
© 2012 Massachusetts Institute of Technology  Artificial Life 13: 171–177

An ecology-based evolutionary algorithm to evolve solutions to complex problems

Sherri Goings1, Heather Goldsby2, Betty H.C. Cheng3, and Charles Ofria3

1Computer Science Dept., Carleton College, MN, 55057
2University of Washington, Seattle, WA, 98195

3Deptartment of Computer Science & Engineering, Michigan State University, East Lansing, MI, 48824
sgoings@carleton.edu

Abstract
Evolutionary algorithms have shown great promise in evolving
novel solutions to real-world problems, but the complexity of
those solutions is limited, unlike the apparently open-ended
evolution that occurs in the natural world. In part, nature
surmounts these complexity barriers with ecological dynamics
that generate a diverse array of raw materials for evolution to
build upon. The authors previously introduced Eco-EA, an
evolutionary algorithm that integrates these natural ecological
dynamics to promote and maintain diversity in the evolving
population. Here, we apply the Eco-EA to the real-world
software engineering problem of evolving behavioral models
for deployed nodes in a remote sensor network for flood
monitoring. We show that the Eco-EA evolves good behavioral
models faster than a traditional EA, generates a more diverse
suite of models than a traditional EA, and creates models that
are themselves more evolvable than those created by a
traditional EA.

Introduction
Evolutionary algorithms (EAs) have shown great promise in
evolving novel solutions to real-world problems, but the
complexity of those solutions is limited, unlike the apparently
open-ended evolution that occurs in the natural world. In part,
nature surmounts these complexity barriers with natural
ecological dynamics that generate an incredibly diverse array
of raw materials for the evolutionary process to build upon,
the efficacy of which has been demonstrated in the artificial
life system Avida (Cooper and Ofria, 2002).

For EAs to solve more complex problems, we must study
how highly complex traits arise in the natural world, and
where EAs fall short in duplicating these dynamics. The
complexity of solutions produced by traditional EAs is
typically limited by rapid convergence to a single solution on
a sub-optimal local peak, resulting in stagnation. EA
researchers recognize the importance of maintaining variation
in evolving populations to prevent stagnation and make use of
a variety of diversity preserving techniques. However, it has
proven difficult to reach the levels of species density and
variety found in nature (such as in bio-films (Tyson et al.
2004) or biodiversity hotspots like rain forests (Gaston 2000))
or even the high intra-species variance of individual values for
a given trait. In nature, simple ecological forces promote this
diversity, due to both spatial and temporal environmental
heterogeneity, combined with negative frequency-dependent
selection (Tilman, 1982).

Diversity in a population can provide other significant
advantages beyond forestalling stagnation. Potential benefits
to evolutionary algorithms include: (1) maintenance of a
selection of good solutions for the researcher to choose from,
often with slightly different properties; (2) representation
across a Pareto front for multi-objective optimization
problems; (3) the use of different partial-solutions as starting
points to build the full solution from, without the researcher
needing to know the ideal path; (4) resilient solutions that can
withstand environmental changes; and (5) significantly more
rapid evolution of targeted complex functions. Robust
ecological communities exhibit all of these traits.

The authors previously introduced a method to integrate
ecological factors promoting diversity into an EA using
limited resources, and showed that populations evolved with
this method were able to find and cover multiple niches in a
simple string matching problem (Goings and Ofria, 2009).
Here, we apply this new ecology-based evolutionary
algorithm (Eco-EA) to a real-world problem in software
engineering, and show that this approach yields several
advantages over a traditional EA, including:

1. faster evolution of satisfactory solutions

2. evolution of a more diverse array of solutions

3. creation of solutions with greater evolvability that are
easily adapted to succeed in different environments.

These results indicate that the ecology-based EA facilitates
the evolution of solutions to complex problems.

