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Abstract—Legendre moments are continuous moments, hence, when applied to

discrete-space images, numerical approximation is involved and error occurs. This

paper proposes a method to compute the exact values of the moments by

mathematically integrating the Legendre polynomials over the corresponding

intervals of the image pixels. Experimental results show that the values obtained

match those calculated theoretically, and the image reconstructed from these

moments have lower error than that of the conventional methods for the same

order. Although the same set of exact Legendre moments can be obtained

indirectly from the set of geometric moments, the computation time taken is much

longer than the proposed method.

Index Terms—Moments, feature representation.
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1 INTRODUCTION

THE set of Legendre moments was introduced by Teague [1] as a

set of orthogonal moments for image analysis. Examples of

applications of Legendre moments include pattern recognition

[2], image indexing [3], face recognition [4], and line fitting [5].

However, when applied to discrete-space images, the set of

Legendre polynomials [6], [7], [8], which forms the kernel of the

Legendre moments, is approximated by sampling at fixed

intervals. Hence, the Legendre moments generated have approxi-

mated values and do not match those obtained theoretically.

Moreover, the error due to approximation generally increases as

the order of the moments is increased [9].
Previously, Liao and Pawlak [9], [10], [11] performed an error

analysis on the set of Legendre moments and proposed to use the

alternative extended Simpson’s rule (AESR) to minimize the error.

However, the moments computed, while small in error, is not

exact. Some other works on Legendre moments can be found in

[12], [11], [10], [9], [8], [7], [6], [5], [4], [3], [2].

This paper proposes an algorithm for the exact computation of

the set of Legendre moments. This is done by mathematically

integrating the Legendre polynomials over the corresponding

intervals of the image pixels when mapped into ½�1; 1� � ½�1; 1�. It
is shown that the method gives exact values when compared to

those obtained by theoretical calculations. Experimental results

show that the images reconstructed from the set of Legendre

moments calculated using the proposed method have lower errors

when compared to the that using zeroth-order approximation

(ZOA) or AESR. This is especially the case when considering the

fact that the later methods are susceptible to undersampling

(discussed in Section 3). Though there is an increase in the

computation time using the proposed method, it is marginal and

the difference in computation time between the proposed and the

conventional methods can be avoided by precomputing and

storing the related kernel.

Legendre moments can be expressed as the linear combinations

of geometric moments [18]. Hence, it can be shown that by first

computing the exact values of the set of geometricmoments and then

combining them linearly, the set of exact Legendre moments can be

formulated.However, though the exact values can beobtainedusing

this method, the computation time to derive them is much longer

than the method proposed in this paper. The experimental

validation for this point will be given later in this paper.
The rest of this paper is organized as follows: Section 2 gives an

theoretical overview of Legendre moments. Section 3 discusses the

effects of approximation on Legendre moments. In Section 4, we

propose a method to compute the set Legendre moments exactly.

Section 5 gives the experimental validation of the theoretical

framework. Section 6 concludes this paper.

2 LEGENDRE MOMENTS

Legendre moments of order ðmþ nÞ are defined as:

�mn ¼ ð2mþ 1Þð2nþ 1Þ
4

Z 1

�1

Z 1

�1

PmðxÞPnðyÞfðx; yÞdxdy; ð1Þ

where m;n ¼ 1; 2; 3; . . .1. The nth-order Legendre polynomials

are defined as:

PnðxÞ ¼
Xn
k¼0

ak;nx
k ¼ ð�1Þn

2nn!

d

dx

� �n

ð1� x2Þn
� �

; ð2Þ

and can also be written as [19]:

PnðxÞ ¼
XDðnÞ

k¼0

ð�1Þk ð2n� 2kÞ!
2nk!ðn� kÞ!ðn� 2kÞ! x

n�2k

¼ ð2nÞ!
2nðn!Þ2

xn � ð2n� 2Þ!
2n1!ðn� 1Þ!ðn� 2Þ!x

n�2 þ . . . ;

ð3Þ

where DðnÞ ¼ n=2 or ðn� 1Þ=2, whichever is an integer. The set of

Legendre polynomials fPnðxÞg forms a complete orthogonal basis

set on the interval ½�1; 1�:Z 1

�1

PnðxÞPmðxÞdx ¼ 2

2nþ 1
�nm: ð4Þ

For the computation of Legendre polynomials, the recurrence

relation can be used:

