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Abstract 
Evolutionary algorithms have shown great promise in evolving 
novel solutions to real-world problems, but the complexity of 
those solutions is limited, unlike the apparently open-ended 
evolution that occurs in the natural world. In part, nature 
surmounts these complexity barriers with ecological dynamics 
that generate a diverse array of raw materials for evolution to 
build upon. The authors previously introduced Eco-EA, an 
evolutionary algorithm that integrates these natural ecological 
dynamics to promote and maintain diversity in the evolving 
population. Here, we apply the Eco-EA to the real-world 
software engineering problem of evolving behavioral models 
for deployed nodes in a remote sensor network for flood 
monitoring. We show that the Eco-EA evolves good behavioral 
models faster than a traditional EA, generates a more diverse 
suite of models than a traditional EA, and creates models that 
are themselves more evolvable than those created by a 
traditional EA. 

Introduction 
Evolutionary algorithms (EAs) have shown great promise in 
evolving novel solutions to real-world problems, but the 
complexity of those solutions is limited, unlike the apparently 
open-ended evolution that occurs in the natural world. In part, 
nature surmounts these complexity barriers with natural 
ecological dynamics that generate an incredibly diverse array 
of raw materials for the evolutionary process to build upon, 
the efficacy of which has been demonstrated in the artificial 
life system Avida (Cooper and Ofria, 2002).  

For EAs to solve more complex problems, we must study 
how highly complex traits arise in the natural world, and 
where EAs fall short in duplicating these dynamics. The 
complexity of solutions produced by traditional EAs is 
typically limited by rapid convergence to a single solution on 
a sub-optimal local peak, resulting in stagnation. EA 
researchers recognize the importance of maintaining variation 
in evolving populations to prevent stagnation and make use of 
a variety of diversity preserving techniques.  However, it has 
proven difficult to reach the levels of species density and 
variety found in nature (such as in bio-films (Tyson et al. 
2004) or biodiversity hotspots like rain forests (Gaston 2000)) 
or even the high intra-species variance of individual values for 
a given trait. In nature, simple ecological forces promote this 
diversity, due to both spatial and temporal environmental 
heterogeneity, combined with negative frequency-dependent 
selection (Tilman, 1982). 

Diversity in a population can provide other significant 
advantages beyond forestalling stagnation. Potential benefits 
to evolutionary algorithms include: (1) maintenance of a 
selection of good solutions for the researcher to choose from, 
often with slightly different properties; (2) representation 
across a Pareto front for multi-objective optimization 
problems; (3) the use of different partial-solutions as starting 
points to build the full solution from, without the researcher 
needing to know the ideal path; (4) resilient solutions that can 
withstand environmental changes; and (5) significantly more 
rapid evolution of targeted complex functions. Robust 
ecological communities exhibit all of these traits. 

The authors previously introduced a method to integrate 
ecological factors promoting diversity into an EA using 
limited resources, and showed that populations evolved with 
this method were able to find and cover multiple niches in a 
simple string matching problem (Goings and Ofria, 2009). 
Here, we apply this new ecology-based evolutionary 
algorithm (Eco-EA) to a real-world problem in software 
engineering, and show that this approach yields several 
advantages over a traditional EA, including: 
 
1. faster evolution of satisfactory solutions 

2. evolution of a more diverse array of solutions  

3. creation of solutions with greater evolvability that are 
easily adapted to succeed in different environments. 

These results indicate that the ecology-based EA facilitates 
the evolution of solutions to complex problems. 