Background

Eco-EA

As demonstrated by (Cooper and Ofria, 2002), forcing
individuals to compete for multiple limited resources will
force a population to maintain higher levels of diversity. A
traditional EA can be thought of as having only one resource,
where each individual’s fitness is determined by the amount
of that resource it can obtain. In most cases, the population
size in an EA is fixed, thus making space its only limited
resource (which organisms claim as they replicate). In the
Eco-EA proposed by the authors in (Goings and Ofria, 2009),
each function performed by an individual is associated with a
distinct resource. When an individual performs a function it

jfurbush
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-31050-5-ch024

receives a predetermined fraction of the currently available
amount of the associated resource and its fitness is increased
proportionately. These resources are set up as the
computational equivalent of a well-stirred chemostat; that is,
each resource flows into the environment at a constant rate,
and a small percentage of the available resource flows out,
limiting the total accumulation. Exploration of new areas of
the fitness landscape is highly rewarded as an unused resource
will accrue in quantity; as such, the individual first to discover
the resource will receive a large fitness boost. However, when
many organisms perform functions that consume the same
resource, the availability of that resource will decrease until
further organisms who attempt to draw from it do not receive
enough reward to offset the opportunity cost of targeting a
different resource.

Eco-EA in Avida
The experiments performed in this study used the Avida
digital evolution research platform (Ofria and Wilke, 2004).
Avida maintains a population of asexual self-replicating
computer programs (“digital organisms”) that exist in a
computational environment and are subject to mutations and
natural selection. Each digital organism has a genome that is a
sequence of instructions in a special-purpose programming
language. As in natural organisms, this genome specifies the
behavior of the individual. Typically, in Avida, this behavior
includes the replication of the organism, but for this study we
used an explicit fitness function and organisms were
replicated in time inversely proportional to their fitness (i.e.
higher fitness yields faster replication), similar to the process
of a steady-state evolutionary algorithm. This change removed
the extra selection pressure for organisms to improve their
replication mechanism and simplified the analysis of
individual organisms. Random mutations occur during
replication and include substitutions, insertions, and deletions.
The Avida instruction set is designed so that mutations always
yield a syntactically correct program, albeit one that may not
perform any meaningful computation. When an organism
replicates, its offspring replaces a randomly chosen individual
currently in the population. Thus Avida maintains a constant
population size.

The environment used in this study contains a set of
resources, each of which corresponds to a user-defined task.
An organism must perform a task to receive a portion of the
available corresponding resource. The fitness of an organism
is determined by how much of each resource it consumes. In
most Avida studies, as with most evolutionary algorithms,
resources are unlimited, creating a single-niche environment
where an organism receives a fixed amount of resource for
each task completed. Thus, the fitness gained for completing a
task is constant and does not reflect how many other
organisms are also performing that task. In this study,
however, we incorporate the ecological factor of limited
resources to create a multi-niche environment that encourages
the evolving population to diversify.

Avida-MDE
For this study, we use a software engineering extension to
Avida called Avida-MDE (Avida for Model-Driven
Engineering), previously developed by Goldsby and Cheng

(Goldsby and Cheng, 2008a). We briefly describe the
motivation for the creation of Avida-MDE, establish its links
to real-world problems, and provide a high-level overview of
how it uses Avida to automate software engineering research.

Model-driven engineering is a leading software engineering
approach to developing complex software-based systems,
including on-board control software for automotive and flight
systems, ecosystem monitoring, and robotic systems. Many of
these systems are considered high-assurance, meaning that
they must satisfy safety requirements under a variety of
environmental conditions. Model-driven engineering works
by systematically refining graphical models that can be
analyzed for adherence to requirements using a variety of
analysis tools, and then automatically used to generate code
(Schmidt, 2006). Konrad et al. have proposed a modeling and
analysis process for such high-assurance systems (Konrad et
al. 2007) where a system is represented by a class diagram
that captures the structural elements and several behavioral
models. A given behavioral model comprises a set of state
diagrams, one for each class in the class diagram, and
represents the behavior of the system under specific
environmental conditions.

Manually developing the behavioral models for a system
can be tedious and error prone, since each model must be
created independently and it requires the developer to have
foreknowledge of the possible environmental conditions.
Avida-MDE is a digital evolution tool that automates this
process by generating a suite of behavioral models given
information from the class diagram (Goldsby and Cheng,
2008b). At a high level, Avida-MDE accepts a list of triggers,
guards, and actions (created using class diagram elements) as
input. These inputs are provided to each digital organism,
which uses them as raw material for constructing a set of state
diagrams. A new genetic language was implemented in
Avida-MDE to enable organisms to manipulate the state
diagrams and thus change the behavior of the model it
generates. The details of this language and how the digital
organisms generate models can be found in (Goldsby and
Cheng, 2008b). The key concept is that a mutation to an
organism’s genome changes the behavioral model that it
creates.

