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Abstract— Human-swarm interaction (HSI) is a developing
field of research in which the problem of gesture-based control
has been attracting an increasing attention, being at the same
time a natural form of interaction and an effective way to point
and select individual or groups of robots in the swarm. Gesture-
based interaction usually requires vision-based recognition and
classification of the gesture from the swarm. At this aim, exist-
ing methods for cooperative sensing and recognition make use
of distributed consensus algorithms, which include for instance
averaging and frequency counting. In this work we present
a distributed consensus protocol that allows robot swarms to
learn efficiently gestures from online interactions with a human
teacher. The protocol also facilitates the integration of different
consensus algorithms. Experiments have been performed in
emulation using on real data acquired by a swarm of robots.
The results indicate that effectively exploiting the collective
decision-making of the swarm is a viable way to rapidly achieve
good learning performance.

I. INTRODUCTION

The general context of this work refers to the interaction
between humans and multi-robot systems, namely, human-
swarm interaction (HSI). In particular, the focus is on the
use of uninstrumented methods, (i.e., methods that do not
use sophisticated hardware devices from the human side),
to perform the interaction, and in particular on the use of
hand gestures. In our previous work [2], [3], [4], we have
investigated the use of hand gestures for letting a human
selecting robots and communicating mission commands to
robot swarms. Since a requisite for such a form of in-
teraction is that both individual robots and the swarm as
a whole are able to recognize and classify the selected
gesture vocabulary, initially we developed a batch supervised
learning approach for vision-based cooperative sensing and
recognition of hand gestures [2]. A distributed consensus
protocol for fusing opinions between robot members, based
on position-dependent estimates of reliability was introduced
at the aim. A tunable parameter has been used in the protocol
to balance the trade-off between the time taken to reach
consensus decisions (convergence speed) and the amount of
evidence collected from multiple observations by the swarm,
for a single gesture that is shown for a duration of time to
the swarm. In other words, multiple observations are gathered
by every robot in the swarm for the same gesture over the
course of some time, which relates to the amount of evidence
collected for that gesture. Shifting attention towards online
methods, in which the human plays the role of a teacher for
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letting the swarm learning the desired gestures, in [3] an on-
line incremental framework for learning hand gestures from
multiple viewpoints was presented, with consensus being
built offline using a simple averaging technique. Following
this, a weighted-average method was introduced in [4] using
a bagging method, where swarm-level consensus was built
offline by taking into account the confidence weight (online
learning accuracy) of each robot.

Several challenges can be faced during consensus-building
in swarm robotic systems, including difficulties arising in
deployment and distributed sensing (e.g., due to illumination
conditions, or bad sensing viewpoints). Distributed sensing
systems, such as robot swarms, can concurrently gather
perceptual information in parallel. This results in different
observations (i.e., different inputs) being sensed and learned
by different robots from multiple viewpoints (locations),
hence different learned classifiers can be evolved with vary-
ing performance.

The motivation of this work comes from the idea of
combing expert advice among different multiple learners,
for building consensus decisions in ensemble-based learning
systems (i.e., multi-classifier systems for distributed learn-
ing). The goal is to make more robust and effective the
overall swarm consensus process by proposing a distributed
consensus protocol that facilitates the integration of different
consensus algorithms for interactive learning tasks in an
online (incremental) setting [5], [6]. In relation to previous
work [2], this work builds consensus decisions by fusing
multiple observations from each single gesture. In other
words, every robot in the swarm gathers a single observation
from each gesture, which is then used by every robot to
build a distributed consensus at the swarm-level. To assess
the efficacy of our contribution in the context of distributed
consensus protocol for interactive learning tasks, we provide
a comparison with existing consensus methods, such as: av-
eraging [3], [4], frequency counting (weighted-average) [2],
aggregation methods, and learning methods based on expert
advice [7].

The online setting that we consider is that of an interactive
multi-class learning scenario where a human operator acts as
an instructor (i.e., a teacher) for supervising the learning
of hand gestures to a robot swarm. At the beginning of
an interaction round, each robot acquires an observation
(i.e., the instructor shows a gesture to the swarm) based
on its field of view from the human. Next, robots in the
swarm make a unified decision (i.e., build a distributed
consensus) based on their individual predictions, by using
their local (individual) observations and learning parame-



ters. This consensus process outputs a class label, from
a set of predefined classes. Depending upon the accuracy
of the consensus decision (i.e., correct or incorrect) the
human can choose to provide feedback to the swarm. If the
swarm predicts the gesture correctly, the human does not
provide feedback (e.g., hiding hands implicitly indicates a
correct prediction), and the second interaction round starts.
Alternatively, if the gesture is predicted incorrectly, the
human needs to communicate the true label to the swarm
as a one-sided feedback. This one-sided feedback can be
in the form of a predefined number manually/electronically
sent to the swarm. Upon receiving feedback, robots in the
swarm update their individual learning models, as well as the
aggregation weights for making consensus. Our robot swarm
aims to obtain a swarm-level prediction (using the proposed
distributed consensus protocol) as accurately as possible in
each interactive learning round.

