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[1] We provide a numerical procedure for the simulation of two-phase immiscible and
incompressible flow in two- and three-dimensional discrete-fractured media. The concept
of cross-flow equilibrium is used to reduce the fracture dimension from n to (n-1) in
the calculation of flow in the fractures. This concept, which is often referred to as the
discrete-fracture model, has a significant effect on the reduction of computational time.
The spatial discretization is performed with the control-volume method. This method is
locally conservative and allows the use of unstructured grids to represent complex
geometries, such as discrete-fracture configurations. The relative permeability is upwinded
with a criterion based on the evaluation of the flux direction at the boundaries of the
control volumes, which is consistent with the physics of fluid flow. The system of partial
differential equations is decoupled and solved using the implicit-pressure, explicit-
saturation (IMPES) approach. The algorithm has been successfully tested in two- and
three-dimensional numerical simulations of wetting phase fluid injection (such as water) in
discrete-fractured media saturated by a nonwetting phase (such as nonaqueous phase
liquid or oil) with mild to high nonlinearity in relative permeability and capillary pressure.
To the best of our knowledge, results for simulations of two-phase immiscible and
incompressible flow in three-dimensional discrete-fractured media, including capillary and
gravity effects, are the first to appear in the literature. INDEX TERMS: 1829 Hydrology:

Groundwater hydrology; 3210 Mathematical Geophysics: Modeling; 3230 Mathematical Geophysics:

Numerical solutions; 3299 Mathematical Geophysics: General or miscellaneous; KEYWORDS: two-phase three-

dimensional flow, control volume simulation, discrete-fractured media
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1. Introduction

[2] There is wide interest in the numerical simulation of
multiphase flow in fractured-porous media where, unlike
single-phase flow, high-permeability fractures may not be
the main conduit to flow of different phases [Firoozabadi
and Ishimoto, 1994]. Multiphase flow in subsurface frac-
tured-hydrocarbon formations is of high interest in hydro-
carbon production. Flow in fractured-geothermal reservoirs
and underground storage of fluids are also of interest to the
energy production industry. The study of the flow of water
and the non-aqueous-phase liquids (NAPLs) in fractured
media is another example. The main motivation of our work
relates to fractured-hydrocarbon formations which provide
around 20 percent of world oil and gas production.
[3] Fractured-porous media are composed of rock matrix

and fractures. Depending on the geophysical formation,
fractures may be represented by connected orthogonal
fractures or by discrete fractures. The former is known as
the sugar-cube representation. Often the rock matrix pro-
vides the storage, and in single-phase flow, fractures pro-

vide the fluid flow path. In two-phase flow, fractures may
provide the flow path of one phase and the less permeable
matrix can provide the flow path of the other phase [Tan
and Firoozabadi, 1995]. The flow path of a phase in
multiphase flow is affected by capillary, gravity, diffusion/
dispersion, and viscous forces.
[4] In some fractured-porous media, the fluids are nearly

equally distributed in rock matrix and fractures. There are
also geological formations in which there is very little
porosity in the rock matrix; all the fluids are stored in the
fractures.
[5] Numerical simulation of multiphase flow in two-

dimensional (2-D) and 3-D connected (sugar-cube repre-
sentation) and especially discrete-fractured media is a
challenging task. The large contrast in rock matrix and
fracture permeability and small fracture aperture (often of
the order of 0.1 mm or less in subsurface reservoirs) make
the problem of numerical simulation very complicated with
most numerical schemes. The nonlinearity from capillary
pressure and relative permeability can also complicate the
numerical simulation.
[6] In the past, dual-porosity/dual-permeability models

[Warren and Root, 1963; Kazemi, 1969; Thomas et al.,
1983] have been used for simulation of multiphase flow in
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2-D and 3-D fractured media for hydrocarbon-recovery
processes. These models are, however, limited to sugar-
cube representation of fractured media. Another main draw-
back of dual-porosity/dual-permeability models is that one
has to provide the fluid-flow exchange term between the
fracture and matrix. The exchange term may not be properly
described with gravity and viscous effects. Because the
dual-porosity/dual-permeability models have been incorpo-
rated in finite difference discretization schemes, the numer-
ical dispersion is also of concern for certain applications.
Several well-known commercial and noncommercial pack-
ages use the dual-porosity or dual-porosity/dual-permeability
models. Among them are TOUGH2 [Pruess et al., 1999],
STAR [Pritchett, 1995], ECLIPSE-2000A (from Schlum-
berger-Geoquest, 2000), and FEHM [Zyvoloski et al.,
1994]. From these packages, only TOUGH2 and FEHM are
intended for unstructured grids. Despite widespread use of
these software for a broad range of applications, they cannot
be used for the numerical simulation of immiscible two-phase
flow in a fractured porous medium with discrete fractures in
2-D and especially in 3-D.
[7] An alternative to dual-porosity/dual-permeability

models is the discrete-fracture model [Noorishad and
Mehran, 1982; Baca et al., 1984; Granet et al., 1998].
The discrete-fracture model is based on the concept of
cross-flow equilibrium between the fluids in the fractured
node and the matrix node next to the fracture. (Note that
the discrete-fracture model has no relation to the discrete
fracture configuration. The model can be used for a
sugar-cube representation of fractures as well as discrete
fractures.) In the discrete-fracture model the dimensionality
of fractures is reduced from n to (n-1). This reduction
greatly decreases the computational time. When compared
with the dual-porosity/dual-permeability models, the dis-
crete-fracture model offers several advantages: It can ac-
count explicitly for the effect of individual fractures on fluid
flow; there is no need to compute the exchange term
between the matrix and the fracture; and the performance
of the method is not affected by very thin fractures. It also
reduces computational time by orders of magnitude in 2-D
and 3-D as pointed out earlier. Despite all these advantages,
there is no loss of accuracy when the results from
the discrete fracture model are compared with the full
n-dimensional fracture flow [Karimi-Fard and Firoozabadi,
2003]. The discrete-fracture model has been employed by
several authors to develop codes for multiphase flow
in fractured porous media [Kim and Deo, 1999, 2000;
Bastian et al., 2000; Karimi-Fard and Firoozabadi, 2003;
Karimi-Fard et al., 2003; Geiger et al., 2003].
[8] The discrete-fracture model poses a challenge for the

discretization of the domain through a proper mesh. Typi-
cally, numerical-reservoir simulation is dominated by fast
finite difference codes with structured meshes for represen-
tation of reservoir domain. Structured meshes are not suited
for the representation of complex geometries such as
discrete-fractured media. The discrete-fracture representa-
tion requires a conforming unstructured mesh, where the
(n-1) dimensional fracture elements share nodes and faces
with the corresponding n-dimensional matrix elements at
the matrix-fracture interface. In addition, high-quality mesh
elements are required to satisfy certain geometrical con-
straints, such as dihedral angles and aspect ratio; otherwise

the conditioning of the spatial discretization matrix may be
affected, resulting in the numerical instability of the flow
computation [Fleischmann et al., 1999]. While in 2-D, a
conforming Delaunay triangulation suffices to obtain a
high-quality mesh, the same is not true in 3-D, where the
generation of high-quality tetrahedra conforming to an
embedded surface is still an open problem. Several methods
to improve the quality of a 3-D unstructured Delaunay mesh
have been recently developed [Freitag and Ollivier-Gooch,
1996], but they may not apply to a tetrahedrization con-
forming to an embedded 2-D surface since the improvement
is generally based on vertex displacements and edge swap-
pings, changes which may not be applicable at the matrix-
fracture interface. The above restrictions must be taken into
account when implementing numerical methods for the
simulation of multiphase flow in 3-D unstructured meshes.
[9] Multiphase flow in fractured media can be classified

