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Time Perception in Shaping Cognitive Neurodynamics
of Artificial Agents

Michail Maniadakis, Jun Tani and Panos Trahanias

Abstract- Recent research in cognitive systems aims to
uncover important aspects of biological cognitive processes
and additionally formulate design principles for implementing
artificially intelligent systems. Despite the increasing amount of
research efforts addressing cognitive phenomena, the issue of
time perception and how it is linked to other cognitive processes
remains largely unexplored.

In the current paper, we make a first attempt for studying
artificial time perception by means of simulated robotic exper­
iments. Specifically, we investigate a behavioral rule switching
task consisting of repeating trials with dynamic temporal
duration. An evolutionary process is used to search for neuronal
mechanisms accomplishing the rule switching task taking also
into account its particular temporal characteristics. Our re­
peated simulation experiments showed that (i) time perception
and ordinary cognitive processes may co-exist in the system
sharing the same neural resources, and (ii) time perception
dynamics bias the functionality of neural mechanisms with
other cognitive responsibilities. Finally, in the current paper
we make contact of the obtained results with previous brain
imaging studies on time perception, and we make predictions
for possible time-related dynamics in the real brain.

I. INTRODUCTION

R EALITY is dynamic. Sensing and knowing our world
arises through spatiotemporal experiences and interpre­

tations. In fact, dynamics is so essential to reality that a
static world is difficult to imagine. Evolution has equipped
human brain with the capacity to perceive and understand in a
meaningful way the spatial and temporal aspects of everyday
phenomena.

The computational interpretation of how human perceptuo­
motor loop performs during real world interaction, is a very
common approach for developing artificially intelligent sys­
tems. Almost two decades ago, the necessity for embodiment
and environmental interaction has been comprehended as a
key feature for developing intelligent systems [1]. Since then,
simulated and real robotic systems have been extensively
used as testbeds of the embodied intelligence. Unfortunately,
the majority of the existing cognitive and robotic systems,
concentrate only on the spatial characteristics of environ­
mental interaction, nearly ignoring the other aspect that is
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necessary for describing our dynamic world, namely the
perception of time [2]. Due to the behavioral evaluation of
robotic agents that is interpreted in terms of spatial measures,
cognitive systems are now equipped with the ability to
understand spatial relationships, to reach goals, to accurately
mimic behavioral patterns, and others (e.g. [3], [4], [5], [6],
[7]).

However, existing robotic systems are lacking the ability to
perceive time passage. In the majority of existing systems,
time is only partially observed in terms of cognitive state
transitions occurring in linearly ordered clock ticks. In other
words, time is nothing more than a variable specifying the
ordering of events. However, in biological systems, time
has a more central role (in memory organization, reasoning,
knowledge acquisition, etc.) shaping the dynamics of other
pure cognitive processes. There are now two major models
for the neural representation of time in the cortex [8]. One
emphasizes that the judgment of the duration of a stimulus
depends on the operation of dedicated neural mechanisms
specialized for representing the temporal relationships be­
tween events. Alternatively, the representation of duration
may arise from the intrinsic dynamics of neural mechanisms
non-dedicated to time perception.

The current work aims to explore the plausibility of
the two alternative choices, avoiding to arbitrary favor any
of the time perception models described above. As it is
suggested in [9], an evolutionary robotics approach [10], [11]
can be used to resolve this issue. In particular, we apply
evolutionary pressure on simple Continuous Time Recurrent
Neural Network (CTRNN) controllers [12], being free to
self-organize in any direction, revealing the most appropriate
time perception mechanism. Similar to [13], we investigate
a mobile robot rule switching task. In short, according to
our experimental scenario, a simulated robotic agent has to
consider unpredictably changing reward signals, in order to
switch between behavioral rules choosing the one that is
considered correct at a given time period.

In order to focus on the time-feeling properties developed
in the cognitive system, the rule switching task consists
of a series of trials with varying temporal duration. Then,
we study the internal mechanisms developed in CTRNN s,
exploring the self-organization neurodynamics and how they
are constrained by the task's temporal properties.

