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Abstract. Personalized search has recently attracted increasing atten-
tion. This paper focuses on utilizing click-through data to personalize
the web search results, from a novel perspective based on subspace pro-
jection. Specifically, we represent a user profile as a vector subspace s-
panned by a basis generated from a word-correlation matrix, which is
able to capture the dependencies between words in the “satisfied click”
(SAT Click) documents. A personalized score for each document in the
original result list returned by a search engine is computed by project-
ing the document (represented as a vector or another word-correlation
subspace) onto the user profile subspace. The personalized scores are
then used to re-rank the documents through the Borda’ ranking fusion
method. Empirical evaluation is carried out on a real user log data set
collected from a prominent search engine (Bing). Experimental results
demonstrate the effectiveness of our methods, especially for the queries
with high click entropy.
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1 Introduction

Over decades, modern search engines have transformed the way people access
and interact with information. Users can easily search for relevant information
by issuing simple queries to search engines. Despite the increasing popularity
and convenience, search engines are facing some challenges. For example, giv-
en a query, a typical search engine usually returns a long list of URLs, usually
displayed in a number of pages. We call the results list as Original List. Howev-
er, the top ranked URLs may not always satisfy users’ information needs well.
Users may have to scroll down the current result page and even turn to the
following pages to find desired information. This would affect the users’ search
experience and satisfaction. One way to tackle this problem is through search
personalization based on an individual user’s profile representing the user’s per-
sonal preferences and interests.
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Personalized search has recently attracted much interest. Many personalized
search strategies [5][6][8][10][13] build on the users’ click-through data, where
it is assumed that the clicked URLs are relevant [8]. This assumption is not
rigorous, because users often go back quickly after clicking an irrelevant result.
Previous research indicated that the clicks with short dwell time (“quick backs”)
are unlikely to be relevant[10]. In this paper, we utilize the “SAT click” criteria
[10] ([i] the user dwelled on the result page corresponding to the clicked URL for
at least 30 seconds; [ii] the click was the last click in current query session) to
judge the relevance of a clicked document. Only the “satisfied” click data (URLs
and corresponding documents) are used to build a user profile. The “SAT click”
data is also used as the ground truth when evaluating the proposed algorithms.

The classic Vector Space Model (VSM) has been a popular choice for user
profile representation [21], in which the queries, documents and user profiles are
all represented as vectors in a term space [12][21]. Generally, the weight of each
term (or keyword) in a user profile vector is calculated by its TF × IDF weight.
However, representing user profiles as weighted keyword vectors has several in-
herent limitations. As the number of keywords increases, the vector representa-
tion becomes ambiguous. Moreover, the traditional bag of words models in IR,
such as VSM and unigram language model, are based on the term independence
assumption. This assumption simplifies the development and implementation of
retrieval models, but ignores the fact that some words are dependent on each
other. Intuitively, two co-occurring words can convey more semantic information
than the single words individually. For example, when “Obama” and “Romney”
co-occur in a document, we may easily recognize that this document is about the
American Election, but if we only observe one single word “Obama” or “Rom-
ney”, the the topic of this document can be different. To address this issue, term
dependencies need to be mined and incorporated into IR models to improve
retrieval performance [1][9][21]. In this paper, we propose to represent a user
profile as a vector subspace, and make use of term dependence information, in
the form of a word-correlation matrix, to generate the user profile subspace.

Our method is inspired by the idea of using a vector space basis for modeling
context, originally proposed by Melucci [15] , where each basis vector refers to
a contextual property. In linear algebra, a vector can be generated by a basis.
In this way, an information object (e.g., an information need) represented by a
vector can be generated by the context modeled with the basis. Melucci [1] com-
puted the probability that an information object has been materialized within
a context. In this paper, we extend the idea to user profile representation. We
systematically investigate and evaluate two novel algorithms based on the sub-
space projection for personalized re-ranking of Web search results. Specifically,
we represent a user profile as a subspace spanned by a basis derived from a word-
correlation matrix built from the user’s SAT clicked web pages. The personalized
score for a document can be computed by projecting the document (represented
as a vector in the first algorithm or another word-correlation subspace in the
second algorithm) onto the user profile subspace. Then we re-rank the original
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list returned by a prominent search engine (Bing) based on the Borda’ rank
fusion method [14].

2 Related Work

In this section, we briefly review the related work on two areas, including per-
sonalized information retrieval and the geometry underlying IR.