as miscible, partial mixing of phases and immiscible prob-
lems depending on miscibility between the phases. In this
work the immiscible problem in two-phase state will be
addressed. We also make the further assumption of incom-
pressible and isothermal flow. Two-phase incompressible
flow may be modeled with two partial differential equa-
tions: the flow potential and the saturation equation. The
former is elliptic and the latter is of the convection-diffusion
type, degenerating to hyperbolic type when the capillary
pressure is neglected. There are several possible formula-
tions based on the choice of the wetting or nonwetting phase
variables. The formulation used in our work will be detailed
later.
[10] Several numerical methods have been employed in

the past for the simulation of 2-D multiphase flow in porous
media, such as the classical finite element method (C-FEM),
the streamline-upstream Petrov-Galerkin finite element
method (SUPG-FEM), the fully upwind finite element
method (FU-FEM), and the control-volume method (CV).
Helmig [1997] provides a detailed review of these methods.
[11] The C-FEM and SUPG-FEM are inadequate for the

purpose of numerical simulation of immiscible displace-
ment in discrete-fractured media. It is widely known that
because of the inherent instability for the first-order deriv-
atives in space, the C-FEM is not suitable for mild to the
highly nonlinear convective-dominated immiscible dis-
placement problems [Lewis et al., 1974; Lemmonier,
1979; Rabbani and Warner, 1994]. The SUPG-FEM
[Brooks and Hughes, 1982; Hughes and Mallet, 1986]
overcomes the instability of the C-FEM, but recent works
have shown that this method can produce unphysical results
when used for the simulation of two-phase flow in highly
contrasted heterogeneous porous media [Helmig, 1997;
Helmig and Huber, 1998].
[12] The FU-FEM, first proposed by Dalen [1979],

gives a physically correct result for two-phase immiscible
flow in 2-D porous media [Dalen, 1979; Huyakorn et al.,
1983; Rabbani, 1994; Helmig and Huber, 1998]. (An
analysis of the FU-FEM is given by Helmig [1997].) In
this method the computation of the FEM stiffness matrix
in 2-D Delaunay mesh is modified by assembling a node-
balance flow system of equations. In addition, the wetting
phase mobility at the triangle edges is upwinded accord-
ing to the difference between wetting phase potentials at
the edge nodes.
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[13] The FU-FEM has been recently employed for 2-D
numerical simulation of two-phase immiscible flow in the
context of discrete-fractured media [Kim and Deo, 1999,
2000; Karimi-Fard and Firoozabadi, 2003]. However,
Kim and Deo [1999] reported the failure of the method
when extended to 3-D problems. The authors concluded
that the stability was mesh-dependent. In fact, as will be
discussed later, the problem is caused by the upwind
criterion of Dalen [1979], which produces unphysical
saturations for 3-D Delaunay meshes. Instead, Forsyth
[1991] used the direction of a single-phase flow between
edge nodes as the upwinding criterion: The flow potential
difference between edge nodes is multiplied by a single-
phase transmissibility term, which may be negative in
3-D Delaunay meshes. To reduce negative transmissibi-
lites, Letniowski and Forsyth [1991] proposed a tetrahe-
dral mesh generation based on the decomposition of a
regular grid. However, this proposal is not appropriate for
the unstructured conforming mesh generation in the
discrete-fracture approach.
[14] For the sake of clarity, we would like to make a

remark regarding proliferation of terms in the literature,
related to the control-volume method. Some authors
[Forsyth, 1990, 1991; Letniowski and Forsyth, 1991;
Helmig, 1997] refer to the FU-FEM as the control-volume
finite element method and to the CV method as the control-
volume box method.
[15] The CV method was first proposed in the compu-

tational fluid dynamics by Baliga and Patankar [1980].
The method is in essence a finite volume formulation
over dual cells (control volumes) of a Delaunay mesh,
which makes the CV method have distinct advantages
over the FU-FEM: (1) It is locally conservative; (2) the
upwind criterion is based on the analysis of the flow
direction at the boundaries of the control volumes, which
has a clear physical interpretation; and (3) it can include
finite volume concepts for hyperbolic and convection-
diffusion partial differential equations such as numerical
fluxes and high-order upwinding [Barth and Jespersen,
1989].
[16] Because of these features, the CV method has been

used mainly to solve the saturation equation of the two-
phase immiscible flow in porous media [Verma, 1996;
Helmig, 1997]. The convergence of the CV numerical
method for two-phase immiscible flow in porous media
has been recently proved by Michel [2003]. Perhaps the
only drawback of the method is the requirement of gener-
ating a dual mesh, but this does not affect the algorithm
performance for a fixed mesh.
[17] Bastian et al. [2000] and Geiger et al. [2003] have

employed the CV method for the numerical simulation of
two-phase flow in 2-D fractured media. Bastian et al.
[2000] developed the MUFTE-UG simulator that uses the
discrete-fracture model and present a 2-D example for gas
inflitration into fractured media composed of five discrete
fractures with a thickness of 4 cm (very thick fractures). The
fracture and matrix capillary pressures functions were
similar. Bastian et al. [2000] also included gravity in their
work. Geiger et al. [2003] use the C-FEM for the solution to
the flow potential and the CV method for the saturation
equation. These authors did not use the concept of cross-
flow equilibrium, and therefore the computational speed

for fractured media may be very low. They also neglected
capillary pressure, despite its significance in immiscible
fluid flow in fractured porous media [Terez and
Firoozabadi, 1999; Karimi-Fard and Firoozabadi, 2003].
[18] This paper is structured along the following lines. In

section 2 we present a mathematical formulation for two-
phase incompressible flow in fractured media, clearly estab-
lishing physically based relations between matrix and
fracture variables. This formulation has not been presented
in the previous related works [Kim and Deo, 1999, 2000;
Bastian et al., 2000; Karimi-Fard and Firoozabadi, 2003;
Geiger et al., 2003]. In section 3 we provide an efficient
procedure to numerically solve the two-phase flow equa-
tions in fractured media using the discrete-fracture model
within the framework of the CV method. We solve both the
wetting phase flow potential and saturation equations with
the CV method in 2-D and 3-D and provide a detailed
description on how to incorporate fractures and matrix in
the numerical scheme with the CV method. The 3-D
formulation for fractured porous media is new. We also
analyze the influence of different upwind criteria on the
robustnesses of the FU-FEM and CV method. In section 4
our proposed method is thoroughly tested with several
numerical examples, where varying degrees of nonlinearity
in relative permeability and capillary pressure are consid-
ered. To the best of our knowledge, this is the first time that
3-D simulation for the discrete-fracture model with capillary
pressure and gravity effects are modeled numerically. We
provide concluding remarks in section 5.

2. Governing Equations

2.1. Two-Phase Incompressible Flow in Porous Media

[19] The standard equations describing two-phase incom-
pressible, immiscible flow displacement in porous media
are the balance equations for each phase:

@fSn
@t

�r � krnk

mn
rpn þ rngrzð Þ

� �
� qn ¼ 0 ð1Þ

@fSw
@t

�r � krwk

mw
rpw þ rwgrzð Þ

� �
� qw ¼ 0 ð2Þ

and the following relations:

Sn þ Sw ¼ 1 ð3Þ

pn � pw ¼ Pc Swð Þ; ð4Þ

where the subscripts n and w refer to the nonwetting and
wetting phase, respectively; pi, Si, kri, mi, ri, and qi are the
pressure, saturation, relative permeability, viscosity, density,
and source/sink term, each with respect to phase i; k is the
absolute permeability tensor, f is the porosity, Pc is the
capillary pressure, g is the acceleration of gravity, z is
the vertical coordinate (positive in the upward direction);
and t denotes the time. In this work we consider an
isotropic medium, and thus the permeability tensor is
reduced to the scalar k.
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[20] To simplify the above expressions we define the
mobility of phase i, li, by

li ¼
krik

mi
ð5Þ

and the flow potential of phase i, Fi, defined by

Fi ¼ pi þ rigz; ð6Þ

which are commonly employed in formulations of two-
phase flow in porous media [Aziz and Settari, 1979]. In
addition, we define the capillary flow potential, Fc, by