The work presented here provides two main contributions.
Firstly, an integrated framework to allow robot swarms
to learn efficiently from online interactions is presented,
which combines online learning technologies with distributed
consensus-building mechanisms. Secondly, a distributed con-
sensus protocol is proposed that facilitates the integration of
different consensus algorithms.

The rest of the paper is organized as follows. Section
2 discusses the related work in different domains. Section
3 presents the distributed consensus protocol and related
technologies for each robot to learn. Section 4 reports
experimental findings, and Section 5 presents concluding
remarks.

II. RELATED WORK

A. Gesture-based Interaction with Multi-robot Systems

The field of human-swarm interaction (HSI) is a relatively
new area of research that aims at investigating techniques
and methods suitable for interaction and cooperation between
humans and robot swarms (i.e., multi robot systems). Due to
negligence of research, HSI has received little attention [8],
and not much is known about interaction issues related to
cooperative learning and decision-making mechanisms.

Uninstrumented methods for interacting with robot
swarms [1] (i.e., methods that require robot swarms to be
within physical proximity of humans for sensing signals)
are increasingly gaining attention, as illustrated in Figure 1,
since they can overcome the limitations of teleoperated
platforms and ease robot autonomy. Among several means of
communication, hand gestures have been often selected [9],
[10] as an efficient interaction modality to effectively com-
municate mission instructions to multi-robot systems in an
uninstrumented way. Examples of use of hand gestures
include instructing robots [11] and human-robot interaction
(HRI) tasks [12].

With the goal of high-level human control of robot
swarms, the work presented here uses hand gestures for
letting humans express core spatial concepts. In simpler
words, allowing humans to effectively select and command
robots (see Section IV), as well as to indicate directions.

However, in order to use hand gestures, the swarm needs
to be able to recognize the gestures. Therefore, here the
human is used a teacher supervising the swarm-level process
of learning hand gestures.

Fig. 1: A human operator selecting a group of 2 spatially-
located robots from a swarm of 4 UAVs.

B. Consensus in Sensor Networks & Multi-robot Systems

Consensus algorithms serve as fundamental tools in wire-
less sensor networks. A swarm of robots connected through
a (multi-hop) mobile ad-hoc network (MANET) can ef-
fectively sense information in a distributed wayand/or in
parallel from multiple viewpoints, acting as an enhanced
sensor. In order to exploit this capability, however the robots
in the swarm need to reach a global agreement regarding
the object of interest (e.g., a gesture), which define the
need to develop distributed consensus protocols [13] that
would ensure guaranteed convergence towards a common
outcome. For decentralized data fusion tasks, in recent times
a variety of distributed consensus strategies for applications
with sensor networks [14] and multi-robot systems [15]
have been investigated. A detailed overview of common
consensus algorithms and applications is reported in [16].
Distributed consensus algorithms have been adopted in many
robotic applications, including dynamic task allocation [17],
collective map building [18] and obstacle avoidance [19].

Similarly, distributed camera networks have also used
distributed consensus mechanisms for vision-based classi-
fication tasks [20], such as multi-camera surveillance and
monitoring (i.e., intruder detection). Fusion of observations
from multiple wide-baseline static cameras has been adopted
in many perception applications including object classifica-
tion [21] and pose estimation [22], with multiple viewpoints
providing valuable inputs for reconstructing 3D information
and overcoming the limits (i.e., occlusions, range) of each
sensor. In [23] a face recognition system was presented,
where multiple agents participated to build a fully-distributed
classifier, that took advantage from the joint information
contained in observations from multiple viewpoints. The
most standard approach for fusing vision-based data from
an array of distributed sensors requires computing features
from sensed images, which are then aggregated and centrally
classified, as adopted in [24] for human action detection.



C. Distributed Online Algorithms for Learning Consensus

Online learning in distributed sensing networks is emerg-
ing as a research topic for developing adaptive and intelligent
routing protocols [25]. Having attracted considerable atten-
tion within the machine learning community, ensemble-based
learning [26], namely ensemble of classifiers (i.e., multi-
classifier systems) have been adopted in existing works, for
distributed learning tasks that include: bagging, boosting and
mixture of experts.