Personalized search aims to provide customized search results according to
an individual user’s interests. Various personalized search methods have been
proposed in recent years [4][5][10]. They are based on either explicit relevance
feedback or implicit feedback through various user interaction behaviors, such
as clicks, scrollings, adding pages to favorites, and so on. For example, Bennett
et al. [4] utilized the position information of users to influence search results.
Sontag et al. [5] proposed a generative model to predict the relevance of a doc-
ument for a specific user. Collins-Thompson et al. [20] took the reading level of
the users into considerations to improve the effectiveness of retrieval. Xiang et
al.[7] integrated various context information generated by user interaction into
the learning to rank model to improve the IR performance. In [2], several per-
sonalization strategies were proposed. It came to a conclusion that personalized
search can lead to a significant improvement on some queries but has little effect
on other queries (e.g., queries with low click entropy).

In a seminal book about the geometry of IR [17], Hilbert’s vector spaces were
used to represent documents. Similarly, Melucci [15] proposed an idea of using a
basis to model the context in IR. In [16], a geometric framework is proposed to
utilize multiple sources of evidence presented in current interaction context (e.g.,
display time, document retention) to develop enhanced implicit feedback models
personalized for each user and tailored for each search task. The models we
develop in this paper are inspired by the subspace projection method investigated
in [1], which, in our opinion, is a general and principled theoretical framework
for incorporating word dependencies and provides a unified representation for
both user profiles and documents.

3 The Subspace Theoretical Framework

3.1 Probability of a Vector Out of Subspace
Suppose B = {b1, ..., bk} is a basis of a k-dimension subspace defined over Rn,
where bTi ·bi = 1 and bi’s are mutually orthogonal. L(B) is the subspace spanned
by B. x is a vector, and L({x}) is the set of vectors of the form cx, where c is
a scalar. The vector x may or may not be generated by B. If x is generated by
B, there exists a set of weights {p1, .., pk} such that x = p1b1 + ...+ pkbk. Note
that every vector generated by B is entirely contained in L(B). The vectors
that cannot be generated by B is not contained in L(B), but these vectors
may be more or less close to L(B). Intuitively, if a vector x is close to L(B),
the information object (e.g., a document) represented by x is likely within the
context spanned by B. Similarly, the information object represented by a vector
being far from L(B) is unlikely to be generated by the context spanned by B.
Based on the notions just illustrated, we can model a user profile as a basis
and documents as vectors, then compute the inner product between a document
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vector and the projection of the vector onto the user profile subspace as the
probability that the corresponding user is interested in the document, which
formalized as Equation 1.

Pr[L(B)|L({x})] = xT · PB · x (1)

where we restrict xT · x = 1, PB is the projector to L(B), namely PB = BT ·B,
and PB · x is the projection of x onto the subspace B. Each basis vector in the
subspace can be considered as a concept of a user profile. The projection of a
document vector onto the subspace can then be interpreted as the concept of
user profile which is most related to the document. This formula is different
from the traditional VSM modeling of user profile as a single vector, which may
contain more irrelevant noises for current search topic.

3.2 Probability of a Subspace Out of another Subspace

In above theoretical framework, a document is represented as a normalized vec-
tor, which assumes that a document only contain one topic (corresponding to
one basis vector). However the fact is that one document may have multiple
topics, e.g., one document introduces both the beautiful scenery and the nota-
bility of one place. To address this gap, we extend the projection-based method
in Section 3.1 to the projection from one subspace to another subspace. In the
extension, we represent a document as a subspace instead of a vector, denoted
as L(O) spanned by a basis O = {x1, ..., xm}, where each dimension corresponds
to a concept of the document. We then compute the probability of L(O) out of
L(B) according to Luders’s rule[1]:

Pr[L(B)|L(O)] =
tr(PO ·D · PO · PB)

tr(D · PO)
(2)

where PB, PO are the projectors to LB, LO respectively, tr(·) is the trace of a
matrix, and D is a density matrix (symmetric, positive definite and has trace
one). In our work, the word correlation matrix built for user profile is regarded
as the density matrix.

4 Personalized Web Search Re-ranking Algorithms

We now present our concrete algorithms that implement the subspace projection
based theoretical framework described in the previous section. In this paper, a
“query instance” refers to an information object that contains the user ID, query
terms, query time stamp, original result list, clicked URL list, and so on. It is
worth noting that different query instances may contain the same query terms. A
user’s search process is captured by the user’s “query trace”, which is a sequence
of query instances sorted by query time stamp. A query trace is formalized as
q1, ..., qi, ..., qn−1, qn, where q1, ..., qi, ..., qn−1 are the historical query instances,
and qn is the current query instance (for which the original search results are
to be re-ranked). For each qi, we download the actual documents of the top 30
returned URLs from Bing search engine as the original list. When re-ranking
the original list of qn, we compute the personalized score for each URL using



Personalizing Web Search Results Based on Subspace Projection 5

our personalized algorithms and obtain the personalized ranked list according
to the personalized scores. After that, a re-ranked list is gained by combining
the original list with personalized ranked list using the Borda’ ranking fusion
method [14].