Fc ¼ Fn � Fw ¼ Pc þ rn � rwð Þgz: ð7Þ

[21] The notion of capillary pressure potential is first
introduced in the work of Karimi-Fard and Firoozabadi
[2003]. Next, we add equations (1) and (2), keeping the
wetting phase conservation equation (2) and use relations (3)
and (4) to express the remaining equations in terms ofFw and
Sw. With this procedure, the system of equations (1)–(4) is
reduced to two partial differential equations:

�r � ln þ lwð ÞrFwð Þ � r � lnrFcð Þ � qn þ qwð Þ ¼ 0 ð8Þ

@ fSwð Þ
@t

�r � lw rFwð Þð Þ � qw ¼ 0: ð9Þ

Equation (8) is referred to as the flow potential equation,
which is elliptic in nature, while equation (9) is referred to
as the saturation equation, which can be seen as a
convection-diffusion equation [Peaceman, 1977].
[22] The boundary conditions are assumed to be

impervious:

vw � �lwrFw ¼ 0 ð10Þ

vn � �lnrFn ¼ 0; ð11Þ

where vi is the velocity of phase i. We must point out that
the model is not restricted to the above boundary conditions.
Other boundary conditions can be readily established and
wells can be considered in the matrix and in the fracture
using source/sink terms. Indeed we have performed
simulations for large-scale problems including Dirichlet
and impervious boundary conditions and producing wells in
the fractures. Results will appear in a future publication.

2.2. Discrete-Fracture Model

[23] In the discrete-fracture model, the system of equa-
tions (8) and (9) is integrated by using the superposition
principle. For example, for a 2-D matrix with 1-D embed-
ded fractures, the total domain W can be decomposed into

W ¼ Wm þ eWf ; ð12Þ

where Wm and eWf represent the matrix and the fracture
subdomains, respectively, and e denotes the thickness of the
1-D fracture.

[24] Equations (8) and (9) apply to both the matrix and
the fracture flow. Therefore the integration of equations (8)
and (9) can be written as

Z
W
f dW ¼

Z
Wm

fmdWm þ e
Z
Wf

f f dWf ¼ 0; ð13Þ

where f represents the residual of the system of equations (8)
and (9) and superscripts m and f denote the matrix and
fracture subdomains, respectively. After linearizing the
nonlinear terms and discretizing in space and time, we
obtain a system of linear equations:

Z
W
f dW ¼ Amxm � bm þ Af xf � bf ¼ 0; ð14Þ

where

x ¼ %w; Sw½ 
T : ð15Þ

[25] In the past, equation (14) has been solved as

Am þ Af
� �

x� bm � bf ¼ 0 ð16Þ

[Kim and Deo, 1999, 2000; Karimi-Fard and Firoozabadi,
2003], implying that xm = xf = x, which is true only for
some specific cases, as we will see later. Equation (16) lacks
a relationship between the matrix and fracture variables
based on physical grounds. Below, we provide a formula-
tion for a 2-D matrix/1-D fracture flow with a coherent
relationship between the matrix and fracture variables at the
matrix-fracture interface. The formulation can be readily
extended to 3-D matrix/2-D fracture configurations.
[26] The system of equations for the 2-D matrix domain

is

�r � lm
n þ lm

w

� �
rFm

w

� �
�r � lm

n rFm
c

� �
� qmn þ qmw
� �

¼ 0 ð17Þ

@ fmSmw
� �
@t

�r � lm
w rFm

w

� �� �
� qmw ¼ 0 ð18Þ

and for the 1-D fracture domain is

� @

@x
lf
n þ lf

w

� � @Ff
w

@x

� �
� @

@x
lf
n

@Ff
c

@x

� �� �

� qfw þ qfn
� �

¼ 0

ð19Þ

@ ff Sfw
� �
@t

� @

@x
lf
w

@Ff
w

@x

� �� �
� qfw ¼ 0; ð20Þ

where x is the coordinate along the fracture direction.
[27] The closure relationships between fracture and

matrix variables are based on the assumption of the
equality of the flow potentials, that is, Fi

m = Fi
f, where

i = {w, n}. This implies that the capillary potential must
be equal also:

Fm
c Smw
� �

¼ Ff
c Sfw
� �

: ð21Þ
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[28] Since at any given point of the matrix-fracture
interface the vertical coordinate is the same, equation (21)
reveals that the matrix and fracture capillary pressure
should be the same at the matrix-fracture interface. This
analysis is equivalent to the capillary continuity concept of
Firoozabadi and Hauge [1990] for fractured media and
similar to the one provided by van Duijn et al. [1994] for
heterogeneous porous media. A more general approach is
the use of the cross-flow equilibrium concept to derive
equation (21), which will be presented in Appendix A. For
displacement of a nonwetting phase by a wetting phase,
there is no threshold capillary pressure. Figure 1 illustrates
the concept of capillary and flux continuity at the interface
of two different media, I and II. At the interface both media
have the same capillary pressure Pc

I = Pc
II = P*c , and

depending on the matrix and fracture capillary pressure
functions, water saturations Sw

I* and Sw
II* may be discontin-

uous at the interface. Also, there is continuity of fluxes of
both phases across the interface q̂i

I* = q̂i
II*, where i = w, n.

We remark that since we are integrating the flow equations
using the superposition principle, these terms cancel when
we add the fracture and matrix flow equations. That is the
reason that we omit the fluxes at the interface of the matrix
and the fractures in our flow equations. For the purpose of
clarity, Appendix A provides the details. Employing the
capillary pressure continuity condition there evolves a clear
physical relationship between Sw

m and Sw
f at the matrix-

fracture interface:

Sfw ¼ Pf
c

� ��1
Pm
c Smw
� �

: ð22Þ

[29] Equation (20) can be expressed in terms of Sw
m by

using equation (22) and applying the chain rule:

dSfw
dSmw

@ ff Smw
� �
@t

� @

@x
lf
w

@Ff
w

@x

� �� �
� qfw ¼ 0: ð23Þ

[30] Therefore the assumption made by Kim and Deo
[1999, 2000] and Karimi-Fard and Firoozabadi [2003] that
xm = xf = x in equation (16) is only valid if dSw

f /dSw
m = 1

along the whole saturation domain Swc � Sw � (1 � Snr) for
each phase. In other words, when the capillary pressure
functions in the fracture and the matrix are the same, then
dSw

f /dSw
m = 1. With different matrix and fracture capillary

pressure expressions one needs to compute the relevant
dSw

f /dSw
m. We remark that the soure/sink term qw

f in
equation (23) allows the possibility of a well in the fracture.
There is no need to compute an exchange term between
the matrix and fracture since these terms will cancel
when the matrix and flow equations are added in the
control volume cell as stated above (see Appendix A).

3. Numerical Method

[31] In this section we define the median dual of 2-D and
3-D Delaunay meshes. Then we detail the CV spatial
discretization within the discrete-fracture model. We also
compare the upwinding criteria used in the CV method and
the FU-FEM and provide the IMPES formulation for the
discretized equations.

3.1. Two- and Three- Dimensional Delaunay-Median
Dual Mesh for Discrete-Fractured Media

[32] Figure 2 shows an extract of a 2-D Delaunay
triangulation of a 2-D matrix/1-D fracture configuration,
where the thick line represents a fracture. The Delaunay
triangulation shown in this figure is conforming to the
1-D fracture. The thick line is divided into several seg-
ments that are edges of the Delaunay triangles surround-
ing the 1-D fracture. Analogous discretization can be
carried in a 3-D matrix/2-D fracture configuration, where
the 2-D embedded surface is decomposed in triangular
elements that are faces of the tetrahedra surrounding the
matrix-fracture interface.