ðnþ 1ÞPnþ1ðxÞ � ð2nþ 1ÞxPnðxÞ þ nPn�1ðxÞ ¼ 0: ð5Þ

A piece-wise continuous and bounded image function fðx; yÞ can
be written as an infinite series of expansion in terms of the

Legendre polynomials over the square ½�1 � x; y � 1�:

fðx; yÞ ¼
X1
m¼0

X1
n¼0

�mnPmðxÞPnðyÞ; ð6Þ

where the Legendre moments f�mng are computed over the same

square. If only Legendre moments of order ðmþ nÞ � L are given,

then the function fðx; yÞ can be approximated by a truncated finite

series:

f̂fðx; y;LÞ ¼
XL
m¼0

Xm
n¼0

�m�n;nPm�nðxÞPnðyÞ: ð7Þ

If the Legendre moments are limited to those with m � mmax and

n � nmax, then the approximation becomes:

f̂fðx; y;mmax; nmaxÞ ¼
Xmmax

m¼0

Xnmax

n¼0

�mnPmðxÞPnðyÞ: ð8Þ
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3 APPROXIMATION ERROR

Considering a discrete-space image of size M �N . fðx; yÞ is

defined only for a discrete set of points ðxi; yjÞ 2 ½�1; 1� � ½�1; 1�,
i ¼ 0; 1; . . . ;M � 1, j ¼ 0; 1; . . . ; N � 1. Hence, from (1), we have:

�mn ¼ ð2mþ 1Þð2nþ 1Þ
4

XM�1

i¼0

XN�1

j¼0

fðxi; yjÞ

Z xiþ�xi
2

xi��xi
2

Z yjþ
�yj
2

yj�
�yj
2

PmðxÞPnðyÞdxdy;

ð9Þ

where �xi ¼ xiþ1 � xi and �yj ¼ yjþ1 � yj. The integral terms in
(9) are often evaluated by zeroth-order approximation, that is,
the values of Legendre polynomials are assumed to be constant
over the intervals xi � �xi

2 ; xi þ �xi
2

� �
and yj � �yj

2 ; yj þ �yj
2

h i
, and

the values for each interval are obtained by sampling the
Legendre polynomials at the central points of these intervals (see
Fig. 1). In this case, the set of approximated Legendre moments
is defined as:

b��mn ¼ ð2mþ 1Þð2nþ 1Þ
MN

XM�1

i¼0

XN�1

j¼0

fðxi; yjÞPmðxiÞPnðyjÞ: ð10Þ

This approximation of the integral terms causes error in the

computed Legendre moments and the error can be obtained by:

Eðb��mnÞ ¼ �mn � b��mn

¼ ð2mþ 1Þð2nþ 1Þ
4

XM�1

i¼0

XN�1

j¼0

fðxi; yjÞ

Z xiþ
�xi
2

xi�
�xi
2

Z yjþ
�yj
2

yj�
�yj
2

PmðxÞPnðyÞdxdy�
4

MN
PmðxiÞPnðyjÞ

" #
:

ð11Þ

It should be noted that this error increases as the number of
sampling points decreases and increases further if the order of the
moments is also increased [9]. This increase in error can be
explained from the perspective of the sampling problem. Legendre
polynomials are oscillating functions like sine and cosine functions.
This can be observed from the fact that, for the nth order Legendre
polynomial, all of the n zeros are real, distinct and are located
inside the interval ½�1; 1� [8]. This implies that when the order is
increased, the shape of the polynomial will oscillate at a higher
spatial-frequency. This is verified by comparing the plots of the
Legendre polynomials (dashed lines) as shown in Figs. 1a and 1b.
Fig. 1a shows the graphical plot of the third order Legendre
polynomial, where the curve crossed the line y ¼ 0 at three points.
Fig. 1b shows the Legendre polynomial of the 30th order, where the
line y ¼ 0 is crossed at 30 points. In this case, the curve is oscillating
at a much higher frequency. Since the zeroth-order approximated
Legendre moments are computed by first sampling the Legendre
polynomials at discrete intervals, the moments are susceptible to
information loss, especially if the Legendre polynomials are
undersampled. Note that the number of sampling points are fixed
by the size M �N of the image. Hence, when high-order moments
are considered, the sampling of the Legendre polynomials becomes
insufficient and hence undersampled. This can be observed by
comparing Figs. 1b and 1c. In Fig. 1b, only 10 sampling points are
used and, in Fig. 1c, 50 sampling points are used. In Fig. 1c, the
approximated Legendre polynomial (solid line) matches the actual
Legendre polynomial (dashed line) much better when compared to
the case of Fig. 1b. We shall see in the next section that this problem
can be remedied by computing the set of Legendre polynomials
exactly by integrations over the pixel intervals.

