Combining Thread Level Speculation, Helper Threads, and
Runahead Execution:

Polychronis Xekalakis] Nikolas loannou, and Marcelo Cintra

School of Informatics
University of Edinburgh

p.xekalakis @ed.ac.uk, nikolas.ioannou@ ed.ac.uk, mc @ staffmail.ed.ac.uk

ABSTRACT

With the current trend toward multicore architectures, improved
execution performance can no longer be obtained via traditional
single-thread instruction level parallelism (ILP), but, instead, via
multithreaded execution. Generating thread-parallel programs is
hard and thread-level speculation (TLS) has been suggested as an
execution model that can speculatively exploit thread-level paral-
lelism (TLP) even when thread independence cannot be guaranteed
by the programmer/compiler. Alternatively, the helper threads (HT)
execution model has been proposed where subordinate threads are
executed in parallel with a main thread in order to improve the ex-
ecution efficiency (i.e., ILP) of the latter. Yet another execution
model, runahead execution (RA), has also been proposed where
subordinate versions of the main thread are dynamically created
especially to cope with long-latency operations, again with the aim
of improving the execution efficiency of the main thread.

Each one of these multithreaded execution models works best
for different applications and application phases. In this paper we
combine these three models into a single execution model and sin-
gle hardware infrastructure such that the system can dynamically
adapt to find the most appropriate multithreaded execution model.
More specifically, TLS is favored whenever successful parallel ex-
ecution of instructions in multiple threads (i.e., TLP) is possible
and the system can seamlessly transition at run-time to the other
models otherwise. In order to understand the tradeoffs involved,
we also develop a performance model that allows one to quantita-
tively attribute overall performance gains to either TLP or ILP in
such combined multithreaded execution model.

Experimental results show that our unified execution model
achieves speedups of up to 41.2%, with an average of 10.2%,
over an existing state-of-the-art TLS system and speedups of up
to 35.2%, with an average of 18.3%, over a flavor of runahead exe-
cution for a subset of the SPEC2000 Int benchmark suite.

*This work was supported in part by EPSRC under grant EP/G000697/1
and the EC under grant HIPEAC IST-004408.

The author was supported in part by a Wolfson Microelectronics scholar-
ship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1CS’09, June 8-12, 2009, Yorktown Heights, New York, USA.

Copyright 2009 ACM 978-1-60558-498-0/09/06 ...$5.00.

410

Categories and Subject Descriptors

C.1 [Processor Architectures]: Parallel Architectures

General Terms

Performance

Keywords

Multi-cores, Thread-Level Speculation, Helper Threads, Runahead
Execution

1. INTRODUCTION

With the scaling of devices continuing to progress according to
Moore’s law and with the non-scalability of out-of-order proces-
sors, multicore systems have become the norm. The design ef-
fort is thus alleviated from the hardware and placed instead on the
compiler/programmer camp. Unfortunately parallel programming
is hard and error-prone, sequential programming is still prevalent,
and compilers still fail to automatically parallelize all but the most
regular programs.

One possible solution to this problem is provided by systems
that support Thread-Level Speculation (TLS) [7, 10, 12, 16, 17]. In
these systems, the compiler/programmer is free to generate threads
without having to consider all possible cross-thread data depen-
dences. Parallel execution of threads then proceeds speculatively
and the TLS system guarantees the original sequential semantics
of the program by transparently detecting any data dependence vi-
olations, squashing the offending threads, and returning the sys-
tem to a previously non-speculative correct state. Thus, the TLS
model improves overall performance by exploiting Thread-Level
Parallelism (TLP) via the concurrent execution of instructions in
multiple threads ! (Figure 1(a)).

Another possible solution to accelerate program execution in
multicore systems without resorting to parallel programs is pro-
vided by systems that support Helper Threads (HT) [3, 4, 18, 20].
In these systems, the compiler/programmer extracts small threads,
often called slices, from the main thread such that their execution in
parallel with the main thread will lead to improved execution effi-
ciency of the latter. Most commonly, helper threads are used to re-
solve highly unpredictable branches and cache misses before these
are required by the main thread. In almost all cases, the benefits
of HT are indirect in the sense that no actual program computation
is executed in parallel with the main thread. Thus, the HT model
improves overall performance by exploiting Instruction-Level Par-

'In reality, the basic TLS execution model also provides some indirect non-
TLP performance benefits as explained later in the paper.

More speculative

—_—
>

Thread 1

Thread 2

Thread 2 Spawned -{-... Helper Thread

. :_\\ . Spawned

Overlapped
Thread 1 Commits __|.._ | _l..|. .y Execution Main Thread
b Finishes
Thread 2 finishes .eodeeaaaaaaa2
Time ‘L Time Y
(@)

(b)

Main Thread

""tl Runahead Mode

L information/state

Main Thread

Switch into Normal Mode
Runahead Mode =~

Switch out of

Helper Thread
Runahead Mode

Normal Mode

feedback
information/state

feedback

Main Thread . L____

Finishes Time Y

(©)

Figure 1: Different models of multithreaded execution: (a) Thread Level Speculation. (b) Helper Thread. (c) Runahead Execution.

allelism (ILP) via the improved execution efficiency within a single
main thread (Figure 1(b)).