The rest of the paper is structured as follows. In section II
we describe the CTRNN models used in the current study.
In section III we described the investigated task providing
the details of our experimental setup. Then we present the
evolutionary procedure used to explore the space of CTRNN
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Fig. 1. Schematic representation of the bottleneck CTRNN used in the
current study.
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YAKSl a simulated version of the real Khepera miniature
mobile robot. The simulator has been slightly modified for
the needs of the present study (e.g. by integrating a new type
of sensors that supports feeling the special environmental
signals simulating negative rewards).

III. EXPERIMENTAL SETUP

The current study is an extension of our previous work
[13], addressing meta-cognitive rule switching dynamics in a
mobile-robot version of the classical Wisconsin Card Sorting
(WCS) task [16], [17]. The motivation for our experiments
is to provide self-organization pressure on simple neural
network models which are evolved to accomplish a mobile­
robot WCS task with time varying characteristics.

solutions. In section V we present the results obtained by
the independent evolutionary procedures. Additionally, we
discuss the common neurocognitive characteristics appearing
in all successful solutions. Subsequently, we compare the
results of our study with those obtained in our previous work
[13] investigating rule switching using trials of predefined
temporal duration. In section VII we discuss the effect of
the experimental temporal constraints on neural dynamics,
and we formulate predictions about possible mechanism of
real cortical dynamics. Finally, the last section highlights
conclusions and directions for future work.

II. CTRNN MODEL AND INPUT-OUTPUT CONNECTIVITY

We use Continuous Time Recurrent Neural Network
(CTRNN) models [12] to investigate how time perception af­
fects the self-organization of rule switching capacity in neural
dynamics. Interestingly, in CTRNNs contextual memory is
implicitly represented by internal neurodynamics. Therefore,
in our experimental setup, the neuronal state is initialized
only once in the beginning of the first trial, and then neuronal
dynamics continues across trials and phases without reset­
ting. In this manner, we speculate that dynamical states will
emerge for representing the rule stored in working memory,
and additionally, these dynamical states might switch to one
another according to the currently adopted rule.

Following our previous study [13] showing that bottleneck
configurations [14] are more effective in rule switching tasks
compared to fully connected CTRNN s, the current work
focuses only on the bottleneck architecture. As shown in Fig
1, we use two bottleneck neurons to separate CTRNN in two
levels. The bottleneck neurons loosely segregate information
processing in each level, maintaining minimum interactions
between them. All neurons are governed by the standard
leaky integrator equations described in previous studies [15],
[14].

In order to investigate embodied rule switching, we em­
ploy a two wheeled simulated robotic agent equipped with
8 uniformly distributed distance, light and reward sensors.
The experiments discussed here have been carried out using

A. Mobile Robot Rule Switching Task

The task used in the current study is inspired by the rat
version ofWCS used to investigate rule switching capacity of
rodents [18]. In particular, we assume that a mobile robotic
agent is located at the bottom of a T-maze environment (see
Fig 2). At the beginning of a trial, a light sample appears at
either the left or the right side of the robot. Depending on the
light side, the robot has to move to the end of the corridor,
making a 900 turning choice towards the left or right. The
side of the light is linked to the choice of the robot according
to two different sample-response rules (see Fig 2). The first
is called Same-Side (SS) rule implying that the robotic agent
should tum left if the light source appeared at its left side,
and it should tum right if the light source appeared at its
right side. The second rule is named (OS), implying that
robot should tum to the side opposite to the light.

The capacity of the agent to adopt and follow each rule
can be evaluated by testing sequences of the above described
trials. For example, lets assume that a human experimenter
selects one of the rules (either SS or OS) and asks the agent
to follow it for several trials. Based on the side of the light
sample, the experimenter provides reward to the side of the
T-maze that the robot should tum (see Fig 2). Thus, every
time that the robot gives a correct response, it drives to a
reward area, knowing that it follows the right rule.

Turning now to rule switching, the experimenter at a
random time (unknown to the robotic agent) changes the
rule considered correct, positioning rewards according to a
new sample-response rule. The task for the agent now is
to discover this rule change, switching its response strategy
according to the new rule. The details of the experimental
procedure are described below.