4.1 Algorithm 1: Document Vector Projection onto User Profile
Subspace Algorithm (V-S)

In this algorithm, we represent a user profile as a subspace that consists of the
top K eigenvectors (corresponding to the top K eigenvalues) of a N ×N word-
correlation matrix, where N is the size of the vocabulary. Each eigenvector de-
picts a distribution of words corresponding to a concept of user’s search interests.
The top K eigenvectors constitute a basis of user profile subspace corresponding
to the main aspects of user’s search history. A document is represented as a N
dimensional column vectors and can be generated from the user profile subspace
with a probability. For example, if a document can be totally generated from
this subspace, the probability is 1; conversely, the probability is 0. We can rank
documents based on such probabilities to get a personalized ranked list for the
current query instance.

Step1: Building the Word-Correlation Matrix for User Profile In
this work, we build a document collection for each user, which are composed
of all of the historical SAT clicked web pages. We preprocess each web page by
segmenting it into a list of sentences. In this way, the document collection can be
processed into a set of sentences, denoted as S = {sk}, k = 1, ...,M . The word-
correlation matrix for the user is built based on the sentence set. We denote the
user profile matrix as MP , each element of which is defined as:

MP
ij = r(wi, wj)× TFIDF (wi)× TFIDF (wj) (3)

where MP
ij is an element of MP corresponding to the ith row and the jth column.

wi and wj are two words, and r(wi, wj) reflects the correlation between them.
Equation 3 aims to not only capture the dependency relationship between words,
but also reflect the importance of each word. TFIDF (wi) is the product of term
frequency (TF) of wi in the sentence set and its inverse document frequency
(IDF) in a global document collection with 273298 web pages (not the user
profile document collection). The mutual information (See Equation 4) between
two variables is used to define the correlation between two words. Indeed, any
other correlation measures can be applied here. A more systematic study of
different correlation measurements will be carried out as future work.

r(wi, wj) =

{
I(X;Y ), if i ̸= j

H(X), if i = j
(4)

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y)log
P (x, y)

P (x)P (y)
;H(X) = −

∑
x∈X

P (x)logP (x) (5)

where X and Y are two random variables which indicate the existence of wi and
wj respectively. P (x) = P{X = x}, P (y) = P{Y = y}, P (x, y) = P{X = x, Y =
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y}, x, y ∈ {0, 1}. Here, P{X = 1} is the probability that wi occurs in the sentence
set, and P{X = 0} is the probability that wi does not occur in the sentence set.
P{Y = 0} and P{Y = 1} have similar definition corresponding to wj . P (x, y) is
the joint probability of X and Y . Note that, the Dirichlet smoothing method[19]
has been used while estimating the word probability to avoid zero probability.
I(X;Y ) is the mutual information of X and Y , which indicates the dependency
relationship of the words. The diagonal elements of the matrix contains a factor,
the self-information of X, which indicates the amount of information of X.

Step2: Computing the Personalized Score for each URL The words-
correlation matrix built in Step 1 is a N ×N symmetric matrix. We can decom-
pose it through the Singular Value Decomposition (SVD)[11] and get the top K
eigenvectors as the basis BP = (v1, ..., vi, ..., vK)P , where vi is the ith eigenvector
of the user profile matrix corresponding to the ith eigenvalue of the all eigenvalues
in a descending order. Then the projector for the user profile (PP ) can be gained
by the product of corresponding basis and its transposition, i.e., PP = BP ·BT

P .
In order to obtain the personalized score for each URL, we represent each docu-
ment (URL) as a N dimensional vector (V d) based on the vocabulary. We utilize
the TF × IDF (denoted as TFIDF here), after normalization, as the weight of
each element in the document vector.

Vd = (
TFIDF1√∑

i TFIDF 2
i

, ...,
TFIDFi√∑
i TFIDF 2

i

, ...,
TFIDFN√∑

i TFIDF 2
i

)T (6)

The personalized score of each URL can be obtained naturally by projecting
the document vector onto the user profile subspace (also see Equation 1):

PScore(u) = V T
d · PP · Vd (7)

where PScore(u) is the personalized score for a URL. After this step, we can
get the personalized rank list according to PScore(u).