To evaluate the generated behavioral models (and thus the
organisms themselves), Avida-MDE uses a suite of software
engineering tools. Several tasks were added to the Avida
environment, which have previously been linked only to
unlimited resources. Software engineering metric tasks, such
as minimizing the number of transitions and maximizing the
number of deterministic states, guide the evolutionary process
to generate models that adhere to commonly advocated
software engineering practices. Scenario tasks reward
organisms for creating models that support one desired
execution path, or scenario. Scenarios encapsulate small
excerpts of model behavior that can be combined and
expanded to achieve the desired overall system behavior. To
account for the uncertainty in the execution environment, a
developer can specify two types of scenarios; (1) required
functional scenarios must be supported by the generated
models; (2) non-functional (NF) scenarios each of which
specify a different way to achieve the same functional
objective with different non-functional characteristics (e.g.,
quality, reliability). A model must support at least one of each

An ecology-based evolutionary algorithm to evolve solutions to complex problems

172  Artificial Life 13

type of NF scenarios. The specific NF scenario supported by a
model impacts its non-functional behavior. Next, witness
property tasks reward models for having at least one
execution path that supports a desired system property. Lastly,
property tasks are included to reward models for having all
possible execution paths support a desired system property.
For example, “no data is ever lost,” “battery levels never drop
below a threshold value,” or “water level never exceeds a
maximum value.”

Grid-Stix
Avida-MDE was previously used to generate behavioral
models for Grid-Stix, a light-weight flood warning system that
comprises a set of sensor nodes. Grid-Stix is used to monitor
the water levels for potential flood conditions with the River
Ribble in England (Hughes et al. 2006). Flooding is an
increasing and costly problem for the United Kingdom, and
early flooding predictions enable fast responses to avert flood
damage. However, prediction accuracy must be balanced by
two other non-functional considerations: energy efficiency
(because sensor nodes have a limited power supply) and fault-
tolerance (because sensor nodes are deployed remotely). The
objective of the case study was to generate a suite of
behavioral models for a single sensor node, where the models
make different non-functional tradeoffs (i.e., different
combinations of energy efficiency, prediction accuracy, and
fault-tolerance) and yet all satisfy the overall functional
objective of monitoring the river to collect data and pass it
along to nearby nodes.

Different scenario tasks captured different non-functional
tradeoffs. Specifically, three tasks rewarded models that
supported scenarios for setting different processor speeds
while completing various functions on the sensor, and six
tasks rewarded models that supported scenarios where the
sensor used different data transmission methods. A model
needs to only have one path that performs a scenario behavior
in order to receive the associated reward, and can receive a
partial reward for partial completion of a scenario. For
example, one scenario required a node to set its processor
speed to 100, then query the pressure sensor at this speed for
the water depth, and finally to set its depth data to the query
result. A model received 50% of this scenario task reward if it
set its processor speed to 100, 75% if it also queried the
pressure sensor, and 100% if it completed the entire scenario.

Witness and property tasks built upon the scenario tasks to
reward for desired overall system behavior; for example
sending flood predictions based on current water depth. This
prediction-sending witness task rewarded organisms that
developed models that contained an execution path that
checked the water depth, calculated a prediction, and
transmitted that prediction. The associated property task only
rewarded a model if every possible execution path performed
that same behavior. Checking if a model supported a scenario
was simple and quick, however checking if a model satisfied a
witness or property task was difficult and time-intensive; in
the worst case all possible execution paths of the model had to
be checked.

To avoid unnecessary witness and property task checking,
models were required to support a minimum set of scenarios
before they were even considered as candidates for satisfying
overall system properties. For example, a model could not

perform the previous witness/property example of sending a
prediction based on current water depth if it did not use some
method to check the water depth and successfully send its
prediction. Thus, there was no reason to check for this system
property unless a model supported one scenario associated
with each of those behaviors. In fact, to satisfy any of the
Grid-Stix behavioral requirements, a model needed to support
one of each of the scenario alternatives (i.e., one processor
speed and one transmission method), as well as 3 other
required scenarios. These combinations of the 3 processor
speed scenarios and 6 transmission method scenarios yielded
18 possible behavioral models or phenotypes, each of which
represented a different combination of the non-functional
properties (energy efficiency, prediction accuracy, and fault-
tolerance). Although the previous Avida-MDE study
successfully generated satisfactory behavioral models that
represented some of the phenotypes, diverse models were
found only by evolving many separate populations (the
original study evolved 40 separate populations each with
3,600 individuals), and still the experiments were unable to
discover all 18.