4 EXACT COMPUTATION OF LEGENDRE MOMENTS

In the previous section, the approximation of the integrals in (9) is

responsible for the approximation error of the Legendre moments.
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Fig. 1. The actual Legendre polynomials are shown by the dashed lines and the approximated ones by the solid lines. The approximated Legendre polynomials are

obtained by sampling the actual Legendre polynomials at the middle point of each sampling interval as indicated by “�.” (a) The third order Legendre polynomial sampled

at 10 points. (b) The 30th order Legendre polynomial sampled at 10 points. (c) The 30th order Legendre polynomial sampled at 50 points.



We propose to remedy this by evaluating the integrals directly by

using (3), that is:

Z xiþ
�xi
2

xi�
�xi
2

PmðxÞdx ¼
XDðmÞ

r¼0

Brm xm�2rþ1
� �xiþ�xi

2

xi�
�xi
2

;

Z yjþ
�yj
2

yj�
�yj
2

Pnydy ¼
XDðnÞ

s¼0

Bsn yn�2sþ1
� �yjþ�yj

2

yj�
�yj
2

;

ð12Þ

where

Bkn ¼ ð�1Þkð2n� 2kÞ!
2nk!ðn� kÞ!ðn� 2kþ 1Þ! : ð13Þ

Using (12), the set of Legendre moments can be computed exactly

without loss of information due to sampling. In computing fBkng,
the factorials can be avoided by utilizing the following recurrence

relation:

Bkn ¼ �ðn� kþ 1Þðn� 2kþ 3Þðn� 2kþ 2Þ
ð2n� 2kþ 2Þð2n� 2kþ 1Þk Bk�1;n ð14Þ

with

B0;n ¼ ð2nÞ!
2nn!ðnþ 1Þ! ¼

ð2n� 1Þ
ðnþ 1Þ B0;n�1; B0;0 ¼ 1: ð15Þ

For the sake of simplicity, we let:

QnðziÞ ¼
2nþ 1

2

XDðnÞ

k¼0

BknZi;n�2kþ1; Zip ¼ zp½ �ziþ
�zi
2

zi�
�zi
2

: ð16Þ

Notice that QnðziÞ is independent of the image and can always be

precomputed, stored, and recalled later to avoid repetitive

computation. The set of Legendre moment can thus be computed

exactly by:

�mn ¼
XM�1

i¼0

XN�1

j¼0

fðxi; yjÞQmðxiÞQnðyjÞ: ð17Þ

We name the moments computed by using (17) the exact Legendre

moments (ELM), as opposed to the approximated Legendre

moments in (10). For computer images, very often the intervals �xi
and �yj are fixed at a constant value. In order to compute

the Legendre moments of an discrete-space image fði; jÞ,
i ¼ 0; 1; . . . ;M � 1, j ¼ 0; 1; . . . ; N � 1, the image has to be mapped

inside the square ½�1; 1� � ½�1; 1�. We denote the mapped image

fðxi; yjÞ ¼ fði; jÞ with

xi ¼ �1þ ðiþ 1=2Þ ��x; yj ¼ �1þ ðjþ 1=2Þ ��y; ð18Þ

and �xi ¼ �x ¼ 2=M;8i, �yj ¼ �y ¼ 2=N ; 8j.