Figure 1. Capillary pressure and flux continuity at the interface of two media: fracture (I) and matrix (II)
(asterisk denotes values at interface; i = w, n).

W07405 MONTEAGUDO AND FIROOZABADI: SIMULATION OF FLOW IN FRACTURED MEDIA

5 of 20

W07405



[33] In a 2-D or 3-D Delaunay mesh, each triangle or
tetrahedron edge links two neighboring CV cells with the
same flux across the shared interface. Therefore, from the
performance standpoint, it is advantageous to use an edge-
based data structure. To define a 2-D or 3-D CV cell within
such a data structure, we introduce the following notation:

T
n Delaunay mesh in an n-dimensional domain Wn with

boundary Gn, where n = 2 or 3;
I set of vertices in T

n;
N i set of i neighboring vertices, 8i 2 I;
Mij midpoint of the edge ij connecting the neighboring

nodes i, j 2 I ;
T ij set of elements t (triangles in 2-D Delaunay mesh or

tetrahedra in 3-D Delaunay mesh) sharing the edge ij;
Gt barycenter of element t 2 T ij.

For the tetrahedra in a 3-D Delaunay mesh, we require the
additional definitions:

Fij
t set of triangular faces, {fij,1

t , fij,2
t }, of tetrahedron t 2

T ij sharing the edge ij;
Cij,k
t barycenter of the triangular face fij,k

t 2 F ij
t .

[34] The 2-D median-dual cell, Vi
2, in T

2 around an
arbitrary node i 2 I is a polygon with the boundary defined
by

GV 2
i
¼

[
j2N i

[
t2T ij

GtMij: ð24Þ

[35] The measure and outward normal of each segment
GtMij are denoted by ejt and njt, respectively. In Figure 3 we
show an example of a 2-D CV cell including a fracture
edge. In all the 2-D numerical examples, the 2-D Delaunay
triangulation conforming to the 1-D fracture elements were
generated with the package triangle [Shewchuk, 1996], a
public domain software available at www-2.cs.cmu.edu/
~quake/triangle.html.
[36] The 3-D median-dual cell, Vi

3, in T
3 around an

arbitrary node i 2 I is a polyhedron with boundary

GV 3
i
¼

[
j2N i

[
t2T ij

GtC
t
ij;1MijC

t
ij;2: ð25Þ

[37] We denote by at,ij and St,ij the measure and outward
normal of each quadrilateral GtC

t
ij;1MijC

t
ij;2 forming GVi

3. In

Figure 4 we show an example of a tetrahedra of T3 at the

3-D matrix/2-D fracture interface.
[38] For the 3-D numerical examples, we tested three

public domain tetrahedral mesh generators to perform a
Delaunay tetrahedrization conforming to the fractures:
GRUMMP, developed by Oliver-Gooch and available at
http://tetra.mech.ubc.ca/GRUMMP; gmsh, developed by
Geuzaine and Remacle, available at http://www.geuz.org/
gmsh; and tetgen [Si, 2002], available at http://tetgen.

Figure 2. Extract of two-dimensional (2-D) Delaunay triangulation conforming to a 1-D fracture (thick
line).

Figure 3. A 2-D CV cell (thin solid lines) formed from the
median-dual of a 2-D Delaunay triangulation (dashed lines).
The node a is surrounded by the set of nodes N a = {b1,
b2. . .b6}. The fracture edge ab1 (thick solid line) with
midpoint Mab1

is shared by two triangles T ab1
= {K1, K2}

with barycenters G1 and G2, respectively. The segments
G1Mab1 and G2Mab1 with outward normals n11 and n12,
respectively, are part of the boundary of the 2-D CV cell
around node a.
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berlios.de. Only tetgen produced good quality tetrahedri-
zation conforming to the 2-D fractures contained in the
domain. However, depending on the number of fractures,
angle of incidence of the fractures, or degree of refine-
ment, tetgen may not produce good quality meshes or
may even fail.

3.2. Variables and Gradient Approximation

[39] Saturation variables (Sw, Sn) are considered constant
inside each CV cell, and flow potential variables (Fw, Fn,
Fc) are approximated inside each Dealunay-mesh element
(triangle or tetrahedron) by linear approximations:

� xð Þ ¼
Xnv
i¼1

Ni xð Þ�i; ð26Þ

where nv is the number of vertices of the element, �i

represents any flow potential variable at nodes i with
coordinates xi, and Ni is the shape function defined by

Ni xð Þ ¼ ai þ bixþ giy

2A
ð27Þ

for triangles and by

Ni xð Þ ¼ ai þ bixþ giyþ diz
6V

ð28Þ

for tetrahedra.

[40] In equation (27), A is the area of the triangular
element, and in equation (28), V represents the volume
of the tetrahedral element. Details on the computation of
the coefficients ai, bi, gi, and di for triangular and
tetrahedral elements are described by Zienkiewicz and
Taylor [2000]. From equation (26), the gradient of any
variable inside a triangular or tetrahedral element is
constant:

r� ¼
Xnv
i¼1

�irNi xð Þ; ð29Þ

where x represents coordinates in the corresponding
element dimension.

3.3. Spatial Discretization

[41] In our work, both the flow potential and saturation
equations (equations (8) and (9)) are solved in the CV-dual
cells of a 2-D and 3-D Delaunay mesh.
[42] We will illustrate the methodology of the CV spatial

discretization in the discrete-fracture framework by solving
the saturation equation (equation (9)) for a 2-D matrix/1-D
fracture system. The same methodology can be applied to
the flow potential equation (equation (8)).
[43] Integrating equation (9) in a control volume Vi

22 T
2:

Z
V 2
i

f
@Sw
@t

dA�
Z
V 2
i

r � lwrFwð ÞdA�
Z
V 2
i

qwdA ¼ 0 ð30Þ

after applying the Gauss-divergence theorem to the second
term and considering that porosity has only spatial variation,
we get

Z
V 2
i

f
@Sw
@t

dA�
Z
G
V2
i

lwrFwð Þ � ndG�
Z
V 2
i

qwdA ¼ 0; ð31Þ

where GVi
2 is the boundary of the 2-D CV cell around node i.

[44] As stated in section 2.2, matrix and fracture
saturations are related through equation (22). Therefore
the approximation of the first term of equation (31)
gives

Z
V 2
i

f
@Sw
@t

dA � Afi
@Smw
@t

; ð32Þ

where

Afi ¼
X
j2N i

X
t2T ij

At

6
fm
t þ

X
ij2Wf

dSfw
dSmw

eij
ij


 


2

ff

ij

2
4

3
5; ð33Þ

where At is the area of triangle t; eij and jijj are the
thickness and the measure of the fracture edge ij 2 Wf;
and f

ij

f and ft
m denote the porosity of the fracture and

matrix elements, respectively. The first and second terms
inside the brackets represent the matrix and fracture pore
volumes, respectively, the latter being multiplied by
dSw

f /dSw
m in order to express the integral in terms of the

matrix water saturation.