Ensemble methods such as bagging [27] and boosting [28],
work by combining relatively weak learners, and have been
extended to online versions [29]. Mixture of experts algo-
rithms, on the other hand, aim to combine learners that are
experts in specific input regions [30]. The distributed con-
sensus protocol presented in this paper is motivated from the
fact that different learning algorithms have different working
mechanisms derived under different assumptions. Therefore,
some learning algorithms may perform well in some do-
mains, or some input regions, while others may perform
poorly in other domains or regions. As a result, combining
different classifiers can improve the overall classification
performance of distributed consensus-building mechanisms.
Data fusion strategies that have commonly been adopted
in ensemble learning, include: algebraic operations (e.g.,
mean, median), weighting-based methods (e.g., weighted av-
erage, weighted majority voting) and entropy-based methods.
Online ensemble learning methods [31], [32] provide an
advantage compared to offline methods. This is because,
as every sensor suffers a loss after learning the truth of its
prediction, on every iteration (i.e., incremental update), the
weights of the fused decision are updated taking into account
the incremental performance of each sensor [33].

Fig. 2: A swarm of N = 13 robots sense a hand gesture
from multiple points of view. Each robot sees an image
from a different angle, and segments the image (based on
color information) to obtain a hand silhouette. From such
silhouettes, numerical features are computed that are used
for learning and classification.

The research area most closely related to the setting con-
sidered in this paper is that dealing with issuing predictions
with expert advice [7]. In this paradigm, a set of predictors,
called experts, is given and the objective is to develop
an adaptive aggregation rule to combine their predictions.
Specifically, at each round, each predictor issue a prediction

based on its local observation and expertise, followed by an
overall consensus prediction made through an aggregation
rule. After this, the true outcome is revealed (i.e., in our case
the outcomes are class labels). Subsequently the aggregation
rule is updated based on the performance of the experts,
before advancing to the next round. The update rule aims
to find the best aggregation, in terms of the cumulative
prediction mistakes, as quickly as possible.

III. CONSENSUS-DRIVEN SWARM LEARNING

In this section, we first describe our distributed protocol
for swarm consensus, then we go into the technical details
of vision-based learning employed on individual robots.

A. Distributed Protocol for Swarm-level Consensus

For letting a robot swarm to cooperatively sense, learn
and recognize gestures from multiple viewpoints (locations),
robots first need to be deployed in formations that optimize
the spatial distribution of the swarm. In this context, robot
swarms can make use of distributed and parallel sensing
capabilities while exploiting mobility as shown in Figure 2.
Our recent works in [2] present approaches for optimizing
sensing coverage, maintaining wireless connectivity, and
human localization [34], [1]. After a robot swarm is deployed
(see Figure 4), the information sensed from an array of
distributed and parallel sensors (i.e., the robots) is processed
on-board of each robot. In order to efficiently fuse informa-
tion from multiple robots into a single mutual swarm-level
agreement, decentralized information fusion strategies such
as distributed consensus-building mechanisms are required.
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Fig. 3: The online interactive learning process supervised by
a human, illustrating a single interaction round.

The online interactive learning setting introduced in this
work is illustrated in Figure 3, where a human supervises
the learning process of a robot swarm. This entire process
is referred to as a single interaction round, where firstly the
swarm predicts a given gesture observation using consensus-
building strategies, and then incrementally learns this ob-
servation using the true label provided by the human. Our
distributed consensus protocol, as described in Algorithm 1,
is designed so that we can easily plug in a wide range of
algorithms for multi-class prediction with expert advice [7].
Without loss of generality, we assume that the algorithm is
running on robot #1 in the swarm; the other robots, numbered



r ∈ {1,2, . . . ,N}, are also running the same copy of the
algorithm.

The algorithm works with any multiclass learner, whose
output is a probability vector over the M possible classes,
as denoted by a vector m̄ in the pseudocode of Algorithm
1. Note that the issued prediction is usually different for
different robots in the swarm, as they observe different inputs
for a given gesture. At each time step, to make distributed
consensus over multiclass predictions, each robot r in the
swarm exchanges its prediction probability vector m̄t,r with
other robots.

Algorithm 1: HSI Distributed Consensus Protocol.

//Initialization
1 {c0,r = 1}N

r=1 //Consensus weights

//Main interactive learning loop
2 for t = 1,2, ... do

3 Receive new observation xt ∈ Rd

4 Output prediction probability vector m̄.

// BEGIN swarm consensus phase

5 Exchange m̄ among N robots in the swarm.
// On receiving all m̄’s

6 Compute consensus probability vector m̄c.
// END swarm consensus phase

7 Output consensus label ŷt = argmax
i=1,...,M

(
m̄i

c
)
.