Step 3: Re-Ranking the Query Instance Since we cannot get the actual
relevance score from the Bing search engine, we use the rank-based fusion method
for re-ranking the original result list with the personalized ranked list. We denote
the original result list of a query instance as τ1 and the personalized ranked list
gained in step 2 as τ2. Then we combine the rankings in τ1 and τ2 using the Borda’
ranking fusion method and sort the web pages with the combined rankings. Let
u be one URL of the original result list of one query instance. Borda’s method
first assigns a score Bi(u) = “the number of the URLs ranked below u in the

rank τi”, and then the total Borda’ score B(u) is defined as
∑2

i=1 Bi(u) [14].
Finally, we re-rank the result list according to the Borda score B(u) to get a
re-ranked list τ . It should be noted that the different URLs may have the same
Borda’ score in the actual experiment, which may lead to the uncertainty of
ranking in the re-ranked list. To avoid this problem, we sort the URLs according
to the relative order in τ1 when the same Borda score occurs.
4.2 Algorithm 2: Document Subspace Projection onto User Profile

Subspace (S-S)
This algorithm shares the same framework with the first algorithm described
in Section 4.1, while the only difference is the method used for obtaining the
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personalized score for a URL. For this reason, we leave out the common parts
of the two algorithm, and focus on how to get the personalized score. In this
algorithm, the user profile subspace construction is the same as in Algorithm
1. Each document is also represented as a words-correlation matrix in the same
way to build a user profile matrix. The document matrix is decomposed through
SVD, so that the basis of the document subspace (Bd) is generated (also the
selection of top K eigenvectors as the basis). From the basis, we get the projector
for the document subspace Pd = Bd · BT

d . The personalized score is derived by
projecting the document subspace onto the user profile subspace as introduced
in Section 3:

PScore(u) = tr(Pd ·MP · Pd · PP )/tr(D · Pd) (8)

where MP is the word-correlation matrix for user profile as a density matrix,
PP is the projector corresponding to the user profile subspace. The advantages
of this algorithm compared with the first algorithm are that (i) the correlation
between words is taken into account in the document representation; (ii) key
concepts of a document with multiple topics are captured through SVD and
considered in the document representation.

5 Empirical Evaluation
5.1 Baseline: Vector Space Model (VSM)

In this paper we set the VSM as a baseline algorithm to compare with our
algorithms described above. In SVM, both user profile and documents are rep-
resented as vectors. The personalized score for a URL is the cosine similarity
between the user profile vector VP and the document vector Vd constructed with
the same method as described in the first algorithm..

PScore(u) =
VP · Vd√

V T
P · VP ×

√
V T
d · Vd

(9)

5.2 Experiment Settings

To test our personalized re-ranking algorithms, we conduct experiments on a
real query log collection. In the experiments, we randomly sampled 107 users’
query logs as the training and testing data from a global query log with 1166
users over a certain period of time. Table 1 shows the detailed information of
the global query log and sampled query log, which indicates that they have some
similar statistical properties. In addition, we store a global document collection
with 273,298 web pages downloaded from the Internet based on the URLs in the
selected query log. We have preprocessed the web pages by extracting the content
data, segmenting them into sentences, removing stop words and stemming the
words with Porter Stemmer [18].

We build a vocabulary for each user by selecting the top N words(we set
N = 1000 in this paper) according to their TF-IDF weights in the SAT clicked
document collection in the user’s search history. The vocabulary is updated dy-
namically as user issuing new queries into the search engine. In the representation
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of user profile, K, the number of selected eigenvectors in the basis of the user
profile subspace, is an important parameter which determines the number of the
topics in the user profile used to personalize the web search results of the current
query. We conduct systematic experiments to test the influence of different K
on the algorithms’ performance.

Table 1. Detailed information about the global query log and the selected query logs.

Items #users #query #distinct query #Clicks #SATClicks #AverageActiveDays

Global Logs 1,166 541,065 221,165 475,624 357,279 20.963

Selected Logs 107 55,486 25,618 54,766 36,761 20.444

The Click Entropy is a concept proposed in [2], which is a direct indication
of query click variation. It is computed based on all of the clicks for a distinct
query (i.e., which is unique in the query log).