Figure 4. Section of a 3-D CV cell in a tetrahedron m 2
T ab, with barycenter Gm. Edge ab is shared by faces
fab,1
m and fab,2

m with barycenters Cab,1
m and Cab,2

m , respectively.
Face fab,1

m , shown in thick lines, is shared by the 3-D matrix
and the 2-D fracture. The quadrilateral GmC

m
ab;1MabC

m
ab;2,

with outward normal Sm,ab, is part of the boundary of the
3-D CV cell around node a. In the fracture face, fab,1

m , the
segment Cm

ab;1Mab, with outward normal Hab,1
m is part of

the boundary of a 2-D CV cell (in the coordinates of the
fracture plane) around node a.
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[45] The second integral term in equation (31) can be
approximated by

Z
G
V2
i

lwrFwð Þ � ndG �
X
j2N i

X
t2T ij

ejt


 

 lm

w Sm;upw

� �
rFw

� �
jt
� njt

2
4

þ
X
ij2Wf

eijlf
w Sf ;upw

� � @Ff
w

@x

3
5; ð34Þ

where superscript up denotes an upwinded saturation; jejtj
represents the measure of GVi

\ GVj
inside triangle t and njt

is the outward normal to this interface; and rFw is the
wetting phase flow potential gradient evaluated at jejtj,
which is approximated by equation (29). The term @Fw

f /@x
represents the wetting phase flow potential gradient inside
the fracture-edge ij 2 Wf. Since the flow in the fracture is
considered one-dimensional, this gradient is approximated by

dFf
w

dx
¼ Fj � Fi

ij


 

 : ð35Þ

[46] Therefore the first and second terms inside the
brackets of equation (34) represent the flux through the
2-D/CV cell boundary and the flux through each fracture
(if any) contained in the CV cell.
[47] The third integral term in equation (31) is approxi-

mated by

Z
V 2
i

qwdA � qwi
AV 2

i
¼

X
j2N i

qmwi

X
t2T ij

At

6
þ

X
ij2Wf

eij
ij


 


2

q
f

w;ij

2
4

3
5; ð36Þ

where AVi
2 denotes the area of the 2-D/CV cell i.

[48] We can now approximate equation (31) for each
control volume i by

Afi
@Swi
@t

�
X
j2N i

X
t2T ij

ejt


 

 lm

w Sm;upw

� �
rFw

� �
jt
� njt

2
4

þ
X
ij2Wf

lf
w Sf ;upw

� � @Ff
w

@x
eij

3
5� qwi

AV 2
i
¼ 0: ð37Þ

[49] A first-order upwind scheme in the saturation is
necessary to avoid nonphysical solutions. For the matrix
domain, we used the following criteria, referring to the
control volume i, having a boundary edge ejt inside the
triangle t 2 T ij:

Sm;upw ¼
Smwi

if �rFw � nð Þjt > 0

Smwj
otherwise

�
ð38Þ

and for the 1-D fracture domain we used the following
criteria:

Sf ;upw ¼
Sfwi

if Fwi
> Fwj

Sfwj
otherwise:

(
ð39Þ

[50] As can be seen, the upwind criteria in the matrix and
fracture domain have a clear physical interpretation; they
are based on the flow direction at the interface between two
CV cells. In the next section we will compare the CV and
the FU-FEM upwind criteria.
[51] The same procedure outlined above can be used for

the flow potential equation (equation (8)). Since it has been
assumed that flow potentials are the same at the matrix-
fracture interface as in the corresponding cells, we have
dropped the superscript for this variable. For the 2-D matrix/
1-D fracture flow, we get

�
X
j2N i

X
t2T j

ejt


 

 lmrFw þ lm

nrFc

� �
jt
� njt

2
4

þ
X
ij2Wf

lf @Fw

@x
þ lf

n

@Fc

@x

� �
eij

3
5� qwi þ qnið ÞAV 2

i
¼ 0; ð40Þ

where l = lw + ln denotes the total mobility.
[52] All mobilities in equation (40) are also upwinded

with the criteria established in equations (38) and (39) for
2-D matrix and 1-D fracture elements, respectively. The
capillary potential gradient in the fracture is approximated
by

@Ff
c

@x
¼ Fcj � Fci

ij


 

 ð41Þ

[53] The method can be readily extended to the 3-D
matrix/2-D fracture formulation. The variable and gradient
approximations in the 2-D fracture triangular elements are
performed in transformed coordinates. The procedure for
the coordinate transformation is given by Juanes et al.
[2002].

3.4. Comparison of Upwind Criteria

[54] If we use the C-FEM to discretize the saturation
equation (equation (9)), the discretization of the second term
would lead to a stiffness matrix K. In local coordinates for a
triangle B, the matrix is defined by

KB
ij ¼

Z
WB

krw

mw
rNikrNjdWB for i; j ¼ 1; 2; 3; ð42Þ

where k, krw, and mw are evaluated inside triangle B.
[55] The FU-FEM of Dalen [1979] is a modification of

the C-FEM method, where the above matrix is distorted to a
nodal flow balance:

~KB
ij ¼

k
up
rw;ij

Z
WB

m�1
w rNikrNjdWB if i 6¼ j

�
X

j 6¼i
~KB
ij if i ¼ j;

8><
>: ð43Þ

where krw,ij
up is the upwinded wetting phase relative

permeability at edge ij.
[56] The integral term in the off-diagonal elements of ~Kij

B

(equation (43)) represents a single-phase flow transmissi-
bility between nodes i, j inside the triangle B.
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[57] Letniowski and Forsyth [1991] defined gij as the total
single-phase transmissibility between nodes i and j. In our
edge-based notation, gij can be expressed as

gij ¼
X
t2T ij

Z
Wt

m�1
w rNikrNjdWt ð44Þ

[58] In the works of Letniowski and Forsyth [1991] and
Verma [1996], the wetting phase flow rate, Qw,ij, through
nodes i, j is expressed by

Qw;ij ¼ k
up
rw;ijgij Fwi � Fwj

� �
ð45Þ

[59] In the work of Dalen [1979] for the FU-FEM, krw,ij
up is

upwinded according to the criterion

k
up
rw;ij ¼

krw;i if Fwi � Fwj

� �
> 0

krw;j otherwise:

�
ð46Þ

[60] As can be seen in equation (46), this criterion is
based only on the potential difference between nodes i, j. In
the 2-D Delaunay meshes, gij is always positive, and
therefore there is consistency between the sign of the
wetting phase potential difference and the direction of the
flow rate Qw,ij. In the 3-D Delaunay meshes the positivity of
gij is no longer guaranteed. Thus a wrong upwinding may
be performed by using the criteria based only on the wetting
phase potential difference. Forsyth [1991] pointed out this
problem and proposed to use the flow direction in the FU-
FEM between nodes as an upwind criterion:

k
up
rw;ij ¼

krw;i if gij Fwi � Fwj

� �
> 0

krw;j otherwise;

�
ð47Þ

which is inadequate for multiphase flow in 3-D unstructured
meshes. For single-phase flow the CV method and the
FU-FEM produce the same transmissibility term, gij
[Forsyth, 1990; Verma, 1996]. However, for multiphase
flow it is not correct to compute the flow rate of the wetting
phase from equation (45). If we refer to the 2-D CV cell Va
in Figure 3, we note that there are two boundary segments,
G1Mab and MabG2, associated with the edge ab1. The 2-D
flow rate between nodes a and b1 is given by

Qw;ab1¼ �
Z Mab1

G1

lw;e11rFK1

w � ndG�
Z G2

Mab1

lw;e12rFK2

w � ndG: ð48Þ

[61] In the CV method the upwinding criterion (equa-
tion (38)) based on the flux direction at the interface is
applied to each boundary segment. On the other hand, the
criterion proposed by Letniowski and Forsyth [1991] is
based on an averaged single-phase flow direction between
nodes a and b1, attributing the same upwinded property
to both boundary segments. Both the FU-FEM and the
CV method produce practically the same results in 2-D
Delaunay meshes, because this subtle difference is likely
to occur in very few nodes and because in the FU-FEM
there is a weighted contribution of the flow in each CV

boundary segment. However, in 3-D Delaunay unstruc-
tured meshes a tetrahedron edge can be associated with
more than 10 boundary surfaces of any given 3-D CV
cell. Therefore assigning the same mobility to all the
boundary surfaces may lead to unphysical results. This
can be verified simply by implementing a numerical
method where the flow potential equations are solved
by the FU-FEM method and the saturation equation is
solved by the CV method. The stability of that imple-
mentation would show a strong dependency with the
mesh generation in 3-D problems.
[62] In fact, to make the FU-FEM upwind criterion

[Letniowski and Forsyth, 1991] equivalent to the CV
criterion, it would be necessary to have tetrahedra with
3-D CV median dual cells as close as possible to Voronoi
cells. Indeed, this is a serious constraint for 3-D unstruc-
tured mesh generation, since this would require that each
tetrahedron contain its circumsphere inside it. Even in
2-D Delaunay triangulations, it is difficult to obtain
Delaunay triangles having their circumcenters inside
them, which motivated the use of mixed Voronoi-median
cells (also called generalized PEBI cells) in some appli-
cations of oil reservoir simulation [Verma, 1996; Verma
and Aziz, 1997].
[63] On the basis of the above analysis, it is clear that

unlike the schemes for the FU-FEM, the CV upwinding
criterion is consistent with the physics of flow in 2-D and
3-D domains and better suited for 3-D unstructured meshes.
We also like to point out that to reduce numerical disper-
sion, high-order upwinding can be readily implemented in
the CV method by increasing the order of approximation of
Sw inside the CV cell and using a slope limiter [Barth and
Jespersen, 1989].