8 Observe feedback yt ∈ {1, . . . ,M}.
9 Update consensus weights {ct,r}N

r=1.
10 Update M-class learning parameters using yt .
11 end

Initially, to each robot r is assigned a unit consensus
weight, c0,r = 1. As the interactive learning process unfolds,
the robots with more accurate predictions will have higher
weights, while those with more mistakes will have dimin-
ishing weights. The consensus prediction is made based on
the weighted prediction vector, m̄c, where m̄i

c = ∑ct,rmi
r for

each class i = 1 . . .M. After a true label is revealed, each
consensus weight is updated based on the current loss of
its learner. For instance, the Weighted Average Algorithm
(WdAA; [35]) uses a multiplicative update ct = ct−1e−λt ,
with λt the prediction loss on current example. In this paper,
we use a square-loss function for multiclass prediction.
The Weak Aggregating Algorithm (WkAA; [36]) employs a
time- and loss-dependent update rule, ct = ct−1e−λt/

√
t . The

multiclass extension of Aggregating Algorithm (AA; [37])
uses a more involved update rule.

Besides these state-of-the-art aggregation rules, we also
evaluated two other consensus algorithms. The first one
employs a simple averaging strategy (over the predicted
probabilities for each class) and does not need to maintain
a consensus weight vector. The second one calculates the
frequency of correct prediction for each class, and weights
the prediction probability vector m̄t,r of each robot with this
frequency, before averaging.

B. Single-robot Learning and Recognition

At the level of the individual robots, for the interactive
task of visual learning and recognition, we follow a basic
computer vision approach based on color-based segmenta-
tion, feature extraction, and supervised learning.

To simplify the recognition task without losing generality,
we assume that human operators wear tangible input devices
with “known characteristic colors” (e.g., colored gloves), as
shown in Figure 1). We segment these color-based gestures
by exploiting the characteristic colors of the gloves, as
discussed in previous works [2], [3], [4]. From each of the
segmented hand contours images, a set of F = 40 numerical
shape features are computed, that correspond to a feature
vectors, as reported in [2], [3], [38].

Fig. 4: Experimental setup for dataset acquisition. Top: Using
N = 4 Parrot drones. Bottom: Using N = 13 foot-bots.

The feature vectors computed from the segmented hand
contours are used as training instances for multi-class online
learning and recognition tasks, by a Confidence-Weighted
(CW; [39]) linear classifier. This is an aggressive, large-
margin learning algorithm, which updates its learning pa-
rameters not only in rounds with prediction mistakes, but
also in rounds with correct prediction but the margins are
smaller than some threshold. Such effective update rules
make CW the state of the art second-order online learning
algorithm. The normalized prediction vector for classifying
a sample from a trained CW multiclass-classifier, produces
a prediction probability vector.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The system presented in this work addresses two funda-
mental problems in the domain of HSI, namely, selecting
robots from a swarm (P-SEL) and commanding selected
robots (P-COM). To be able to perform experiments, a swarm
of robots was used to acquire large amounts of gesture
images from different points of view. For each of the two
problems (P-SEL and P-COM), one dataset was acquired:
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Fig. 5: A swarm size of N = 5 robots, where all are robots
are deployed only at good sensing positions.

• P-SEL Dataset [1]: Use of N = 4 UAVs positioned in for-
mations as shown in Figure 4 top. The dataset comprises
of M = 4 classes of gestures for selecting: individual,
groups, individuals and groups, and all robots from a
swarm respectively (see Figure 6 top).

• P-COM Dataset [2]: Use of N = 13 small UGVs as
shown in Figure 4 bottom. The datasets comprises of
M = 6 gestures, where gestures encoded as finger-counts
from 0 to 5 represent numerical quantities (see Figure 6
bottom).

The datasets (acquired by a physical swarm) are tagged
with labelled ground truth information (i.e., distance d,
angle ϑ , gesture class y), and have been used for running
quantitative emulation experiments: robot observations are
sampled from these dataset of real images, and realistic
simulations are built. Each observation xt in the dataset is
associated to a sensing position (ϑ ,d)x and a ground truth
label (class) yt ∈ {1, . . . ,M}, where M represents the number
of classes. Interactions in which human shows a gesture are
simulated as follows: each robot r is assigned to a randomly
defined position (ϑ ,d)r. Then, the observation xt that robot
r receives is randomly selected from the subset of dataset
images, whose ground truth class is yt , and whose associated
position (ϑ ,d)x is as close as possible to (ϑ ,d)r.