In order to explore the capacity of the robotic agent to
switch among rules we have divided the sample-response
sequence into P E {1 ... 10} phases, each one consisting
of Tp (randomly determined) trials. The number of trials
Tp E {8, 10, 12, 14} is randomly specified, so that the agent
can not predict the end of a phase. Let us assume that
during the first phase p == 1, the experimenter selects SS

1The simulator has been developed in the University of Skovde, Sweden,
and can be downloaded at http://www.his.se/iki/yaks
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Fig. 2. A schematic representation of the delayed response rules. Light
samples arc represented by double circles . Goal locations arc represented
by x, while reward corresponds to the gray area. The behavioral task asks
for controllers capable of switching between the two rules.
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as the correct rule. Then, for all T1 trials the agent has
to respond to the appearance of light samples at its left
or right side (their order is randomly chosen) according to
the SS rule. Every time the agent gives a correct response
it receives a positive reward indicating it is following the
correct rule. In case that the robot turning is not correct,
it will drive to an area that no reward exists, indicating
that the currently adopted rule is not correct and it should
be switched. During phase p, the robot is given six free­
of-cost exploratory trials to discover the currently correct
r~le specified by the experimenter. In the remaining Tp - 6
tnals the perfonnance of the robotic agent is evaluated in
tenns of following the desired response rule. If any of these
trials is incorrect, the task is immediately terminated (without
completing the current phase, and without investigating the
next phases).

If the agent completes Tp trials successfully, it moves
to the next phase. In the beginning of phase p + 1 the
experimenter changes the correct rule - to as for our
example. Therefore, reward signals are now positioned by
the experimenter according to as. The agent that is not
aware for this change will continue responding according to
the previous rule SS. In that case, the agent will be unable
to get any reward, indicating it is not following the correct
rule. In order to get more reward, the robot must reconsider
its rule choice, switching to as. In phase p + 1, the robot
is given again six free exploratory trials to discover rule
switching. In the remaining Tp+l - 6 trials agent's responses
are evaluated according to the correct response rule chosen
by the experimenter. If any of these trials is incorrect, the
evaluation is interrupted.

If the agent completes Tp+l trials successfully, it moves
to the next phase. In phase p + 2 the experimenter changes
again the correct rule - back to SS for our example - and a
similar experimental procedure is repeated (i.e. due to the re­
location of the reward cues the robotic agent needs to switch
the adopted rule to SS). Overall, the task evaluates agent's
switching behavior for a maximum of P phases (if all of
them are completed successfully).
Trial Duration. Due to the iterative nature of the Rule
Switching task described above, we investigate robot re­
sponses for several trials. At the beginning of each trial the
robot is located at a predefined starting position, with its
direction randomly specified in the range [85° - 95°]degrees
(90° correspond to the direction of the corridor). The robot
is kept in the same initial position for five simulation steps,
and then it is allowed to navigate freely in the environment,

TABLE I

THE IN CREMENTALLY MOR E COMP LEX TASKS SO LVED IN DIFF ER ENT

PARTS OF TH E EVO LUTIONARY PROC ED UR E.

responding to the presentation of the light sample at its left
or right side.

The temporal length of each trial is not predefined but it is
determined on-line in a dynamic way. Specifically, each trial
ends as soon as the agent reaches the current goal position at
a distance of 10 environmental units. Therefore, trials with
very fast robot responses will last shorter than those that the
agent spends time exploring the environment. Additionally,
we have defined an upper bound for the duration of a trial,
being 200 simulation steps. At the end of the trial, we
automatically reset robot to the starting position, and we are
ready to test its behavior for the next trial (that will have
again a dynamically determined temporal duration).

It is worth noting here that every time we artificially reset
robot to the start position we do not make any artificial
change to the robotic cognitive dynamics which are kept con­
tinuous, without any interruption (i.e. we do not reset neural
state of the CTRNN controller). Following this approach,
CTRNN functionality resembles the continuous nature of real
brain dynamics.

The described experimental setup is particularly appropri­
ate to uncover temporal differences between SS and as rules
indicating the development of time perception capacity in
CTRNN controllers, as will be described later in section V.