3.5. Edge-Based Code

[64] The integration of equation (34) was performed
using an edge-based algorithm. That is, to compute the
fluxes through two neighboring CV cells, we swept over all
the edges, since the CV boundary segments and normals are
associated with each edge of the Delaunay triangulation.
Figure 5 shows the algorithm, in pseudocode, for the
numerical computation of Sw

k+1 from equation (37) for the
2-D matrix/1-D fracture flow. The algorithm can be readily
extended to the 3-D matrix/2-D fracture flow.

3.6. IMPES Formulation

[65] The IMPES formulation consists of the sequential
solution of the decoupled flow potential and saturation
equations. All the properties depending on the wetting
phase saturation are computed at the previous time level.
Equation (40) is solved implicitly in Fw:

�
X
j2N i

X
t2T j

ejt


 

 lm;k

� �
rFkþ1

w

�
jt

2
4 � njt þ

X
ij2Wf

eijlf ;k @F
kþ1
w

@x

3
5

¼
X
j2N i

X
t2T j

ejt


 

 lm;k

n rFk
c

� �
jt

2
4 � njt þ

X
ij2Wf

eijlf ;k
n

@Fk
c

@x

3
5

þ qwi þ qnið ÞAV 2
i
; ð49Þ

where superscript k indicates the time-step level.
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[66] Equation (37) is solved explicitly in Sw with an
explicit-Euler integration in time:

Afi
Skþ1
wi � Skwi

Dt
¼

X
j2N i

"X
t2T j

ejt


 

 lm;k

w rFkþ1
w

� �
jt
: � njt

þ
X
ij2Wf

lf ;k
w

@Fkþ1
w

@x

#
þ qwiAV 2

i
: ð50Þ

[67] A simple adaptive time step method was imple-
mented to guarantee stability in time:
[68] 1. Set DSw,min, DSw,max, and b > 1.
[69] 2. Determine x = max(Sw

k+1 � Sw
k ).

[70] 3. If x > DSw,max, then decrease time step: Dtk+1 =
Dt k/b and redo the computation.
[71] 4. If x < DSw,min, then accept solution and increase

time step: Dtk+1 = bDtk.
[72] 5. Otherwise accept the solution and keep the same

time step.
[73] In our numerical simulations, we set DSw,min = 0.005,

DSw,max = 0.01, and b = 1.2.

4. Results

[74] We performed several 2-D and 3-D numerical tests to
evaluate the performance of the implemented methods.

Various degrees of nonlinearity in the relative permeabil-
ity and capillary pressure relationships were considered.
We employed the following relations for the relative
permeability:

krw ¼ Sniw ð51Þ

Figure 5. Edge-based algorithm for the numerical computation of Sw
k+1 in equation (50).

Figure 6. Capillary pressure in the examples.
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krn ¼ 1� Swð Þni ; ð52Þ

where ni (i = {m, f }) is the matrix or fracture exponent.
[75] For the capillary pressure we used the following

relation:

Pc ¼ �Bi ln Swð Þ; ð53Þ

where Bi (i = {m, f }) is the matrix or fracture parameter,
respectively. This model is suitable for water-wet systems,
where water is the wetting phase and oil or NAPL is the
nonwetting phase. Figure 6 shows the Pc curves for
different values of Bi. Notice that to avoid infinity values
at Sw = 0, all the capillary pressure curves have been
truncated to a finite large value at this point.
[76] When the model of equation (53) is used for the

matrix and the fracture, then equation (22) can be written as

Sfw ¼ Smw
� �Bm=Bf ð54Þ

and dSw
f /dSw

m is given by

dSfw
dSmw

¼ Bm

Bf

Smw
� �Bm=Bf �1 ð55Þ

[77] In some of our test examples we set Bm = Bf, and in
some others Bm 6¼ Bf. In some test examples, we neglected
capillary pressure (Bm = Bf = 0 atm) to show the effect of
capillarity.
[78] The 2-D results were compared with a FU-FEM code

by Karimi-Fard and Firoozabadi [2003], which in turn was
validated against a finite difference commercial simulator
Eclipse from Schlumberger-Geoquest (2000) with a set of
tests that the Eclipse can be used. For the 3-D tests we
performed a sensitivity analysis to select the degree of mesh
refinement.
[79] Wells were represented as source/sink terms in the

control volume containing the well. The flow rates were
proportional to the phase mobilities in the control
volume containing the production well. The thickness
of the fractures in all the examples is 10�4 m. The
properties of the fluids are shown in Table 1, and those
of the rock for both the matrix and the fractures are
shown in Table 2. The rock-fluid interactions are spec-

ified for each example by setting parameters Bm and Bf

and exponents nm and nf. All runs were executed on a
2-GHz PC-Pentium 4.

4.1. Two-Dimensional Simulations

[80] In the 2-D examples, water (wetting phase) injection
is simulated in a fractured porous medium represented by a

Table 1. Fluid Properties

Property Water Oil

Density, kg/m3 1000 600
Viscosity, Pa-s 0.8 � 10�3 0.45 � 10�3

Figure 7. Two-dimensional Delaunay conforming mesh
for discrete-fractured media: (a) single-fracture configura-
tion and (b) multiple-fracture configuration.

Table 2. Rock Properties

Property Matrix Fracture

Porosity, fraction 0.20 1.00
Permeability,a m2 9.87 � 10�16 8.26119 � 10�10

aOne millidarcy = 9.87 � 10�16 m2.
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horizontal square domain [0, 1] � [0, 1] m2. Two config-
urations were used in the tests:
[81] 1. The first is a single-fracture medium, where the

fracture is represented by a line with coordinates (0.2, 0.2) m
and (0.8, 0.8) m. In Figure 7a we show the 2-D
Delaunay mesh with 580 nodes used for this matrix-
fracture configuration.
[82] 2. The second is a multifracture medium containing

six fractures represented by lines with coordinates shown in
Table 3. In Figure 7b we show the 2-D Delaunay mesh with
900 nodes used for this configuration.
[83] For all the examples the injection well was placed at

the lower left corner and the production well was placed at
the upper right corner. The water flow rate was set to
2.3148 � 10�8 m3/s, which is equivalent to a displacement
of 0.01 PV/d.
[84] Table 4 lists all the tests performed in 2-D. The

relative permeability exponent for equations (51) and (52)
was varied from 3 to 5 in the matrix and from 2 to 3 in
the fracture. Values of Bm and Bf are also shown in
Table 4.
[85] Figures 8 and 9 show water saturation contours at