Background 

Eco-EA 

As demonstrated by (Cooper and Ofria, 2002), forcing 
individuals to compete for multiple limited resources will 
force a population to maintain higher levels of diversity. A 
traditional EA can be thought of as having only one resource, 
where each individual’s fitness is determined by the amount 
of that resource it can obtain. In most cases, the population 
size in an EA is fixed, thus making space its only limited 
resource (which organisms claim as they replicate). In the 
Eco-EA proposed by the authors in (Goings and Ofria, 2009), 
each function performed by an individual is associated with a 
distinct resource. When an individual performs a function it 
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receives a predetermined fraction of the currently available 
amount of the associated resource and its fitness is increased 
proportionately. These resources are set up as the 
computational equivalent of a well-stirred chemostat; that is, 
each resource flows into the environment at a constant rate, 
and a small percentage of the available resource flows out, 
limiting the total accumulation. Exploration of new areas of 
the fitness landscape is highly rewarded as an unused resource 
will accrue in quantity; as such, the individual first to discover 
the resource will receive a large fitness boost. However, when 
many organisms perform functions that consume the same 
resource, the availability of that resource will decrease until 
further organisms who attempt to draw from it do not receive 
enough reward to offset the opportunity cost of targeting a 
different resource.  

Eco-EA in Avida 
The experiments performed in this study used the Avida 
digital evolution research platform (Ofria and Wilke, 2004). 
Avida maintains a population of asexual self-replicating 
computer programs (“digital organisms”) that exist in a 
computational environment and are subject to mutations and 
natural selection. Each digital organism has a genome that is a 
sequence of instructions in a special-purpose programming 
language. As in natural organisms, this genome specifies the 
behavior of the individual. Typically, in Avida, this behavior 
includes the replication of the organism, but for this study we 
used an explicit fitness function and organisms were 
replicated in time inversely proportional to their fitness (i.e. 
higher fitness yields faster replication), similar to the process 
of a steady-state evolutionary algorithm. This change removed 
the extra selection pressure for organisms to improve their 
replication mechanism and simplified the analysis of 
individual organisms. Random mutations occur during 
replication and include substitutions, insertions, and deletions. 
The Avida instruction set is designed so that mutations always 
yield a syntactically correct program, albeit one that may not 
perform any meaningful computation. When an organism 
replicates, its offspring replaces a randomly chosen individual 
currently in the population. Thus Avida maintains a constant 
population size.  

The environment used in this study contains a set of 
resources, each of which corresponds to a user-defined task. 
An organism must perform a task to receive a portion of the 
available corresponding resource. The fitness of an organism 
is determined by how much of each resource it consumes. In 
most Avida studies, as with most evolutionary algorithms, 
resources are unlimited, creating a single-niche environment 
where an organism receives a fixed amount of resource for 
each task completed. Thus, the fitness gained for completing a 
task is constant and does not reflect how many other 
organisms are also performing that task. In this study, 
however, we incorporate the ecological factor of limited 
resources to create a multi-niche environment that encourages 
the evolving population to diversify. 

Avida-MDE 
For this study, we use a software engineering extension to 
Avida called Avida-MDE (Avida for Model-Driven 
Engineering), previously developed by Goldsby and Cheng 

(Goldsby and Cheng, 2008a). We briefly describe the 
motivation for the creation of Avida-MDE, establish its links 
to real-world problems, and provide a high-level overview of 
how it uses Avida to automate software engineering research.  

Model-driven engineering is a leading software engineering 
approach to developing complex software-based systems, 
including on-board control software for automotive and flight 
systems, ecosystem monitoring, and robotic systems. Many of 
these systems are considered high-assurance, meaning  that 
they must satisfy safety requirements under a variety of 
environmental conditions. Model-driven engineering works 
by systematically refining graphical models that can be 
analyzed for adherence to requirements using a variety of 
analysis tools, and then automatically used to generate code 
(Schmidt, 2006). Konrad et al. have proposed a modeling and 
analysis process for such high-assurance systems (Konrad et 
al. 2007) where a system is represented by a class diagram 
that captures the structural elements and several behavioral 
models. A given behavioral model comprises a set of state 
diagrams, one for each class in the class diagram, and 
represents the behavior of the system under specific 
environmental conditions. 