ClickEntropy(q) =
∑

u∈U(q)

−P (u|q) log2 P (u|q) (10)

where U(q) is the collection of URLs that are clicked for the distinct query q, and
P (u|q) is the percentage of the clicks on the URL u among all the clicks for q.
Dou et al.[2] pointed out that the smaller click entropy means that the majorities
of users agree with each other on a small number of web pages for a query. It
has been shown in the Literatures[2][3] that personalized search algorithms have
different performance on query instances with different click entropies: generally
speaking, the queries with low click entropy tend to have a less potential to
benefit from personalization [2]. In this paper, we report the distribution of
our experimental results over various different click entropy ranges. Note that,
for statistical significance, we compute the click entropy for each distinct query
based on a large scale global query log (see Table 1).

In the real scenario of searching, users may skip the first SERP (Search En-
gine Results Page) and turn to following pages. Intuitively, this phenomenon
indicates that a user may dissatisfy the search results returned by the search
engine. From this view, the percentage of turning pages (= number of query
instances that users turn to next pages / total number of queries) can reflect the
users’ satisfaction with the search results to some extent. The larger the percent-
age is, the less the user’s satisfaction tend to be. Fig.1 (A) shows that users have
relatively high satisfaction with the search results for queries with lower click
entropy and there is less need of re-ranking results for these queries. With this
consideration, we focus on re-ranking the query instances with relatively high
click entropy. This is a typical long tail task. Fig.1 (B) shows the distribution of
the numbers queries over different click entropies for the test data.

5.3 Evaluation Metrics

We utilize the evaluation metric introduced in Dou et al. [2] to evaluate the
quality of a ranked URLs list for query instances. It is called Rank Scoring,
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Fig. 1. (A) is the statistical information for selected query log; (B) is the histogram of
query number distribution on click entropy for testing data set.

denoted as Rq for a query instance q. The average rank scoring for a set of query
instances is denoted as Raverage.

Rq =
∑
j

δ(q, j)

2(j−1)/(α−1)
;Raverage = 100

∑
q Rq∑

q R
Max
q

(11)

where j is the rank of a URL in the list; δ(q, j) is 1 if URL j is relevant to
user’s information need in query instance q and 0 otherwise; and α is set to 5,
which follows the setting in[2]. The RMax

q is the obtained maximum possible rank
scoring for a query instance when all relevant URLs appearing at the top of the
ranked list. A larger rank scoring value indicates a better quality of the ranked
URLs list. Moreover, the “SAT click” is used for relevance judgement of a URL.
In our experiments, we evaluate the original result list given by Bing and the re-
ranked list given by our algorithms in the same way. The performance of proposed
algorithms can be measured by the improvement percentage of the re-ranked
rank scoring compared with the Bing’s original rank scoring. The positive value
(improvement percentage>0) means that the performance is increased after re-
ranking, while zero value means performance staying unchanged and the negative
value means the performance decreased.

5.4 Experimental Results and Discussions

Fig.2 shows the re-ranking performance of our algorithms in comparison with
the baseline algorithm (VSM). (A) and (B) show the improvement percentage of
our algorithms with different parameter K distributed on different click entropy
intervals. The results show that the re-ranking performance of both V-S and S-S
reach their peaks at a specific K value. A too small K value, e.g., K = 2, implies
that too few topics are selected to personalize the web search which may leave
out some important information for the current query. A too large K value, e.g.,
K = 20, may introduce too much noise. Only a proper K value can result in
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S-S K=2 K=7 K=12 K=17 K=20

[3.0,3.5) -0.49% -0.14% +1.00% +0.09% -0.37%

[3.5,4.0) -0.23% +0.33% +0.72% -1.44% +0.21%

[4.0,4.5) +4.97% +4.80% +2.08% +1.61% +0.65%

[4.5,5.0) +1.03% +0.93% -1.36% -3.51% -0.41%

[5.0,∞) +21.37% +21.50% +23.75% +35.20% +33.74%

V-S K=2 K=7 K=12 K=17 K=20

[3.0,3.5) 0.26% -0.90% -1.93% -1.74% -0.17%

[3.5,4.0) -2.20% -1.95% -1.56% +0.17% +1.64%

[4.0,4.5) +2.81% +3.71% -0.07% +1.737% +3.44%

[4.5,5.0) +6.18% -1.35% +1.50% +0.487% -1.70%

[5.0,∞) +25.95% +30.93% +24.60% +25.67% +24.06%

(A)

(B)

(C)

Compare VSM V-S (K=7) S-S (K=17)