50% of PV displacement for nonlinear relative perme-
abilities in the single-fracture configuration. Figure 8a
depicts the results from the simulation where capillary
pressure effect is neglected (Bm = Bf = 0). Comparison
with Figure 8b, where Bm = Bf = 1.0 atm, shows that
capillary pressure has a significant effect. Figure 8c
shows difference in contours by increasing the nonlin-
earity in relative permeability but keeping the same
capillary pressure function for both the matrix and the
fracture (Bm = Bf = 1.0 atm). Figures 9a, 9b, 9c, and 9d

Table 3. Fracture Coordinates (in Meters) for the Multifracture

Configuration

Fracture First Point Second Point

1 (0.18, 0.40) (0.75, 0.70)
2 (0.30, 0.83) (0.85, 0.33)
3 (0.55, 0.74) (0.87, 0.53)
4 (0.50, 0.75) (0.40, 0.16)
5 (0.25, 0.70) (0.65, 0.90)
6 (0.35, 0.30) (0.80, 0.15)

Table 4. Two-Dimensional Conditions and Results

Test ID
Bm,
atm

Bf,
atm nm nf Fractures

Displaced
PV,a %

FU-FEM
CPU Time, s

CV
CPU Time, s

2D-002-0 0.0 0.0 3 2 1 50 6.64 � 101 8.28 � 101

2D-002-1 1.0 1.0 3 2 1 50 3.41 � 104 4.01 � 104

2D-003-0 1.0 1.0 4 3 1 50 8.43 � 103 1.29 � 104

2D-004-0 1.0 1.0 5 3 1 100 3.33 � 104 4.71 � 104

2D-004-1 1.0 0.8 5 3 1 100 - 4.04 � 104

2D-004-2 1.0 0.2 5 3 1 100 - 6.87 � 103

2D-004-3 1.0 0.05 5 3 1 100 - 4.69 � 103

2D-005-0 1.0 1.0 5 3 6 25 1.33 � 104 1.66 � 104

2D-005-1 1.0 0.2 5 3 6 25 - 1.68 � 102

aAll tests were performed with an injection rate of 0.01 PV/d.

Figure 8. Water-saturation contours at 50% PV for
nonlinear kri: (a) Pc

m = Pc
f = 0 and nm = 3, nf = 2; (b) Pc:

Bm = Bf = 1.0 atm and nm = 3, nf = 2; and (c) Pc: Bm = Bf =
1.0 atm and nm = 4, nf = 3.
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show water saturation contours with nm = 5, nf = 3, Bm =
1.0 atm, and by varying Bf from 1.0, 0.8, 0.2, to
0.05 atm, respectively. It can be seen that when the
ratio Bm/Bf = 1.25, results are similar to that of Bm/Bf =
1.0. The saturation results are in agreement with recov-
ery and water-oil ratio plots. The results in Figures 9
and 10 show that when Bm/Bf = 5.0 or 20.0, then
disparity between matrix and fracture capillary pressure
has an influence in flow performance. Results for the
multifracture configuration are shown in Figures 11a and

11b, where six fractures have been considered with nm =
5, nf = 3, and Bm = 1.0 atm, and Bf has been varied
from 1.0 atm to 0.2 atm, respectively. Again, flow
performance is affected by increasing the ratio Bm/Bf.
The results for high Bm/Bf are in line with the work of
Terez and Firoozabadi [1999].
[86] All the 2-D results were practically identical to

the 2-D FU-FEM code previously developed by Karimi-
Fard and Firoozabadi [2003]. CPU performance of both
methods is also of the same order of magnitude (see the

Figure 9. Water-saturation contours at 50% PV for nonlinear kri (nm = 5, nf = 3): (a) Pc: Bm = Bf =
1.0 atm; (b) Pc: Bm = 1.0 atm, Bf = 0.8 atm; (c) Pc: Bm = 1.0 atm, Bf = 0.2 atm; (d) Pc: Bm = 1.0 atm, Bf =
0.05 atm.
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two right columns of Table 4); the CV requires, on
average, 30% more CPU time due to the extra compu-
tation of the flow-potential gradient.

4.2. Three-Dimensional Simulations

[87] Water (wetting phase) injection in a cube of side 20 m
was studied to evaluate 3-D implementation of the method.
The fractures are represented by parallelograms. Two frac-
ture configurations were tested: (1) 3D-001 and 3D-003,
one plane fracture A (see Table 5 and Figure 12a), and
(2) 3D-002 and 3D-004, two crossing fractures A, B (see
Table 5 and Figure 12b).
[88] Coordinates of parallelograms A and B are

shown in Table 5. The Delaunay tetrahedrizations for both

examples are shown in Figure 12. The two examples
were gridded with 1100-node meshes. Figure 13 shows
a sensitivity study for the two-fracture configuration,
3D-004, that justifies the selected mesh refinement.
[89] In all the examples, the injection and production

wells were placed at coordinates (0, 0, 0) and (20, 20,
20) m, respectively. Tests were performed with water

Figure 10. Effect of ratio Bm/Bf on the 2-D simulation
with a single fracture and nonlinear kri (nm = 5, nf = 3): (a) oil
recovery curves and (b) water-oil ratio curves.

Figure 11. Water-saturation contours at 25% PV for the
multifracture 2-D medium with nonlinear kri (nm = 5, nf =
3): (a) Pc: Bm = Bf = 1.0 atm; (b) Pc: Bm = 1.0 atm, Bf =
0.2 atm.
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injection rates of 3.70 � 10�5 m3/s and 3.70 � 10�4 m3/s,
equivalent to a displacement of 0.002 and 0.02 PV/d,
respectively. Gravity and capillary pressure were taken into
account. Some tests were performed without capillary

pressure to compare simulation results. Table 6 shows the
specifications for each test and the performance of the runs.
[90] Figures 14 and 15 show water saturation contours

at 20% PV displacement for the single-fracture and two-
fracture configurations, and with and without capillary
pressure. Notice that the flow pattern through the matrix
is shown as a projection into the planes XY, XZ, and YZ.
Figures 16 and 17 show the difference in oil recovery
and water-oil ratio (WOR) due to capillary pressure for
the single-fracture and two-fracture configurations, respec-
tively. Notice that capillary pressure improves the sweep
and therefore the performance.
[91] Figure 18 shows results for nonlinear relative per-

meabilities for the single- and the two-fracture configura-
tions at 20% PV displacement. The second fracture plane
improves the performance of water injection.

5. Concluding Remarks

[92] We have presented a physically coherent mathe-
matical formulation for two-phase flow in fractured media
using the discrete-fracture model employing the capillary
pressure and flux continuity concepts at the matrix-
fracture interface. The unique characteristic of the model
is that there is no need to compute matrix-fracture
exchange flux.
[93] To the best of our knowledge, this is the first time

that the 3-D simulation of two-phase flow in fractured
porous media with gravity and highly nonlinear capillary
pressure and relative permeability using the discrete-

Figure 12. Three-dimensional Delaunay conforming mesh
for discrete-fractured media: (a) single-fracture configura-
tion and (b) two-fracture configuration.

Table 5. Vertex Coordinates (in Meters) of Fractures for the 3-D

Examples

Fracture Vertex 1 Vertex 2 Vertex 3 Vertex 4

A (2, 2, 2) (18, 18, 2) (18, 18, 18) (2, 2, 18)
B (2, 18, 2) (18, 2, 2) (18, 2, 18) (2, 18, 18)

Figure 13. Sensitivity analysis of the 3-D CV method:
two-fracture configuration, nonlinear kri (nm = 5, nf = 3),
and Pc: Bm = Bf = 0.4 atm.
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fracture model is successfully carried out. Although our
numerical tests are for impervious boundaries, there is no
restriction on the boundary conditions. Indeed we have
applied the model to a large-scale problem to predict oil
recovery from a fractured reservoir with Dirichlet boundary
conditions in the matrix and fractures and placing a
horizontal well in a fault. Results of this simulation will
be presented in a future publication.
[94] The FU-FEM of Dalen [1979] is applicable only

to the 2-D Delaunay triangulations because its upwind
criterion is based on nodal potential difference and not
the flow direction. Forsyth [1991] proposed an improved
upwind criterion, but the 3-D mesh generation proposed
in the work of Letniowski and Forsyth [1991] is inade-
quate for the kind of mesh required in the discrete-
fracture model. On the other hand, the control volume
method, with a first-order upwind scheme, has a clear
physical meaning based on the analysis of the flow
direction at the boundary of each control volume. In
addition, all the concepts from the finite volume method,
such as high-order upwinding and numerical fluxes, can
be incorporated readily into the model.
[95] Capillary pressure must be considered when simu-

lating two-phase immiscible flow in fractured media.
Flow pattern and recovery predictions may change sub-
stantially when this property is disregarded.
[96] Difference in capillary pressure functions between

matrix and fracture may alter the flow pattern and thus
recovery prediction.