Manually developing the behavioral models for a system 
can be tedious and error prone, since each model must be 
created independently and it requires the developer to have 
foreknowledge of the possible environmental conditions. 
Avida-MDE is a digital evolution tool that automates this 
process by generating a suite of behavioral models given 
information from the class diagram (Goldsby and Cheng, 
2008b). At a high level, Avida-MDE accepts a list of triggers, 
guards, and actions (created using class diagram elements) as 
input. These inputs are provided to each digital organism, 
which uses them as raw material for constructing a set of state 
diagrams. A new genetic language was implemented in 
Avida-MDE to enable organisms to manipulate the state 
diagrams and thus change the behavior of the model it 
generates. The details of this language and how the digital 
organisms generate models can be found in (Goldsby and 
Cheng, 2008b).  The key concept is that a mutation to an 
organism’s genome changes the behavioral model that it 
creates.  

To evaluate the generated behavioral models (and thus the 
organisms themselves), Avida-MDE uses a suite of software 
engineering tools. Several tasks were added to the Avida 
environment, which have previously been linked only to 
unlimited resources. Software engineering metric tasks, such 
as minimizing the number of transitions and maximizing the 
number of deterministic states, guide the evolutionary process 
to generate models that adhere to commonly advocated 
software engineering practices. Scenario tasks reward 
organisms for creating models that support one desired 
execution path, or scenario. Scenarios encapsulate small 
excerpts of model behavior that can be combined and 
expanded to achieve the desired overall system behavior. To 
account for the uncertainty in the execution environment, a 
developer can specify two types of scenarios; (1) required 
functional scenarios must be supported by the generated 
models; (2) non-functional (NF) scenarios each of which 
specify a different way to achieve the same functional 
objective with different non-functional characteristics (e.g., 
quality, reliability). A model must support at least one of each 
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type of NF scenarios. The specific NF scenario supported by a 
model impacts its non-functional behavior. Next, witness 
property tasks reward models for having at least one 
execution path that supports a desired system property. Lastly, 
property tasks are included to reward models for having all 
possible execution paths support a desired system property. 
For example, “no data is ever lost,” “battery levels never drop 
below a threshold value,” or “water level never exceeds a 
maximum value.”  

Grid-Stix 
Avida-MDE was previously used to generate behavioral 
models for Grid-Stix, a light-weight flood warning system that 
comprises a set of sensor nodes. Grid-Stix is used to monitor 
the water levels  for potential flood conditions with the River 
Ribble in England (Hughes et al. 2006). Flooding is an 
increasing and costly problem for the United Kingdom, and 
early flooding predictions enable fast responses to avert flood 
damage. However, prediction accuracy must be balanced by 
two other non-functional considerations: energy efficiency 
(because sensor nodes have a limited power supply) and fault-
tolerance (because sensor nodes are deployed remotely). The 
objective of the case study was to generate a suite of 
behavioral models for a single sensor node, where the models 
make different non-functional tradeoffs (i.e., different 
combinations of energy efficiency, prediction accuracy, and 
fault-tolerance) and yet all satisfy the overall functional 
objective of monitoring the river to collect data and pass it 
along to nearby nodes.   

Different scenario tasks captured different non-functional 
tradeoffs. Specifically, three tasks rewarded models that 
supported scenarios for setting different processor speeds 
while completing various functions on the sensor, and six 
tasks rewarded models that supported scenarios where the 
sensor used different data transmission methods. A model 
needs to only have one path that performs a scenario behavior 
in order to receive the associated reward, and can receive a 
partial reward for partial completion of a scenario. For 
example, one scenario required a node to set its processor 
speed to 100, then query the pressure sensor at this speed for 
the water depth, and finally to set its depth data to the query 
result. A model received 50% of this scenario task reward if it 
set its processor speed to 100, 75% if it also queried the 
pressure sensor, and 100% if it completed the entire scenario.  

Witness and property tasks built upon the scenario tasks to 
reward for desired overall system behavior; for example 
sending flood predictions based on current water depth. This 
prediction-sending witness task rewarded organisms that 
developed models that contained an execution path that 
checked the water depth, calculated a prediction, and 
transmitted that prediction. The associated property task only 
rewarded a model if every possible execution path performed 
that same behavior. Checking if a model supported a scenario 
was simple and quick, however checking if a model satisfied a 
witness or property task was difficult and time-intensive; in 
the worst case all possible execution paths of the model had to 
be checked. 