4.1 Relationship with Geometric Moments

The geometric moments of order ðmþ nÞ is defined as:

Mmn ¼
Z 1

�1

Z 1

�1

xmynfðx; yÞdxdy: ð19Þ

If the image is defined only for a discrete set of points ðxi; yjÞ, we

have:

Mmn ¼
XM�1

i¼0

XN�1

j¼0

fðxi; yjÞ
Z xiþ

�xi
2

xi�
�xi
2

Z yjþ
�yj
2

yj�
�yj
2

xmyndxdy

¼ 1

ðmþ 1Þðnþ 1Þ
XM�1

i¼0

XN�1

j¼0

fðxi; yjÞZi;mþ1Zj;nþ1;

ð20Þ

where Zip is defined in (16). Note that there is no approximation
involved in (20), so we name the moments as the exact geometric
moments. The Legendre moments and the geometric moments are
related by:

�mn ¼ ð2mþ 1Þð2nþ 1Þ
4

XDðmÞ

r¼0

XDðnÞ

s¼0

B0
rmB

0
snMm�2r;n�2s; ð21Þ

where B0
rm ¼ ðm� 2rþ 1ÞBrm and B0

sn ¼ ðn� 2sþ 1ÞBsm. Hence,
the exact Legendre moments can be computed indirectly from the
exact geometric moments.

4.2 A Matrix Formulation of the Algorithm

Equation (17) can be written in matrix form as: M ¼ QyFQ
T
x ,

where ð�ÞT is the transpose, MT ¼ f�ijgij, Qx ¼ fQiðxjÞgij,
Qy ¼ fQiðyjÞgij, and FT ¼ ffðxi; yjÞgij. The matrices Qx and Qy

are computed once and then stored for subsequent calculations of
the moments. The matrix form of representation is particular
useful in software packages such as MATLAB.

5 EXPERIMENTAL STUDIES

In this section, empirical supports are given for the theoretical
framework discussed in previous sections. The performance for
the proposed method is evaluated. The results shown are divided
into three main sections. In the first section, comparisons are made
with theoretical values to verify that the proposed method indeed
give exact results. The images used are artificially generated and
are deliberately made relatively small in size so that hand
calculations can be employed to obtain the theoretical values. In
the second section, the image reconstruction aspect is considered.
Comparisons are made with both randomly generated images and
real images. In the third section, comparisons of computation times
between the proposed method and other methods are provided.

5.1 Artificial Images

In this section, artificial images are used so that hand calculations
can be employed and the theoretical values can be obtained. This is
to verify that the proposed method gives exact values as claimed.

5.1.1 Artifical Image I

For fði; jÞ ¼ K, K ¼ constant, 8ði; jÞ, it should be evident that all
Legendre moments should give the value of zero, except for �00.
This can be shown by using (1), (4) and the fact that P0ðxÞ ¼
P0ðyÞ ¼ 1 and K ¼ KP0ðxÞ ¼ KP0ðyÞ:

�mn ¼ ð2mþ 1Þð2nþ 1Þ
4

Z 1

�1

Z 1

�1

PmðxÞPnðyÞKdxdy ¼ K�m;0�n;0;

ð22Þ

where �k;l is the Kronecker delta. For K ¼ 1, the results for exact

Legendre moments (ELM, �mn, (17)), the approximated version

using zeroth-order approximation (ZOA, b��mn, (10)) and alternative

extended Simpson’s rule (AESR, b��S
mn, five dimensional cubature

formula II in [9]) are shown in Table 1. We deliberately use a small

image of size M �N ¼ 8� 8 so that the error due to approxima-

tion can be more readily observed. It can be seen that the values

given by ELM match the theoretical values while the other

methods do not. The error measure

�deviation ¼
XL
m¼1

Xm
n¼0

�2
m�n;n ð23Þ

can be used to measure the deviation of the moments from zero.
The results are shown in Fig. 2. Note that the results for ELM are
not shown because �deviation ¼ 0 for all cases of ELM and, hence,
log10ð�deviationÞ ¼ �1.
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5.1.2 Artificial Image II

We generate an artificial image fði; jÞ ¼ Cij, where fCijg ¼ C

and CT ¼ ½8 2 2 7; 4 9 5 4; 6 6 9 6; 7 6 3 7�. The results are shown in

Table 2. It can be observed that the values given by ELM (Table 2b)

match the theoretical values (Table 2a) while that of ZOA (Table 2c)

and AESR (Table 2d) deviates from the theoretical values especially

when the order increases.

