ofdixe
priority systems, a fixed priority scheduler can be preflerab
in many cases. Moreover, since there is no particular reason
in usingbM as priority assignment in the multiprocessor
case, an interesting task could be to explore which priority
assignment could further magnify the performances of the
RTA-based schedulability test. We intend to analyze this
issue in future works, together with the analysis of more
general scheduling algorithm, like hybrid or dynamic-job-
priority schedulers, that are expected to have a lower gap
from the necessary condition upper bounded by T
curve.

7. Conclusions

We developed a new approach for the analysis of real-
time task systems globally scheduled on a Symmetric Mul-
tiprocessor Platform. Response times and slack values
are efficiently computed in pseudo-polynomial time, allow-
ing to derive efficient schedulability tests that can easily
be adapted to many different scheduling algorithms. We
showed that the proposed approach dramatically improves
over existing solutions, significantly increasing the num-
ber of schedulable task sets detected. The effectiveness of
the analysis has been extensively proved through exhaustiv
simulations.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair salledy of
asynchronous periodic tasks. Pmoceedings of the EuroMicro Con-
ference on Real-Time Systenelft, The Netherlands, June 2001.
IEEE Computer Society Press.

] B. Andersson and J. Jonsson. Fixed-priority preemptiugtipro-
cessor scheduling: To partition or not to partition.PFroceedings of
the International Conference on Real-Time Computing 8yst@nd
Applications pages 337-346, Cheju Island, South Korea, December
2000. IEEE Computer Society Press.



35000 T

30000 - FP:BC - g

EDF: GFB ———-
25000 | —

20000

15000 - AN 1

Number of detected task sets

10000

5000

0 0.5 1 15 2 25 3 35 4
Task set utilization

Figure 7. Comparison between EDF and FP
schedulability tests on 4 processors.

[3] B. Andersson and J. Jonsson. Some insights on fixedigripre-
emptive non-partitioned multiprocessor scheduling Ptaceedings
of the Real-Time Systems Symposium — Work-In-Progresmigess
Orlando, FL, November 2000.

[4] B. Andersson and J. Jonsson. Some insights on fixedigripre-
emptive non-partitioned multiprocessor scheduling. Tedl Re-
port 01-2, Department of Computer Engineering, Chalmersdsn
sity of Technology, Sweden, 2001. March, 16.

[5] B.Andersson and E. Tovar. Multiprocessor schedulinthviéw pre-
emptions. IRTCSApages 322-334, 2006.

[6] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Appg
new scheduling theory to static priority pre-emptive sehied. Soft-
ware Engineering JournaB(5):284—293, 1993.

[7] T.Baker. Multiprocessor EDF and deadline monotonicestthabil-

ity analysis. InProceedings of the IEEE Real-Time Systems Sym-

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

posium pages 120-129. IEEE Computer Society Press, December [27]

2003.

[8] T.Baker. A comparison of global and partitioned edf shilability
tests for multiprocessors. Technical Report TR-051101) E®m-
puter Science, November 2005.

[9] T.P.Baker. An analysis of EDF schedulability on a muligessor.
IEEE Transactions on Parallel and Distributed Syste®(8):760—
768, 2005.

[10] T. P. Baker. An analysis of fixed-priority schedulatyilon a multi-
processor.Real-Time Systems: The International Journal of Time-
Critical Computing 32(1-2):49-71, 2006.

[11] T. P. Baker and M. Cirinei. A necessary and sometimegicgerfit
condition for the feasibility of sets of sporadic hard-dessl tasks.
rtss, 00:178-190, 2006.

[12] S. Baruah. Optimal utilization bounds for the fixedepity schedul-
ing of periodic task systems on identical multiprocessotEEE
Transactions on ComputerS3(6), 2004.

[13] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Propoete
progress: A notion of fairness in resource allocatiédgorithmica
15(6):600-625, June 1996.

[14] S. Baruah, A. Mok, and L. Rosier. Preemptively schedylhard-
real-time sporadic tasks on one processoProceedings of the 11th
Real-Time Systems Symposiymages 182-190, Orlando, Florida,
1990. IEEE Computer Society Press.

10

[28]
[29]

[30]
[31]

[32]

(33]

M. Bertogna, M. Cirinei, and G. Lipari. Improved schéahility
analysis of EDF on multiprocessor platforms. Rroceedings of the
EuroMicro Conference on Real-Time Systepages 209-218, Palma
de Mallorca, Balearic Islands, Spain, July 2005. IEEE Cat@p80o-
ciety Press.

M. Bertogna, M. Cirinei, and G. Lipari. New schedulatyiltests
for real-time tasks sets scheduled by deadline monotoninwiti-
processors. IProceedings of the 9th International Conference on
Principles of Distributed SystemBisa, Italy, December 2005. IEEE
Computer Society Press.

A. Burns and A. Wellings. Real-Time Systems and Programming
Languages Addison-Wesley, 3rd edition, 2001.

J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Asalg and
S. Baruah. A categorization of real-time multiprocessdresiiling
problems and algorithms. In J. Y.-T. Leung, editbtandbook of
Scheduling: Algorithms, Models, and Performance AnalySRC
Press LLC, 2003.

S. Cho, S. K. Lee, and K.-J. Lin. On-line algorithms feal-time
task scheduling on multiprocessor systemdABTED International
Conference on Internet and Multimedia Systems and Apjditst
pages 395-400, Hawaii, August 2001.

M. Cirinei and T. P. Baker. Edzl scheduling analysis. BERTS
Pisa, Italy, July 2007.

J. Goossens, S. Funk, and S. Baruah. Priority-drivéredaling of
periodic task systems on multiprocessdReal Time System&5(2—
3):187-205, 2003.

D. Gross and C. M. Harrigrundamentals of Queueing Theolyi-
ley Series in Probability and Statistics, 1998.

C. Liu and J. Layland. Scheduling algorithms for muitigramming
in a hard real-time environmentlournal of the ACM20(1):46-61,
1973.

L. Lundberg. Multiprocessor scheduling of age coristrprocesses.
In RTCSApages 42—, 1998.

A. A. MPCore. http://www.arm.com/products/
cpus/arm1lmpcoremultiprocessor.html. Web page, July 200

P.-N. Nexperia. http://www.nxp.com. Web page, Julp20
S. Nomadik. www.st.com/nomadik. Web page, July 2007.
T. I. OMAP. www.omap.com. Web page, February 2006.

J. C. Palencia and M. G. Harbour. Response time anatyfsesif
distributed real-time systems.Journal of Embedded Computing
1(2):225-237, 2005.

T. C. P. Sony, IBM. http://cell.scei.co.jp/. Web padaly 2007.

M. Spuri. Analysis of deadline scheduled real-timetegss. Tech-
nical Report 2772, Institut National de Recherche en Infdigue et
en Automatique, 1996.

A. Srinivasan and S. Baruah. Deadline-based schegloliperiodic
task systems on multiprocessorsénformation Processing Letters
84(2):93-98, 2002.

T.P.Baker and M.Cirinei. A unified analysis of globalf eshd fixed-
task-priority schedulability of sporadic task systems aritiproces-
sors. Journal of Embedded Computing007. To appear. TR avail-
able at http://www.cs.fsu.edu/research/reports/TR40GQdf.