Fig. 6: Gesture categories (classes) in the acquired datasets.
Top: P-SEL dataset. Bottom: P-COM dataset.
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Fig. 7: A swarm size of N = 20 robots, where robots
are deployed at different (good, bad and mixed) sensing
positions.

The results reported in the subsections below are emulated
using different realizations of random variables (i.e., robot
positions, observations sampled from the dataset, gesture
sequences) from both datasets. Although we evaluated our
protocol on other multiclass forecasting datasets [37] used
in previous works, we do not present them here, as there is
no significant difference, and the conclusions are still valid.

B. Swarm-level consensus accuracy

In this subsection, we report the performance of the swarm
consensus in terms of online prediction accuracy. Except
for the results plotted in Figures 5 and 7, which are the
outcome of a single typical run in our experiments, the other
results are calculated by averaging the results of 10 trials
per experiment scenario. In Figures 5 and 7 the noticeable
repeating pattern is that performance (in terms of number of
mistakes) of consensus using the swarm is better than that of
individual robots, and averaging outperforms other consensus
algorithms.

Furthermore, as observed from Figure 5, the consensus
performance of the swarm deployed in good positions is
better than that of the case where individual robots are
deployed in bad positions, as it was expected. Good sensing
positions refer to locations that provide better quality of
sensed information (e.g., facing directly in front of the
human, central field of view, at a shorter distance from the
human), whereas bad positions refer to locations with worse
sensing conditions (e.g., rear field of view, partial occlusions,
excessive distance from human).

The impact of distinctive deployment positions is further
analysed in Figure 8. From the results, it is obvious that
consensus performance decreases when robots are deployed
at bad sensing positions, and vice versa for good positions.
However, one interesting phenomenon is that, in bad de-
ployment conditions, the improvement of averaging methods
compared to all other consensus methods, is the highest.
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Fig. 8: Impact of different deployment positions (i.e., good,
bad, and mixed) on the cumulative mistakes made by the
swarm of N = 13 robots, after 500 interaction rounds.

C. Impact of swarm size on consensus

The impact of different swarm sizes on consensus-building
strategies is reported in Figure 9. Tests have been performed
for swarm sizes of N = [13,26,39,52,65,91] robots. The
main trend observable is that, larger robot swarms yield less
mistakes in the interactive learning process. As not much
significant difference is present when using N = [65,91]
robots, this indicates that swarms with approximately N =
[60,70] robots can provide similar performance as compared
to swarms of 100 robots. In addition, for large swarm
sizes (i.e., N > 50 robots) the WkAA approach, slightly
outperforms simple averaging.

D. Effect of swarm mobility on consensus

The effect of using swarm mobility on the performance
of consensus-building strategies is reported in Figure 10,
after 500 interaction rounds. Swarm mobility is emulated by
switching (changing) robot deployment positions after every
[1,10,50,100] interaction rounds. The general conclusion
is that, when robot positions are switched more frequently
during interactive learning (i.e., smaller mobility step sizes),
the performance of the swarm as a whole degrades for all
consensus algorithms. However, even if robot positions are
changed after every interaction round (i.e., after a step size
of 1), the consensus performance of the swarm is still good,
and robust to different deployment positions.

V. CONCLUSIONS

This paper has presented a distributed consensus protocol
that allows robot swarms to learn efficiently from online
interactions, and facilitates the integration of different con-
sensus algorithms. The techniques and strategies reported
in this work have been experimentally evaluated on two
different image datasets of gestures, acquired by ground
robots and flying drones.

13 26 39 52 65 91
0

50

100

150

200

250

#C
um

ul
at

iv
e 

m
is

ta
ke

s

Swarm size

 

 

Avg
Freq
WkAA
WdAA
AA

Fig. 9: Effect of swarm sizes N = [13,26,39,52,65,91]
robots, on the cumulative mistakes made by the swarm, after
500 interaction rounds.
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Fig. 10: Effect of swarm mobility after [1,10,50,100] in-
teraction round(s) vs. the cumulative mistakes, after 500
interaction rounds, made by the swarm of N = 13 robots,
deployed as shown in Figure 4 top.

Multiple findings have resulted as a consequence of this
work. Firstly, the performance of consensus decisions made
by a swarm of robots outperforms the decisions of an
individual robot (even robots at the best sensing positions).
Secondly, small and medium size swarms give the best
performance with consensus-based averaging. Thirdly, for
large swarm sizes learning methods based on expert advice
(i.e., WkAA) have shown slightly better performance than
averaging methods. Lastly, the performance of the swarm
based on distributed consensus is robust to the mobility of



the swarm (i.e., when robots switch positions after interaction
rounds), swarm size, and deployment positions of the robots.
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