[3.0,3.5) +2.30% -0.90% +0.09%

[3.5,4.0) -0.450% -1.95% -1.44%

[4.0,4.5) +2.07% +3.71% +1.61%

[4.5,5.0) -5.22% -1.35% -3.51%

[5.0,∞) +30.23% +30.93% +35.20%

V-S K=7 S-S K=17 VSM

Entropy #Increase #Stay #Decrease #Increase #Stay #Decrease #Increase #Stay #Decrease

[3.0,3.5) 125 327 132 113 330 141 137 326 121
[3.5,4.0) 53 155 62 63 146 61 58 151 61
[4.0,4.5) 36 94 46 34 97 45 35 94 47
[4.5,5.0) 36 60 31 38 58 31 37 60 30
[5.0,∞) 37 118 7 37 118 7 36 118 8

Model #Increase #Stay #Decrease

V-S K=7 31 48 28

S-S K=17 35 47 25

VSM 37 47 23

(D)

(E)

Fig. 2. The re-ranking performance evaluated from different angles. (A) and (B) show
the improvement percentage of our algorithms with different parameter K distributed
on click entropy intervals; (C) is the comparative results among VSM, S-S (K=17) and
V-S (K=7); (D) is the distribution of user number on different re-ranking performance
(‘increase’, ‘stay’ and ‘decrease’) for different algorithms; (E) is the distribution of
query number on different click entropy intervals and different re-ranking performance
(‘increase’, ‘stay’ and ‘decrease’) for different algorithms.

the most improvement of re-ranking performance. The results also show that the
re-ranking performance of our algorithms (V-S and S-S) is relative poor for the
queries with lower click entropy (less than 5.0), and is relatively good for queries
with higher click entropy. One reason is that the Bing search engine has returned
relative good results to users in the former case and thus there is little potential
to improve it. There may even be a risk to harm the users’ search experience
when we personalize the queries with lower click entropy.

The average best performance of algorithms V-S and S-S appears in K = 7
and K = 17 respectively. Table (C) compares the performance between VSM
and our algorithms, namely S-S (K=17) and V-S (K=7). We observe that VSM
demonstrates a better performance for lower click entropy queries ([3.0,3.5));
however, our two algorithms outperform VSM when the click entropy is large
(> 4.0); especially, the S-S gain the best performance of a 35.20% improvement
in click entropy interval [5.0,∞). Table (D) in Fig.2 shows the distribution of user
numbers over different re-ranking performance (‘increase’, ‘stay’ and ‘decrease’)
for the 3 algorithms. This table indicates that the VSM helped slightly more users
to improve the search results with the fewest harm (with the fewest number of
users whose re-ranking performance is decreased) to user’s search quality. (E)
gives another statistical analysis of the experimental result, i.e., the distribution
of query numbers over different click entropy intervals and different re-ranking
performance (‘increase’, ‘stay’ and ‘decrease’) for different algorithms, showing
that the VSM is more robust in lower click entropy intervals (less than 4.0) and
the robustness in higher click entropy intervals for different algorithms is similar.
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Overall, we find that our proposed algorithms are effective, especially, for
the queries with higher click entropy (which are queries worthwhile to person-
alize [2]). The superiority of our methods are gained for four reasons: (i) we
build word-correlation matrixes for user profile and documents, which not only
captures the importance of single words, but also takes the correlation between
words into consideration; (ii) we decompose the word-correlation matrix through
SVD, and the dimensionality is reduced to a small value, so that the main as-
pects of the user search history can be used to personalize the new query; (iii) a
document is represented as subspace spanned by the top K eigenvectors of the
document word-correlation matrix, which captures the main topics of the docu-
ments and could serve as a denoising algorithm to some extent; (iv) the unified
representation of the user profile and document as subspaces (or document as
vector) well capture the geometrical features of the user profile and documents,
and based on this representation, we incorporate the well-principled subspace
projection theory into our personalization framework.

6 Conclusions and Future Work
In this paper we propose two novel personalized re-ranking algorithms, based on
subspace projection, to re-rank the original web search results which outperform
the traditional VSM model especially for the queries with higher click entropy. It
is noting that, in our work, we did not select the most relevant historical queries
for building the user profile, since we have utilized the subspace projection the-
oretical framework that can automatically detect the most relevant concepts
(topics) when computing the personalized scores. More specifically, the selected
top K eigenvectors can be seen as some important and different topics of user’s
search interests, and the projection from the document vector (subspace) to user
profile subspace can map the most relevant topics to the retrieved documents.
In the future, we will incorporate more information, such as similar queries and
similar users, to further improve our model and algorithms.
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