5.2 Image Reconstruction

The comparison of performance of image reconstruction using the

approximated and exact Legendre moments is shown in this

experiment. Results for both artificial images and real images are

shown.

5.2.1 Random Images

For the sake of fairness, we used randomly generated images for

this experiment. First, we generate the image by:

fði; jÞ ¼ randomðM;NÞ; 0 � fði; jÞ � 1; 8i; j: ð24Þ

We set the size of the image to M ¼ N ¼ 64 and by scaling this

image, images of different sizes, i.e., 32, 16, and 8, are generated.

We then reconstruct these images by using both approximated and

exact Legendre moments, up to the maximum order of

mþ n � L ¼ 10; 11; . . . ; 40. The difference between the original

image fði; jÞ and the reconstruction image f̂fði; j;LÞ is measured

using error function:

� ¼ 1

MN

XM�1

i¼0

XN�1

j¼0

f̂fði; j;LÞ � fði; jÞ
h i2

: ð25Þ

This process is repeated 50 times and the average results are

shown in Fig. 3. It can be seen that, for images of different

sizes, the exact Legendre moments consistently give lesser

reconstruction errors when compared to approximated Legendre

moments. The reconstruction error pertaining to that of exact

Legendre moments is steadily decreasing while that of ZOA and

AESR begin to increase when the maximum order, L, of the

moments is increased up to a certain value. This observation

can be explained by using Parseval’s theorem. From Parseval’s

theorem and (8), we know that:

Eðf̂f ;LÞ ¼
Z 1

�1

Z 1

�1

f̂fðx; yÞ � fðx; yÞ
h i2

dxdy ¼ �moments þ �approximation;

ð26Þ

where the two error components, �moments and �approximation, are

defined as:

�moments ¼
X1

m¼Lþ1

Xm
n¼0

4�2
n;m�n

2mþ 1½ � 2ðm� nÞ þ 1½ � ;

�approximation ¼
XL
m¼0

Xm
n¼0

4ð�n;m�n � b��n;m�nÞ2

2nþ 1½ � 2ðm� nÞ þ 1½ � :
ð27Þ

The error �moments is due to the information loss as moments with

order mþ n > L are left out in the reconstruction. It decreases

when the number of moments used in the reconstruction is

increased, that is, when the values of L is increased. The

approximation error is denoted by �approximation. As opposed to

�moments, it increases when L is increased.
When the low order moments are used for reconstructing the

image, the approximation error �approximation is small and negligible.

Therefore, as we progressively increase the number of moments

�moments decreases and while the increase of �approximation is

negligible, the overall error Eðf̂f ;LÞ of the reconstructed image

decreases. But, as more moments are included in the reconstruc-

tion process, �approximation increases up to a certain value and are no

longer negligible, so much so that its effect overcomes that of

�moments. In this case, including more moments in the reconstruction

process will not decrease but, instead, increase the error of the

reconstructed image, as is shown in Fig. 3. It can be seen that this

problem is solved by using the exact Legendre moments where

�approximation ¼ 0.

5.2.2 Real Images

Real images, shown in Fig. 4, are also used as test images. The

average reconstruction results for the eight images are shown in

Fig. 5. In all cases, the ELM outperforms all the other methods.
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TABLE 1
Comparison of ELM, �mn, ZOA, b��mn and AESR, b��S

mn, for fði; jÞ ¼ K ¼ 1

Fig. 2. The logarithmic values of �deviation for ZOA and AESR. The values of ELM

are not shown because, for all cases of ELM, �deviation ¼ 0 and, hence,

log10ð�deviationÞ ¼ �1.



5.2.3 Block Encoding

We divide the images in Fig. 4 in blocks of 8� 8, compute the

Legendre moments of each block up to order L ¼ 0; 1; 2; . . . ; 10,

and then reconstruct the blocks from the computed set of

moments. The error of the reconstructed image when compared

to the original image is computed using (25). The average results

for all the images in Fig. 4 are shown in Fig. 6.