Experiments and Results

Generating a diverse suite of models
Our first objective is to assess how well the Eco-EA version
of Avida-MDE performs compared to the original, single-
niche version of Avida-MDE. The Grid-Stix problem provides
an excellent case study for comparison, since one of the
desired outcomes is to generate a suite of models, each of
which minimally satisfies the required properties specified by
the developer, but may also contain additional behavior that
makes it suitable for domains that were not explicitly
provided. A simple way to determine what additional behavior
a model may possess is to consider which scenario it uses
from each of the non-functional scenario sets. As described
previously, there are 18 possible combinations of NF
scenarios and therefore 18 unique phenotypes a model may
represent, each of which yields a slightly different behavior in
terms of energy efficiency, prediction accuracy, and fault-
tolerance. The original version of Avida-MDE was unable to
evolve all 18 possible phenotypes, even across 40 runs.

We compare the efficacy of the Eco-EA version of Avida-
MDE in evolving a diverse suite of models to Goldsby and
Cheng’s previous results (Goldsby and Cheng 2008b). The
key difference between the two approaches is how the NF
scenarios are rewarded. In both versions of Avida-MDE,
organisms can only receive a fitness gain for one scenario
from each of the sets of NF scenarios (in the Grid-Stix study,
one processor speed and one transmission method). If an
organism supports multiple scenarios from a given set, then it
is rewarded only for the first one it supports. In the original
Avida-MDE, all tasks in the environment, including these
scenario tasks, add a fixed amount to an organism’s fitness
when they are performed. In the Eco-EA version, each NF
scenario task corresponds to a limited resource in the
environment. When an organism performs one of these
scenario tasks it consumes a fraction of the available resource,
reducing the amount of that resource available to other

An ecology-based evolutionary algorithm to evolve solutions to complex problems

173  Artificial Life 13

organisms. The fitness gain the organism receives is
proportional to the amount of resource it consumes. This
resource-dependent fitness encourages organisms to evolve to
support little-used scenarios, and creates an overall diverse
population of models in terms of non-functional properties.
The rest of the Avida-MDE tasks (including the required
scenarios) are still rewarded in the Eco-EA using the standard
fixed-reward method; these tasks represent properties and
behavior required in all models and therefore we want them to
confer a constant fitness gain regardless of the number of
other individuals performing the same tasks.

We perform 2 sets of 20 experiments, one set in each
version of Avida-MDE. Slight improvements made to the
original Avida-MDE after the previous results were published
necessitated re-running the initial experiments in order to
fairly compare the results of the Eco-EA version of Avida-
MDE. We ran each experiment for 25,000 updates (updates
are units of time in Avida that are roughly proportional to
generations) or 24 hours, whichever came first.

Figure 1. The number of unique phenotypes of models
that satisfy the property in terms of non-functional
property trade-offs found by all 20 runs in each
environment over time. In this Grid-Stix problem there are
18 possible combinations of transition each of which
results in different non-functional behavior in the models.
In the Eco-EA (limited resource environment), invariant-
satisfying models representing each of the 18 non-
functional phenotypic possibilities quickly evolve. In the
tradition EA (single niche environment), models
satisfying the invariant evolve more slowly and fewer of
the non-functional based phenotypes are found even after
a long period of evolution. Each experiment evolves a
population of 1,000 individuals for 24 hours or 25,000
updates, whichever comes first.

As discussed above, checking property and witness tasks is

time-consuming, leading populations to become very slow in
Avida time once many individuals satisfy the requirements to
be checked for these tasks, so the absolute 24 hour time limit

is imposed as well. In this pair of experiments all of the 20
Eco-EA replicates evolve to satisfy the property task and
reach the 24 hour limit, ending between 1,000 and 5,000
updates. Ten of the single-niche EA replicates reach the 24
hour limit (the 9 that evolve the property task and one other
that has models being checked for the property though it never
evolves), ending between 2,000 and 23,000 updates, and the
other 10 end at the 25,000 update cutoff.