To avoid unnecessary witness and property task checking, 
models were required to support a minimum set of scenarios 
before they were even considered as candidates for satisfying 
overall system properties. For example, a model could not 

perform the previous witness/property example of sending a 
prediction based on current water depth if it did not use some 
method to check the water depth and successfully send its 
prediction. Thus, there was no reason to check for this system 
property unless a model supported one scenario associated 
with each of those behaviors. In fact, to satisfy any of the 
Grid-Stix behavioral requirements, a model needed to support 
one of each of the scenario alternatives (i.e., one processor 
speed and one transmission method), as well as 3 other 
required scenarios. These combinations of the 3 processor 
speed scenarios and 6 transmission method scenarios yielded 
18 possible behavioral models or phenotypes, each of which 
represented a different combination of the non-functional 
properties (energy efficiency, prediction accuracy, and fault-
tolerance). Although the previous Avida-MDE study 
successfully generated satisfactory behavioral models that 
represented some of the phenotypes, diverse models were 
found only by evolving many separate populations (the 
original study evolved 40 separate populations each with 
3,600 individuals), and still the experiments were unable to 
discover all 18.  

Experiments and Results 

Generating a diverse suite of models 
Our first objective is to assess how well the Eco-EA version 
of Avida-MDE performs compared to the original, single-
niche version of Avida-MDE. The Grid-Stix problem provides 
an excellent case study for comparison, since one of the 
desired outcomes is to generate a suite of models, each of 
which minimally satisfies the required properties specified by 
the developer, but may also contain additional behavior that 
makes it suitable for domains that were not explicitly 
provided. A simple way to determine what additional behavior 
a model may possess is to consider which scenario it uses 
from each of the non-functional scenario sets. As described 
previously, there are 18 possible combinations of NF 
scenarios and therefore 18 unique phenotypes a model may 
represent, each of which yields a slightly different behavior in 
terms of energy efficiency, prediction accuracy, and fault-
tolerance. The original version of Avida-MDE was unable to 
evolve all 18 possible phenotypes, even across 40 runs. 

We compare the efficacy of the Eco-EA version of Avida-
MDE in evolving a diverse suite of models to Goldsby and 
Cheng’s previous results (Goldsby and Cheng 2008b). The 
key difference between the two approaches is how the NF 
scenarios are rewarded. In both versions of Avida-MDE, 
organisms can only receive a fitness gain for one scenario 
from each of the sets of NF scenarios (in the Grid-Stix study, 
one processor speed and one transmission method). If an 
organism supports multiple scenarios from a given set, then it 
is rewarded only for the first one it supports. In the original 
Avida-MDE, all tasks in the environment, including these 
scenario tasks, add a fixed amount to an organism’s fitness 
when they are performed. In the Eco-EA version, each NF 
scenario task corresponds to a limited resource in the 
environment. When an organism performs one of these 
scenario tasks it consumes a fraction of the available resource, 
reducing the amount of that resource available to other 
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organisms. The fitness gain the organism receives is 
proportional to the amount of resource it consumes. This 
resource-dependent fitness encourages organisms to evolve to 
support little-used scenarios, and creates an overall diverse 
population of models in terms of non-functional properties. 
The rest of the Avida-MDE tasks (including the required 
scenarios) are still rewarded in the Eco-EA using the standard 
fixed-reward method; these tasks represent properties and 
behavior required in all models and therefore we want them to 
confer a constant fitness gain regardless of the number of 
other individuals performing the same tasks. 