IV. EVOLUTIONARY PROC EDURE

We use a Genetic Algorithm/ (GA) to explore how rule
switching capacity self-organizes in CTRNN dynamics. In
short, we use a population of artificial chromosomes encod­
ing CTRNN controllers (their synaptic weights and neural bi­
ases). Each candidate solution encoding a complete CTRNN
is tested on tasks examining the ability of the network to
switch between rules. We evaluate the performance of all
candidate CTRNN controllers assigning them an appropriate
fitness value. The scores accomplished by the controllers
are used to sort and evolve the population of chromosomes,
therefore producing a new generation of CTRNN controllers
that is ready for evaluation. This iterative procedure is

~The current evolutionary procedure docs not mean to represent an
art1fiel~1 eounterpar~ of biological evolution . It only serves our study as
a consistent meehamsm to explore the domain of solutions for our problem .
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The accomplishment of each task is evaluated separately
according to eq (1). The total fitness of the individual is
then estimated by:

We note that the multiplication operator favors individuals
that can accomplish (at least partly) both tasks, distinguishing
them from the individuals that fail in anyone of them.
Evolutionary Process. A standard GA with mutation, but
without crossover, is employed to evolve randomly initialized
populations of 500 encoded CTRNNs. The evolutionary
process is driven by the fitness function described in eq (2).
At the end of each epoch, the S=30 best individuals of the
population are used as a basis for producing the individuals
of the next generation. The new individuals are generated by
randomly selecting and mutating one of the S individuals.
Mutation corresponds to the addition of up to 30% noise,
in the parameters encoded to the chromosome, while each
parameter has a probability of 4% to be mutated.

v. RESULTS

We have run ten GA processes, evolving CTRNN con­
trollers to accomplish the incrementally more complex tasks
described above. Six of the evolutionary procedures con­
verged successfully configuring CTRNNs capable of rule
switching. Interestingly, even if the corresponding evolu­
tionary procedures have been statistically independent, all
obtained results show (qualitatively) similar internal dynam­
ics. Below we discuss the common characteristics among
successful neuro-controllers, using as a working example one
representative solution.

The performance of the agent during rule switching is
demonstrated in Fig 3. During trials 1-4 the agent follows
SS rule, successfully acquiring rewards. Next, in trial 5 the
experimenter changes rule to OS. The agent that is not aware
of this change fails to accomplish reward for two consecutive
trials, but then, in trial 7 it adopts OS. The rule is changed
again in trial 15, where the agent is missing the reward.
However, this time the agent switches very fast back to SS,
accomplishing reward in trial 16, and continues responding
according to SS for the rest trials.

We note that the agent follows different trajectories to
gain rewards, depending on the rule adopted in each trial.
For example, the left turning paths when SS is adopted (see
trials 2, 3, 16, 18) are all similar, but different than the right
turning paths when OS is adopted (see trials 7, 10, 12, 13).
Therefore, embodiment and sensory-motor dynamics seem
to have considerable correlations with rule encoding, or in
other words, they have an important role in discriminating
the two rules.

Additionally, we have investigated neural activity in the
higher and lower levels of the CTRNN network (see Fig 4).
We observed that in all trials, lower level neurons fluctuate
much faster than higher level neurons. This difference im­
plies that higher level neurons are mostly involved in rule
encoding and response planing, while the neurons below

(2)fit == ETaskl . E T a sk2

(1)

repeated for a predefined number of generations. The details
of the evolutionary procedure are described below.
Incremental Evolution. In order to facilitate successful
convergence of the evolutionary process we have used an
incremental approach investigating gradually more complex
versions of the rule switching problem. In the first 60 gen­
erations (see Table I) the evolutionary process asks for robot
controllers capable of adopting both SS and OS response
rules. Two different tasks are used to evaluate CTRNN
controllers. The robotic agent needs to explore the environ­
ment in order to discover which rule should be adopted for
gaining rewards. Each task consists of only one phase. The
accomplishment of Taskl implies that the robot can adopt
SS rule, while the accomplishment of Task2 implies that
the robot can adopt OS rule. At the beginning of each task
the states of all CTRNN neurons are reset to zero, which
means that the robot is in a neutral state, without following
any rule.

In evolutionary generations 61-140, the tasks are getting
more complex asking for controllers capable of one switching
step between rules. Therefore tasks consist of two phases.
Reward signals that have been properly positioned by the
experimenter, indicate the correct response strategy for each
phase. The Taskl examines agent's ability to adopt SS and
then switch to os. In a similar way, the Task2 examines
robot's ability to first adopt os and then switch to SS. At
the beginning of each task the CTRNN state is reset to zero,
but then it is kept continuous implying that special memory
pathways have to develop facilitating rule switching from SS
to os and visa versa.