5.3 Computation Time

5.3.1 Computation Time of the Moment Kernels

Basically, the computation of Legendre moments involve two

steps. In the first step, the moment kernels are generated. The

kernels for the ELM and ZOA are PnðxiÞ and QnðxiÞ, respectively.
As for AESR, if the dimension of the cubature formula used is dim,

then the computations involved is approximately dim times that of
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TABLE 2
Comparison of ELM, �mn, ZOA, b��mn and AESR, b��S

mn, with the Theoretical Values

Fig. 3. Logarithmic values of reconstruction errors � for images of different sizes using ELM, ZOA, and AESR. mþ n � L.



ZOA. Since the moment kernels are independent of the image, they

can be computed in advance, stored, and retrieved whenever

necessary. In the second step, the moment kernels are multiplied

with the image function and results in the set of Legendre

moments. In this particular step, the numbers of operations in this

step for both ZOA and ELM are identical, that is, for an image with

M �N pixels, MN multiplications and MN � 1 additions are

involved.
The computation complexity of Legendre moments are crucial

for real-time application. Table 3 shows the computation time1 of

the moment kernels. Note that the table is obtain by generating

1,000 polynomial points, i.e., i ¼ 0; 1; . . . ; 999, and the values of the

computation time taken to generate the kernels are averaged over

100 trials. We used the recurrence relation (5) to generate PnðxiÞ
and QnðxiÞ is generated using equations (14)-(16). It can be seen

that, although the computation time of the kernel of the ELM,

QnðxiÞ, is longer when compared to that of the ZOA, PnðxiÞ, the
differences are still relatively small and, hence, the implementation

of the ELM in real-time application is feasible and inexpensive in

terms of computation complexity. Furthermore, as mentioned

above, these kernels are independent of the image and they can

always be stored in advance to avoid repetitive computation and

recalled whenever necessary. In this case, the computation times

for both the conventional and proposed methods are identical.

5.3.2 Comparison of the Proposed Method with the Indirect

Method Using Geometric Moments

Though the exact values can be obtained using geometric

moments, the computation time to involved is much longer than

the proposed method. In this experiment, we make a comparison

between the computation time of (17) and (21), i.e., the direct

method by using QnðxiÞ and the indirect method by using the set

of geometric moments. For this purpose, the “Cameraman”

image in Fig. 4 is used as our test image and the Legendre

moments up to order mmax ¼ nmax ¼ C, C ¼ 10; 20; . . . ; 40 are

calculated. This process is repeated for 100 times and the average

values for the computation time are then taken. The results of

both methods are shown in Table 4. It is evident that the

proposed method shows improvement over the indirect method

in terms of computation time.
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Fig. 4. Real images. M �N ¼ 128 � 128. (a) Barb. (b) Bird. (c) Boat. (d) Cameraman. (e) Goldhill. (f) Mandrill. (g) Peppers. (h) Zelda.

Fig. 5. Average reconstruction error for the images in Fig. 4.

Fig. 6. Average block encoding error.

TABLE 3
Comparison of Average Computation Time (ms) for

the Kernel of ELM, ZOA, and AESR Up to Order nmax

1. All computations are done with Matlab running on a 2.8GHz PC with
512MB RAM.



6 CONCLUSION

This paper proposes a method for the exact computation of the set
of Legendre moments. It is shown that zeroth-order approximation
and alternative extended Simpson’s rule cause error in the
corresponding Legendre moments, especially when the order is
high. Legendre moments calculated using proposed method show
exactly the same values when compared to those obtained by
theoretical calculations. The results of image reconstruction from
the exact Legendre moments also show improvement over that of
the approximated Legendre moments. Particularly, when the high
order Legendre moments are used, the approximation methods
progressively show an increase in the reconstruction error. This is
undesirable and we show the problem can be remedied by using
the proposed method. Using the proposed method, the reconstruc-
tion error decreases steadily when the order of the moments is
increased. It is also shown that the computation time difference
between the proposed method and the conventional method can
be eliminated by first storing the moment kernels.
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TABLE 4
Comparison of Average Computation Time (ms) for the Proposed

Method and the Indirect Method Using Geometric Moments to Generate
Legendre Moments Up to Order mmax ¼ nmax ¼ C