We perform 2 sets of 20 experiments, one set in each 
version of Avida-MDE. Slight improvements made to the 
original Avida-MDE after the previous results were published 
necessitated re-running the initial experiments in order to 
fairly compare the results of the Eco-EA version of Avida-
MDE. We ran each experiment for 25,000 updates (updates 
are units of time in Avida that are roughly proportional to 
generations) or 24 hours, whichever came first.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The number of unique phenotypes of models 
that satisfy the property in terms of non-functional 
property trade-offs found by all 20 runs in each 
environment over time. In this Grid-Stix problem there are 
18 possible combinations of transition each of which 
results in different non-functional behavior in the models. 
In the Eco-EA (limited resource environment), invariant-
satisfying models representing each of the 18 non-
functional phenotypic possibilities quickly evolve. In the 
tradition EA (single niche environment), models 
satisfying the invariant evolve more slowly and fewer of 
the non-functional based phenotypes are found even after 
a long period of evolution. Each experiment evolves a 
population of 1,000 individuals for 24 hours or 25,000 
updates, whichever comes first. 

 
As discussed above, checking property and witness tasks is 

time-consuming, leading populations to become very slow in 
Avida time once many individuals satisfy the requirements to 
be checked for these tasks, so the absolute 24 hour time limit 

is imposed as well. In this pair of experiments all of the 20 
Eco-EA replicates evolve to satisfy the property task and 
reach the 24 hour limit, ending between 1,000 and 5,000 
updates. Ten of the single-niche EA replicates reach the 24 
hour limit (the 9 that evolve the property task and one other 
that has models being checked for the property though it never 
evolves), ending between 2,000 and 23,000 updates, and the 
other 10 end at the 25,000 update cutoff. 

We find that the Eco-EA version of Avida-MDE not only 
generates a more diverse suite of final model phenotypes, but 
that it also evolves models satisfying the required functional 
property significantly faster than the traditional, single-
resource approach. Figure 1 shows the number of total unique 
phenotypes of models satisfying the required property found 
across 20 Avida experiments over time. The Eco-EA finds 
models satisfying the property before reaching 1,000 updates 
of evolution (~400 generations), and all 20 replicates find 
models by 5,000 updates. Across all 20 replicates the Eco-EA 
finds property-satisfying models of each of the 18 non-
functional phenotypes within 2000 updates of evolution (~800 
generations). In contrast, the traditional approach using a 
single niche only finds any model satisfying the required 
property in half of the replicates, and even in those that do 
find a satisfactory model the average time one is found is 
three times as long as in the Eco-EA (5000 updates vs. 1500 
updates). Even after 25,000 updates of evolution the single 
niche approach finds property-satisfying models representing 
only 6 of the 18 possible phenotypes. 
 
 

 
Figure 2. The average number of unique phenotypes of 
all models in each population in terms of non-functional 
properties. Eco-EA populations quickly diversify to cover 
most of the possible phenotypes well before evolving 
models that satisfy the property, while the single-niche 
EA is stuck on just one or two phenotypes per population. 
This means there are less evolutionary paths to find a 
model satisfying the property in the single-niche EA, and 
hence it takes longer. Each experiment evolves a 
population of 1,000 individuals for 24 hours or 25,000 
updates, whichever comes first. 
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The Eco-EA version of Avida-MDE also yields a 
significantly more diverse set of models in each individual 
experiment than the single-niche EA. Every one of the 20 
experiments using the Eco-EA yielded property-satisfying 
models. The final populations contained coexisting models 
representing between 8 and all 18 different phenotypes, with a 
mean of 14.8 phenotypes per population. In contrast, only 9 of 
the 20 single-niche Avida-MDE experiments evolved any 
property-satisfying models, with a maximum of 4 phenotypes 
in a single population. The average number of phenotypes 
found in the final populations of single-niche EA experiments 
was 2.85 (p<.001 comparing 2.85, s=3.7 to 14.8, s=2.9, with 
38df, using the independent group t-test for means). 