We find that the Eco-EA version of Avida-MDE not only
generates a more diverse suite of final model phenotypes, but
that it also evolves models satisfying the required functional
property significantly faster than the traditional, single-
resource approach. Figure 1 shows the number of total unique
phenotypes of models satisfying the required property found
across 20 Avida experiments over time. The Eco-EA finds
models satisfying the property before reaching 1,000 updates
of evolution (~400 generations), and all 20 replicates find
models by 5,000 updates. Across all 20 replicates the Eco-EA
finds property-satisfying models of each of the 18 non-
functional phenotypes within 2000 updates of evolution (~800
generations). In contrast, the traditional approach using a
single niche only finds any model satisfying the required
property in half of the replicates, and even in those that do
find a satisfactory model the average time one is found is
three times as long as in the Eco-EA (5000 updates vs. 1500
updates). Even after 25,000 updates of evolution the single
niche approach finds property-satisfying models representing
only 6 of the 18 possible phenotypes.

Figure 2. The average number of unique phenotypes of
all models in each population in terms of non-functional
properties. Eco-EA populations quickly diversify to cover
most of the possible phenotypes well before evolving
models that satisfy the property, while the single-niche
EA is stuck on just one or two phenotypes per population.
This means there are less evolutionary paths to find a
model satisfying the property in the single-niche EA, and
hence it takes longer. Each experiment evolves a
population of 1,000 individuals for 24 hours or 25,000
updates, whichever comes first.

An ecology-based evolutionary algorithm to evolve solutions to complex problems

174  Artificial Life 13

The Eco-EA version of Avida-MDE also yields a
significantly more diverse set of models in each individual
experiment than the single-niche EA. Every one of the 20
experiments using the Eco-EA yielded property-satisfying
models. The final populations contained coexisting models
representing between 8 and all 18 different phenotypes, with a
mean of 14.8 phenotypes per population. In contrast, only 9 of
the 20 single-niche Avida-MDE experiments evolved any
property-satisfying models, with a maximum of 4 phenotypes
in a single population. The average number of phenotypes
found in the final populations of single-niche EA experiments
was 2.85 (p<.001 comparing 2.85, s=3.7 to 14.8, s=2.9, with
38df, using the independent group t-test for means).

One could argue that since we know all 18 target
phenotypes, we could simply evolve each of them in
independent populations. However, there are several reasons
we would expect this seemingly simpler method would not
perform as well as Eco-EA. First, the Eco-EA is more
generalizable to other problems; in many cases, developers
will not know a priori what novel behavior a model may
evolve and thus it is not always possible to enumerate the
desired phenotypes. Second, the complex behavior required
for a model to satisfy the required functional properties must
be built on simpler behavior such as supporting scenarios. We
posit that rewarding for many scenarios yields more potential
pathways for evolution to follow in finding a model that
satisfies the property.

Once a single property-satisfying model is found, it may be
possible for that model to change its non-functional behavior
while still maintaining the required behavior.

The theory that the inclusion of more scenarios yields more
evolutionary pathways and thus leads to faster evolution also
may explain why the Eco-EA finds models satisfying the
developer’s requirements faster than the single-niche EA.
Figure 2 shows the average number of unique phenotypes
(based on NF scenarios) of all models in each population,
including those that do not satisfy the required property. To
test this theory we performed experiments where instead of
including tasks for all of the NF scenarios in the environment,
we included only one scenario from each of the 2 sets, a single
processor speed and a single transmission method. We
performed 5 replicates of each of the 18 environments thus
created, for a total of 90 experiments (as compared to the 20
performed including all of the scenarios). We found that when
only rewarding for a single phenotype, no model satisfying
the required behavioral property ever appeared. The Eco-EA
populations diversify quickly to contain individuals of almost
all of the phenotypes in each population, while the single-
niche populations are stuck on just one or two of the possible
phenotypes, giving evolution fewer possible paths to a model
satisfying the property.

Figure 3. The number of unique phenotypes of models that satisfy the property found by all
20 runs for each treatment over time. (A) Performance of each version of Avida-MDE when
seeded with each of the 5 models originally evolved in the Eco-EA environment. While the
individual models yield highly varying results, the Eco-EA quickly evolves all 18
phenotypes no matter which of the 5 it is seeded with. The single-niche environment is never
able to find all 18 phenotypes. (B) Similar results occur when populations are seeded with
models originally evolved in the single-niche environment. The Eco-EA now only generates
all 18 phenotypes for 2 of the initial models, but still generates more phenotypes in the worst
case (12) than the single-niche EA generates in the best case (8). Each experiment evolves a
population of 1,000 individuals for 24 hours.