Finally, in generations 141-300 we ask for controllers
capable of repeatedly switching between rules. Both Taskl
and Task2 are now described by ten phases (see Table I).
Similarly to previous generations CTRNN is reset to zero
at the beginning of each task, and then keeps continuous
memory state when passing from one phase to the other (i.e.
continuously switching between SS and OS rules).
Task Evaluation. The accomplishment of tasks is evaluated
based on the goal positions of each trial. The goal positions
are specified according to (i) the current rule, and (ii) the
side of the light sample (see Fig 2). For each response of
the robot the minimum distance dm in E [0, D] between the
goal and the robot route, is used to measure the success of
robot turning choice (D is the distance between the starting
position and the goal). For a task i evaluating the behavior
of the robot for p phases, the success on rule switching is
given by:

The evaluation starts from trial t == 7 because the first
six trials of each phase are exploratory and they are not
considered in evaluation. The higher the value of E, the more
rule switches the agent has accomplished.
Fitness Measure. The individuals encoding CTRNN con­
trollers are tested on Taskl and Task2 described above.
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Fig. 3. The response of the agent in 22 consecutive trials (covering three phases). The robot initially follows SS rule, then it switches to OS, and back
to SS.
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Fig. 4. The activity of neurons in CTRNN layers, while the agent performs ten consecutive sample-response trials. The first line shows activity of a
higher level neuron (H-N), the second line shows activity of a bottleneck neuron (B-N), and the third line shows activity of a lower level neuron (L-N).
The exact paths followed by the robot at each trial arc demonstrated in the last line.

bottleneck are mostly involved in the execution of higher
level plans taking also into account environmental interaction
issues, (e.g. wall avoidance). This property is an emergent
result of evolutionary self-organization, that appears consis­
tently in all CTRNNs capable of rule switching. It is worth
emphasizing that our evolutionary design procedure does not
artificially force CTRNN to develop different roles in the
higher and lower levels.

After careful examination of Fig 4, we observed two
patterns of neural activation (corresponding to either SS or
as rules) that are repeated across trials. Trying to reveal the
differences between SS and as rules, we have conducted
attractor analysis taking the phase plots of activities for
the neurons H-N and L-N shown in Fig 4, in a modified
version of the previous tasks, testing agent's responses in a
no-switching task (i.e. follow only one of the SS or OS).
Specifically, for both rules, we ask the agent to perform
100 random turning trials (either left or right) after random
perturbation of the neurons in the higher level. For each
rule we observed the same shape to appear in the phase
plot, regardless of the randomness in the initial state (Fig 5).

Rule SS Duration Rule OS Duration
Number of Sim. Steps Number of Sim. Steps

Left Tum av:159 (min:155 max:163) av:158 (min:150 max:162)
Right Tum av:154 (min:148 max:157) av:178 (min:166 max:186)

TABLE II

rus AVERAG E, MI NIMUM AND MAXIM UM DURATION OF

SAM PLE-R ESPONS E TRI A LS, WH EN TH E AGE NT TURNS LEFT AN D RIGHT

FOLLOWI NG EITHE R TH E SS, OR TH E OS RU LE.

Therefore, each plot represents a distinct invariant set for the
corresponding rule. In our no-switching experiment, CTRNN
neuronal state always converge to one of the two invariant
sets depending on the reward stimuli specifying the currently
correct rule. It is noted that neural activity moves on the same
invariant sets when the agent is tested on the accomplishment
of the original Task! and Task2. The switching of the adopted
rule from SS to as and visa versa, corresponds to neural
activity transitions from one invariant set to the other.

Furthermore, during the no-switching task we observed
that even if the pattern of neural activation remains macro-
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Fig. 5. Phase plots ofCTRNN internal activity for 100 sample-response trials, while the agent follows either the SS or the as rules. The x-axis corresponds
to neuron H-N from Fig 4, while the y-axis corresponds to neuron L-N from the same figure.
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Fig. 7. Indicative left and right turnings of the robotic agent when it follows
either the SS or the as rule. Sensory-motor differences produce variation
in the duration of sample response trials.

controller in 'no-reward' conditions. In that case , the agent
has been possible to adopt the OS rule and follow it for many
trials, but it was unable to switch to SS. This means that
CTRNN is self-organized assuming OS as the default rule,
that can occasionally switch to SS. The internal bias that
drives neurodynamics to a preferred invariant set is similar
to [6].