One could argue that since we know all 18 target 
phenotypes, we could simply evolve each of them in 
independent populations. However, there are several reasons 
we would expect this seemingly simpler method would not 
perform as well as Eco-EA. First, the Eco-EA is more 
generalizable to other problems; in many cases, developers 
will not know a priori what novel behavior a model may 
evolve and thus it is not always possible to enumerate the 
desired phenotypes. Second, the complex behavior required 
for a model to satisfy the required functional properties must 
be built on simpler behavior such as supporting scenarios. We 
posit that rewarding for many scenarios yields more potential 
pathways for evolution to follow in finding a model that 
satisfies the property.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Once a single property-satisfying model is found, it may be 
possible for that model to change its non-functional behavior 
while still maintaining the required behavior.  

The theory that the inclusion of more scenarios yields more 
evolutionary pathways and thus leads to faster evolution also 
may explain why the Eco-EA finds models satisfying the 
developer’s requirements faster than the single-niche EA. 
Figure 2 shows the average number of unique phenotypes 
(based on NF scenarios) of all models in each population, 
including those that do not satisfy the required property. To 
test this theory we performed experiments where instead of 
including tasks for all of the NF scenarios in the environment, 
we included only one scenario from each of the 2 sets, a single 
processor speed and a single transmission method. We 
performed 5 replicates of each of the 18 environments thus 
created, for a total of 90 experiments (as compared to the 20 
performed including all of the scenarios). We found that when 
only rewarding for a single phenotype, no model satisfying 
the required behavioral property ever appeared. The Eco-EA 
populations diversify quickly to contain individuals of almost 
all of the phenotypes in each population, while the single-
niche populations are stuck on just one or two of the possible 
phenotypes, giving evolution fewer possible paths to a model 
satisfying the property. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The number of unique phenotypes of models that satisfy the property found by all 
20 runs for each treatment over time. (A) Performance of each version of Avida-MDE when 
seeded with each of the 5 models originally evolved in the Eco-EA environment. While the 
individual models yield highly varying results, the Eco-EA quickly evolves all 18 
phenotypes no matter which of the 5 it is seeded with. The single-niche environment is never 
able to find all 18 phenotypes. (B) Similar results occur when populations are seeded with 
models originally evolved in the single-niche environment. The Eco-EA now only generates 
all 18 phenotypes for 2 of the initial models, but still generates more phenotypes in the worst 
case (12) than the single-niche EA generates in the best case (8). Each experiment evolves a 
population of 1,000 individuals for 24 hours.  
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Evolvability of Models 
A common situation is for a developer to have already 
developed one model suited to a given set of conditions, and 
needs a suite of models appropriate for a variety of condition 
domains. We therefore compared the evolving population of 
the Eco-EA version of Avida-MDE to that of the single-niche 
EA when the population is initially filled with copies of one 
individual that builds a model already satisfying the required 
behavior.  

We randomly selected 5 individuals that generated models 
satisfying the required property from those evolved using the 
Eco-EA version of Avida-MDE, with the specification that 
they each come from a different replicate population and each 
represent a different non-functional phenotype. We then did 
the same with the models evolved using the original Avida-
MDE, ensuring that we chose the same 5 phenotypes as the 
former set. For each of the 10 chosen models, we used the 
model to seed the initial populations of 20 replicate 
experiments where we continued evolution in the Eco-EA 
environment, and 20 where we continued evolution in the 
original single-niche environment.  

We find two key results; 1) the Eco-EA environment 
generates a more diverse suite of models more quickly than 
the original single-niche environment; 2) the individuals 
evolved in the Eco-EA environment appear to be more 
evolvable in terms of generating diverse phenotypes than 
those evolved in the single-niche environment. Figure 3 shows 
that the Eco-EA version of Avida-MDE quickly generates 
diverse populations representing models of many (and often 
all) phenotypes no matter which model the population is 
seeded with, while the single-resource EA tends to only 
evolve phenotypes close in genetic space to that of the initial 
model.  