An ecology-based evolutionary algorithm to evolve solutions to complex problems

175  Artificial Life 13

Evolvability of Models
A common situation is for a developer to have already
developed one model suited to a given set of conditions, and
needs a suite of models appropriate for a variety of condition
domains. We therefore compared the evolving population of
the Eco-EA version of Avida-MDE to that of the single-niche
EA when the population is initially filled with copies of one
individual that builds a model already satisfying the required
behavior.

We randomly selected 5 individuals that generated models
satisfying the required property from those evolved using the
Eco-EA version of Avida-MDE, with the specification that
they each come from a different replicate population and each
represent a different non-functional phenotype. We then did
the same with the models evolved using the original Avida-
MDE, ensuring that we chose the same 5 phenotypes as the
former set. For each of the 10 chosen models, we used the
model to seed the initial populations of 20 replicate
experiments where we continued evolution in the Eco-EA
environment, and 20 where we continued evolution in the
original single-niche environment.

We find two key results; 1) the Eco-EA environment
generates a more diverse suite of models more quickly than
the original single-niche environment; 2) the individuals
evolved in the Eco-EA environment appear to be more
evolvable in terms of generating diverse phenotypes than
those evolved in the single-niche environment. Figure 3 shows
that the Eco-EA version of Avida-MDE quickly generates
diverse populations representing models of many (and often
all) phenotypes no matter which model the population is
seeded with, while the single-resource EA tends to only
evolve phenotypes close in genetic space to that of the initial
model.

It also appears that models originally evolved in the Eco-
EA environment yield more diverse phenotypes in either
environment when they are used to seed the initial population;
the Eco-EA generates all 18 possible phenotypes when seeded
with any of the 5 models initially evolved using the Eco-EA,
and the single-niche EA generates over 11 phenotypes when
seeded with 4 of these models, while the most it ever finds
when seeded with models initially evolved in the single-niche
environment is 8 phenotypes. The increased evolvability of
models initially evolved in the Eco-EA version of Avida-
MDE can be seen more clearly in figure 4, where the average
results across all 5 seed models are shown for each of the 4
treatments.

Once again we find that the Eco-EA version of Avida-MDE
not only evolves a more diverse set of phenotypes more
quickly than the single-resource approach across sets of all 20
runs, but it also yields higher diversity in individual runs.
When averaging all runs across all 10 seed models, the Eco-
EA evolves an average of 17.1 phenotypes per run, while the
single-resource EA evolves an average of only 8.4 phenotypes
(p<.001 comparing 17.1, s=1.25 to 8.4, s=2.7 using the
independent group t-test for means).

The individual run diversity also differs based on which
environment the seed models were evolved in. Averaging all
runs from both environments when seeded with the 10 models
evolved using the Eco-EA, 14.8 unique phenotypes are
generated per run, vs. 10.7 phenotypes per run when
populations are seeded with the models evolved in the single-

niche environment (p<.001 comparing 14.8, s=1.7 to 10.7,
s=2.2 using the independent group t-test for means).

Figure 4. Average of data with error bars (+/- 1 standard
error) for each of 4 experimental treatments (All
combinations of 2 types of seed models; those evolved in
the Eco-EA environment or those evolved in the single-
niche environment, and 2 environments for continued
evolution; the Eco-EA and the single-niche). The line for
each treatment represents the average of the 5 sets of
experiments, one for each model used in that treatment.
The data for each of the 5 sets is the number of unique
phenotypes found by all 20 populations in that set over
time. The Eco-EA finds on average a more diverse set of
models than the single-niche EA no matter which type of
models it is seeded with. Both environments find a
significantly more diverse set of models when seeded with
models initially evolved using the Eco-EA than those
evolved using the single-niche EA.