It is worth noting that what seems important for the
preference of the cognitive system to OS rule, is the different
duration of trials when the agent turns left or right (see Table
II). This argument is reinforced by the fact that the named
result -different duration of trials- appears consistently in all
successful CTRNN controllers that were obtained by statisti­
cally independent evolutionary processes (i.e . when there is
significant difference in the duration of left and right turnings
the response rule is preferred against the other) . This , in tum,
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scopically the same, the activation corresponding to the end
of trials is gradually shifted in a circular mode (Fig 6). This is
because the temporal length of trials is dynamic, and depends
on how goal position is reached. Statistical information about
the temporal length of trials is shown in Table II. Specifically,
the duration of each sample-response trial depends on the
time that the agent will reach the goal position (this is usually
less than the maximum of 200 simulation steps per trial) . A
series of turnings for both rules is shown in Fig 7. We see
that the variations in the paths followed by the agent (due to
the noise of sensors and actuators) can produce significant
delays in the duration of trials.

The same shifting phenomenon is also observed in the
case of original rule-switching task. Furthermore, now the
shifting effect is supported by one more factor. When the
experimenter unexpectedly changes the rule, the robot that is
not aware of this change is searching for reward in the wrong
side of the T-maze, spending the total of the 200 available
simulation steps . The longer duration of the erroneous­
response trials (in comparison to the durations presented in
Table II) will cause a shift of the next trial starting point,
relative to the repeating pattern of neural activity.

In terms of phase plots, this shifting corresponds to moving
the transition points related to the switching between OS
and SS invariant sets . In other words there is not a single
transition point from one attractor to the other, but this is
possible to occur in several locations of the invariant set.

Finally we have also tested the performance of CTRNN

Fig. 6. The shifting of neural activity of lower level neuron, in repeating
SS trials. The solid line shows activation in trial 25, the dotted line shows
activation in trial 55, and the dashed-dotted line shows activation in trial 85.
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VII. DISCUSSION-TIME PERCEPTION AND

NEURO-COGNITIVE DYNAMICS

Fig. 8. The activation of one higher level neuron in different trials of
the SD rule switching task. In the case of the SS rule (solid line) neural
activation starts and ends at high values, while in the case of OS (dashed­
dotted line) neural activation starts and ends at low values. The figure is
copied from [13].
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In the current study, we have evolved Continuous Time
Recurrent Neural Networks (CTRNNs) on a rule-switching
task consisting of trials with dynamic temporal duration. The
continuous nature of CTRNN controllers is very important
for the study of cognitive process related to rule switching,
because real brain operates also in a continuous mode [20].
Therefore the present study can reveal new unexplored
aspects of brain processes involved in switching from one
behavioral strategy to another in conditions of varying trial
duration.

The relevance of the obtained CTRNN solutions to real
brain is supported by the emergent properties of neurocog­
nitive dynamics. First, we found that time perception may
co-exist with other cognitive processes (for our task, those
involved in rule discrimination). This is in agreement with
[19] arguing that time perception shares common neural
resources with other cognitive processes (see also [8] dis­
cussing possible models of time perception in neurocognitive
systems).

Furthermore, our results are in agreement with [2], that
investigates possible mechanisms for encoding temporal du­
ration. According to this study, it is not necessary to have a
linear time counter to accomplish (primitive) skills of time
perception. Similar to [2], in the current work, CTRNN
solutions have been capable of discriminating between the

The short comparison between our current DD and the
previous SD rule switching study shows that temporal con­
straints of the experimental setup significantly bias the self­
organization of internal cognitive dynamics. However, the
parameter of time is rarely taken into account in robotic
cognitive studies and we believe it worths more attention
from researchers in order to get a complete picture of
cognitive phenomena in biological and artificial agents.