It also appears that models originally evolved in the Eco-
EA environment yield more diverse phenotypes in either 
environment when they are used to seed the initial population; 
the Eco-EA generates all 18 possible phenotypes when seeded 
with any of the 5 models initially evolved using the Eco-EA, 
and the single-niche EA generates over 11 phenotypes when 
seeded with 4 of these models, while the most it ever finds 
when seeded with models initially evolved in the single-niche 
environment is 8 phenotypes. The increased evolvability of 
models initially evolved in the Eco-EA version of Avida-
MDE can be seen more clearly in figure 4, where the average 
results across all 5 seed models are shown for each of the 4 
treatments.  

Once again we find that the Eco-EA version of Avida-MDE 
not only evolves a more diverse set of phenotypes more 
quickly than the single-resource approach across sets of all 20 
runs, but it also yields higher diversity in individual runs. 
When averaging all runs across all 10 seed models, the Eco-
EA evolves an average of 17.1 phenotypes per run, while the 
single-resource EA evolves an average of only 8.4 phenotypes 
(p<.001 comparing 17.1, s=1.25 to 8.4, s=2.7 using the 
independent group t-test for means). 

The individual run diversity also differs based on which 
environment the seed models were evolved in. Averaging all 
runs from both environments when seeded with the 10 models 
evolved using the Eco-EA, 14.8 unique phenotypes are 
generated per run, vs. 10.7 phenotypes per run when 
populations are seeded with the models evolved in the single-

niche environment (p<.001  comparing 14.8, s=1.7 to 10.7, 
s=2.2 using the independent group t-test for means). 
 

 

Figure 4. Average of data with error bars (+/- 1 standard 
error) for each of 4 experimental treatments (All 
combinations of 2 types of seed models; those evolved in 
the Eco-EA environment or those evolved in the single-
niche environment, and 2 environments for continued 
evolution; the Eco-EA and the single-niche). The line for 
each treatment represents the average of the 5 sets of 
experiments, one for each model used in that treatment. 
The data for each of the 5 sets is the number of unique 
phenotypes found by all 20 populations in that set over 
time. The Eco-EA finds on average a more diverse set of 
models than the single-niche EA no matter which type of 
models it is seeded with. Both environments find a 
significantly more diverse set of models when seeded with 
models initially evolved using the Eco-EA than those 
evolved using the single-niche EA. 

 
 

This result is something we would like to explore more 
thoroughly, as we can not yet identify what exactly makes the 
models evolved in the Eco-EA environment more able to 
diversify in any environment during further evolution.  We 
found that one of the models evolved by the Eco-EA actually 
represented multiple phenotypes itself, as it stochastically 
performed one of 2 different options for the transmission 
scenario.  However the other 4 models did not show this 
behavior so that cannot explain the overall result. Hypotheses 
we would like to test include that the Eco-EA evolved models 
could do well when they switch frequently between 
performing different scenarios, and so there may be selective 
pressure for them to be only one or two mutations away from 
performing a different set of scenarios at any given time. 
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Conclusion 
In this paper, we compared the performance of Eco-EA to a 
more traditional EA (Avida-MDE) on a complex software 
engineering problem. Specifically, we used both Eco-EA and 
Avida-MDE to generate software models for a flood warning 
system.  For this problem, there were 18 possible models 
(phenotypes) that all met the functional system objectives 
(i.e., detect flooding), but did so using a variety of different 
non-functional tradeoffs. Eco-EA provided three significant 
advantages over Avida-MDE. First, Eco-EA more rapidly 
evolved organisms that generated models that satisfied the 
developer’s requirements. Second, Eco-EA evolved a more 
diverse set of solutions that represented models with different 
properties.  Lastly, when the models created by Avida-MDE 
and Eco-EA were used as seeds for subsequent experiments, 
the solutions created by Eco-EA exhibited greater 
evolvability. These results indicate that the Eco-EA facilitates 
the evolution of solutions to complex problems. 

In the future, we plan to apply Eco-EA to complex 
problems in different domains. One potentially interesting 
area of investigation is problems whose solutions may require 
explicit cooperation among the various species present within 
the population. Additionally, we are working on extending 
Eco-EA to other areas of evolutionary computation, such as 
natural problem decomposition and multi-objective 
optimization. 
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