Appendix A: Detailed Derivation of the
Matrix-Fracture Flow Equations

[97] For a matrix and fracture grid next to each other, one
can write the following conditions:
[98] 1. From the cross-equilibrium concept, the pressure

of each phase is the same in the matrix and fracture
nodes next to each other, leading to equality in the flow
potentials:

Fm
i ¼ Ff

i ;where i ¼ w; nf g: ðA1Þ

[99] 2. There exists a corresponding relationship between
capillary pressures:

Pm
c Smw
� �

¼ Pf
c Sfw
� �

: ðA2Þ

[100] 3. The fluxes at the matrix-fracture interfaces are
equal:

q̂mi ¼ q̂
f
i ;where i ¼ w; nf g: ðA3Þ

[101] The flow equations for two phase flow in porous
media (equations (8) and (9)) when applied to both matrix
and fractures and discretized in space, transform into a set of
differential-algebraic equations (DAE):

Km
t %

m
w þKm

n %
m
c þMm qmw þ qmn

� �
þQm

w þQm
n ¼ 0 ðA4Þ

Mm
f
d

dt
Smw þKm

w%
m
w þMmqmw þQm

w ¼ 0 ðA5Þ

Table 6. Three-Dimensional Conditions and Results

Test ID
Bm,
atm

Bf,
atm nm nf Fractures

Injection Rate,
PV/d

CV
CPU Time,a s

3D-001-0 0.0 0.0 1 1 1 0.002 3.20 � 102

3D-001-1 0.4 0.4 1 1 1 0.002 2.82 � 102

3D-002-0 0.0 0.0 1 1 2 0.002 4.15 � 102

3D-002-1 0.4 0.4 1 1 2 0.002 3.85 � 102

3D-003-0 1.0 1.0 5 3 1 0.02 4.62 � 102

3D-004-0 1.0 1.0 5 3 2 0.02 1.10 � 103

aAll runs for 100% of PV displacement.

Figure 14. Water-saturation contours at 20% PV for 3-D
tests with the single-fracture configuration, linear kri, and
rate = 0.002 PV/d: (a) Pc = 0 and (b) Pc: Bm = Bf = 0.4 atm.
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for the matrix and

K
f
t%

f
w þKf

n%
f
c þMf qfw þ qfn

� �
þQf

w þQf
n ¼ 0 ðA6Þ

M
f
f
d

dt
Sfw þKf

wF
m
w þMf qfw þQf

w ¼ 0 ðA7Þ

for the fractures. In equations (A4)–(A7), superscripts m
and f denote properties and variables in the matrix and
the fracture, respectively; %w, Sw, and %c are vectors
containing the water flow potential, water saturation, and

capillary potential, respectively, at the matrix and fracture
nodes; Ki for i = w, n, t are the stiffness matrices formed
with mobilities lw, ln, and lt = lw + ln, respectively; M
is a diagonal matrix containing the area (in 2-D) or the
volume (in 3-D) of the matrix and fracture entities inside the
CV cell; Mf is a diagonal mass matrix containing
the corresponding pore volume of the matrix or fracture
entities inside the CV cell. Time derivatives may be
approximated with a forward Euler, for example. Vectors
qi
m and qi

f contain source/sink terms inside each CV cell.
Vectors Qi

m and Qi
f for i = n, w contain the flow transfer

terms between the matrix and fracture inside each CV

Figure 15. Water-saturation contours at 20% PV for 3-D
tests with the two-fracture configuration, linear kri, and
rate = 0.002 PV/d: (a) Pc = 0 and (b) Pc: Bm = Bf =
0.4 atm.

Figure 16. Three-dimensional simulations for the single-
fracture configuration with linear kri and rate = 0.002 PV:
(a) recovery and (b) water-oil ratio at production well.
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cell containing a fracture; otherwise the entry is zero.
Since condition 3 establishes the equality of fluxes across
the matrix-fracture interface, then Qi

m + Qi
f = 0, and

therefore there is no need to compute transfer terms in
our formulation since matrix and fracture flow equations
will be added inside each CV cell. The entries of all the
matrices depend on the properties of the media: fluid,
rock, and rock-fluid properties of the matrix and fracture,
and the geometry of the mesh entities representing the
matrix and fractures. We represent fractures as (n-1)
dimensional entities, but the corrersponding domain
dimensionality is recovered by multipyling all entries of
Mf, Mf

f , and Ki
f by the corresponding fracture thickness.

Equations (A4)–(A7) should be solved in the variables
%w

m, %w
f , Sw

m, and Sw
f . However, in our formulation we

reduce the number of variables by employing conditions
1–3 stated above. Flow potential equality allows addition
of equations (A4) and (A6). Capillary pressure equality
establishes a relation between matrix and fracture node
saturations:

Sfw ¼ Pf
c

� ��1
Pm
c Smw
� �

: ðA8Þ

Figure 17. Three-dimensional simulations for the two-
fracture configuration with linear kri and rate = 0.002 PV:
(a) recovery and (b) water-oil ratio at production well.

Figure 18. Water-saturation contours at 20% PV for the
3-D tests with nonlinear kri (nm = 5, nf = 3) and Pc: Bm = Bf =
1.0 atm: (a) single-fracture configuration and (b) two-
fracture configuration.
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For example, if we use the model Pc = �Bln(Sw) for both
the matrix and the fracture, then

Sfw ¼ Smw
� �Bm=Bf : ðA9Þ

Therefore equation (A8) is used to express time deriv-
atives in equation (A7) in terms of Sw

m by using the chain
rule:

dSfw
dt

¼ dSfw
dSmw

dSmw
dt

: ðA10Þ

For example, for the model in equation (A9), dSw
f /dSw

m is
given by

dSfw
dSmw

¼ Bm

Bf

Smw
� �Bm=Bf �1

: ðA11Þ

As can be seen in equation (A10), dSw
f /dt is equal to

dSw
m/dt only if dSwi

f /dSwi
m = 1, i.e., when the matrix and

fracture capillary curves are the same. Equation (A8)
maps Sw

f into Sw
m, and therefore one can compute all

the rock-fluid properties in the fracture from Sw
m. In

equation (23), lw
f = lw

f (Sw
f ) or lw

f = lw
f (Sw

f (Sw
m)). The same

applies to ln
f ; then the matrices Ki

f in equations (A6) and
(A7) are computed with Sw

m. The system of DAE
equations (A4)–(A7) reduces to

Km
t þK

f
t

� �
%m

w þ Km
n þKf

n

� �
%m

c

þMm qmw þ qmn
� �

þMf qfw þ qfn
� �

¼ 0 ðA12Þ

Mm
f þM

f
fZ

� � d

dt
Smw þ Km

w þKf
w

� �
%m

w þMmqmw þMf qfw ¼ 0;

ðA13Þ

where Z is a diagonal matrix with entries Zii = dSwi
f /dSwi

m

if the CV cell i contains a fracture, or zero otherwise.
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