This result is something we would like to explore more
thoroughly, as we can not yet identify what exactly makes the
models evolved in the Eco-EA environment more able to
diversify in any environment during further evolution. We
found that one of the models evolved by the Eco-EA actually
represented multiple phenotypes itself, as it stochastically
performed one of 2 different options for the transmission
scenario. However the other 4 models did not show this
behavior so that cannot explain the overall result. Hypotheses
we would like to test include that the Eco-EA evolved models
could do well when they switch frequently between
performing different scenarios, and so there may be selective
pressure for them to be only one or two mutations away from
performing a different set of scenarios at any given time.

An ecology-based evolutionary algorithm to evolve solutions to complex problems

176  Artificial Life 13

Conclusion
In this paper, we compared the performance of Eco-EA to a
more traditional EA (Avida-MDE) on a complex software
engineering problem. Specifically, we used both Eco-EA and
Avida-MDE to generate software models for a flood warning
system. For this problem, there were 18 possible models
(phenotypes) that all met the functional system objectives
(i.e., detect flooding), but did so using a variety of different
non-functional tradeoffs. Eco-EA provided three significant
advantages over Avida-MDE. First, Eco-EA more rapidly
evolved organisms that generated models that satisfied the
developer’s requirements. Second, Eco-EA evolved a more
diverse set of solutions that represented models with different
properties. Lastly, when the models created by Avida-MDE
and Eco-EA were used as seeds for subsequent experiments,
the solutions created by Eco-EA exhibited greater
evolvability. These results indicate that the Eco-EA facilitates
the evolution of solutions to complex problems.

In the future, we plan to apply Eco-EA to complex
problems in different domains. One potentially interesting
area of investigation is problems whose solutions may require
explicit cooperation among the various species present within
the population. Additionally, we are working on extending
Eco-EA to other areas of evolutionary computation, such as
natural problem decomposition and multi-objective
optimization.

Acknowledgements

This work has been supported in part by NSF grants CCF-
0541131, CCF-0820220, CCF-643952 and CCF-0523449, DBI-
0939454, Army Research Office grant W911NF-08-1-0495, Ford
Motor Company, the DARPA “Fun Bio” program (HR0011-05-
1-0057), and a Quality Fund Program grant from Michigan State
University. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation, U.S. Army, Ford, or other research sponsors.
The authors also thank C. Adami and everyone in the Digital
Evolution Lab at Michigan State for their support, ideas, and
critiques contributed to this research, especially Dave Knoester.

References
Cooper, T.F. and Ofria, C. (2002). Evolution of stable ecosystems in

populations of Digital Organisms. In Artificial Life VIII, pages 227-
232. MIT Press, Cambridge, MA.

Tyson, G.W. et al. (2004). Community structure and metabolism through
reconstruction of microbial genomes from the environment. Nature,
428:37–43.

Gaston, K. J. (2000). Global Patterns in Biodiversity. Nature 405:220-
227.

Tilman, D. (1982). Resource Competition and Community Structure.
Princeton University Press, Princeton, NJ.

Goings, S. and Ofria, C. (2009). Ecological Approaches to Diversity
Maintenance in Evolutionary Algorithms. In IEEE-Alife, pages 124-
130. Published by IEEE.

Ofria, C. and Wilke, C.O. (2004). Avida: A Software Platform for
Research in Computational Evolutionary Biology. Artificial Life,
10:191-229.

Goldsby, H. J. and Cheng, B. H. C. (2008a). Automatically Generating
Behavioral Models of Adaptive Systems to Address Uncertainty. In
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MoDELS), pages 568-583. Springer-
Verlag Berlin, Heidelberg.

Schmidt, D.C. (2006). Model-Driven Engineering. IEEE Computer, 39:2.

Goldsby, H. J. and Cheng, B. H. C. (2008b). Avida-MDE: A Digital
Evolution Approach to Generating Models of Adaptive System
Behavior. In Genetic and Evolutionary Computation Conference,
pages 1751-1758. ACM, New York City, NY.

Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F.,
Smith, P. and Beven, K. (2006). An intelligent and adaptable flood
monitoring and warning system. In 5th UK E-Science All Hands
Meeting.

Konrad, S., Goldsby, H., and Cheng, B. H. C. (2007). i2MAP: An
Incremental and Iterative Modeling and Analysis Process. In
ACM/IEEE Int. Conference Model-Driven Engineering Languages
and Systems, pages 451-466. Springer, New York City, NY.

An ecology-based evolutionary algorithm to evolve solutions to complex problems

177  Artificial Life 13