VI. STATIC VS DYNAMIC DURATION OF TRIALS

We believe it is important to compare the current results
with those obtained in our previous study [13] investigating
rule switching assuming a static trial duration. In particular
we had investigated switching between the same SS and
OS rules with all robotic agent trials lasting exactly 170
simulation steps. At the end of a trial we automatically reset
the robot to the start position (without reseting neurocog­
nitive dynamics), and we are ready to test its behavior for
the next trial lasting again 170 simulation steps. In order to
discriminate the two versions of rule switching we will refer
to the problem investigated in the current paper as Dynamic
Duration (DD), and the problem investigated in [13] as Static
Duration (SD).

The investigation of successful CTRNN controllers in SD
rule switching showed that, similar to the current study, rules
are encoded in distinct invariant sets, and that embodiment
together with environmental interaction significantly facili­
tate the discrimination of the sample-response rules. Further­
more, each rule is encoded in a separate neural activation
pattern in the higher part of the CTRNN. Specifically, Fig 8
shows activation of a higher level neuron for the SS and OS
rules. It is worth noting that there was no neural activation
shifting across trials and therefore these patterns appeared
always in the same form in a single trial. Additionally, note
that for both the left and the right turnings of SS, neural
activity starts and ends at very high values. In contrast, for
the case of OS rule, neural activity starts and ends at very
low. This high-low difference facilitates (i) the discrimination
between the two rules, and (ii) the binding of left and right
turnings linked to the same single rule. It is important to
note that the nature of the SD rule switching problem allows
the emergence of the above mentioned neurodynamic char­
acteristics due to the perfectly measured and exact temporal
duration of trials (all of them lasting 170 simulation steps)
that is perfectly synchronized with the activation of neurons.
However, the above described high-low mechanism, could
not work for our current DD study, because of the variation
appearing in the duration of trials (see Table II), preventing
their synchronization with neural activity.

clearly suggests that the CTRNN controllers have developed
an internal time-perception mechanism that can be used to
discriminate the two response rules. Subsequent investigation
of the CTRNN computational units could not reveal any ded­
icated subset of neurons with time measure responsibilities.
Therefore, in relation to the time perception models proposed
in [8], our CTRNN controllers have developed an intrinsic
rather than a dedicated mechanism of time perception. In
other words, time is not just a variable existing in the neural
equations of the CTRNN model, but something much more
rich and powerful that can affect the self-organization of
neurodynamics. These results are in agreement with recent
brain imaging studies showing that time perception shares
neural resources with other cognitive processes (in particular
working memory) [19], favoring the intrinsic approach.
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default as and the alternative SS rule, with the first having
significant differences in the duration of left and right turn­
ings. Additionally, we observed the shaping of invariant sets
in cognitive neurodynamics that supports the time-perception
capacity of agents, discriminating SS and as rules having
different duration. This is also in agreement with [2].

However, our work addresses an issue that is not studied
by previous works. Specifically, due to the varying duration
of sample-response trials, and the shifting phenomena that we
discussed in the Results section, the DD problem investigated
here asks for a time-invariant representation of SS and as
rules. This is accomplished by the development of invariant
sets (corresponding to either SS or OS), which can switch
not only by means of a single transition point, but by means
of a transition surface.

This is accomplished by the development of distinct acti­
vation patterns (each one corresponding to either SS or OS)
interpreted as distinct invariant sets in phase plots. However,
the varying temporal duration of trials require the develop­
ment of multiple transition points from one invariant set to
the other, rather than the common single point transition (this
was also the case for our SD results). Therefore, we predict
that the shaping of time-invariant representations in continu­
ous cognitive systems (e.g. represented by CTRNN) requires
a transition surface to support invariant set switching.

VIII. CONCLUSIONS

The current study aims to shed light on a largely un­
explored aspect of cognition, namely time perception, and
its relation to other cognitive processes. By adopting a
dynamical systems approach to explore mechanisms shaping
neurodynamics we found that the continuous nature of cog­
nition provides to ordinary cognitive processes primitive time
perception capacity. Additionally, we found that the temporal
constraints of tasks can significantly bias the shaping of
internal dynamics of the system.

Overall, the investigation of time is an important para­
meter/aspect for the complete and in-depth understanding
of cognitive processes. The current study is a first attempt
towards a rigorous and systematic exploration of the time
perception capacity of cognitive agents. In the future, we aim
at systematically exploring more aspects of time perception,
investigating problems that combine perception of both static
and dynamic duration tasks.
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