A solution related to HT is to support Runahead execution
(RA) [1, 2, 6, 9, 13]. In these systems, the hardware transpar-
ently continues execution of instructions from the main thread past
a long latency operation, such as a cache miss. Unlike with HT,
the instructions in the runahead thread are not explicitly extracted
and placed in a subordinate thread and are not executed concur-
rently with the main thread. In fact, RA can be even implemented
in single-core systems with some enhanced context checkpointing
support. Like HT, the benefits from RA are indirect and it improves
overall performance by exploiting ILP (Figure 1(c)).

Each of these three multithreaded execution models has been
separately shown to improve overall performance of some sequen-
tial applications. However, given the different nature of the per-
formance benefits provided by each model, one would expect that
combining them in a unified execution model would lead to greater
performance gains and over a wider range of applications compared
to each model alone. Moreover, much of the architectural support
required by each model is similar, namely: some support for check-
pointing and/or multiple contexts, some support to maintain spec-
ulative (unsafe) data, and some support for squashing threads. De-
spite these opportunities no one (to the best of our knowledge) has
attempted to combine these multithreaded execution models.

In this paper we propose to combine all three multithreaded exe-
cution models in a super-set unified model that can exploit the ben-
efits of each model depending on application characteristics. More
specifically, the resulting system attempts to exploit TLP specula-
tively with TLS execution, but when this fails or when additional
opportunities exist for exploiting ILP the system also employs a
version of HT that is based on RA. We chose this model of HT so
that its threads interact seamlessly with TLS threads and only small
modifications to the TLS protocol and the TLS architectural sup-
port are required. In the paper we discuss in detail this interaction
and how to tune the HT and TLS models to work synergystically.
Another contribution of this paper is a simple methodology that
allows one to model the performance gains with TLS and the uni-
fied execution model such that gains can be accurately attributed
to either TLP or ILP. This methodology, then, allows one to rea-
son about the behavior of the execution models and to investigate
tradeoffs in the unified model.

Experimental results show that our unified execution model
achieves speedups of up to 41.2%, with an average of 10.2%,
over an existing state-of-the-art TLS system and speedups of up
to 35.2%, with an average of 18.3%, over a flavor of runahead exe-
cution for a subset of the SPEC2000 Int benchmark suite.

411

The rest of this paper is organized as follows. Section 2 pro-
vides a brief description of the TLS, HT and RA execution models.
Section 3 presents our proposed scheme to combine the three exe-
cution models. Section 4 presents our methodology for quantifying
the contributions to performance gains that come from TLP and
ILP. Section 5 describes the experimental methodology and Sec-
tion 6 presents results. Finally, Section 7 discusses related work
and Section 8 concludes the paper.

2. BACKGROUND ON TLS, HT AND RA
EXECUTION MODELS

2.1 TLS

Under the thread-level speculation (also called speculative par-
allelization) approach, sequential sections of code are speculatively
executed in parallel hoping not to violate any sequential semantics.
The control flow of the sequential code imposes a total order on
the threads. At any time during execution, the earliest thread in
program order is non-speculative while the others are speculative.
The terms predecessor and successor are used to relate threads in
this total order. Stores from speculative threads generate unsafe
versions of variables that are stored in some sort of speculative
buffer. 1f a speculative thread overflows its speculative buffer it
must stall and wait to become non-speculative. Loads from specu-
lative threads are provided with potentially incorrect versions. As
execution proceeds, the system tracks memory references to iden-
tify any cross-thread data dependence violation. If a dependence
violation is found, the offending thread must be squashed, along
with its successors, thus reverting the state back to a safe position
from which threads can be re-executed. In most schemes a squash
rolls the execution back to the start of the thread, but some pro-
posals in the literature use periodic checkpointing of threads such
that upon a squash it is only necessary to roll the execution back to
the closest safe checkpointed state. When the execution of a non-
speculative thread completes it commits and the values it generated
can be moved to safe storage (usually main memory or some shared
higher-level cache). At this point its immediate successor acquires
non-speculative status and is allowed to commit. When a specula-
tive thread completes it must wait for all predecessors to commit
before it can commit. Figure 1(a) depicts this execution model.

Speculative threads are usually extracted from either loop itera-
tions or function continuations, without taking into consideration
possible data dependence violations. The compiler marks these
structures with a fork-like spawn instruction, so that the execution
of such an instruction leads to a new speculative thread. The par-

ent thread continues execution as normal, while the child thread is
mapped to any available core. For loops, spawn points are placed
at the beginning of the loop body, so that each iteration of the
loop spawns the next iteration as a speculative thread. Threads
formed from iterations of the same loop (and that, thus, have the
same spawn point) are called sibling threads. For function calls,
spawn points are placed just before the function call such that the
non-speculative thread proceeds to the body of the function, and a
speculative thread is created from the function’s continuation.

The architectural support required by TLS consists of six main
components: i) a mechanism to allow speculative threads to operate
in their own context and to enforce that speculatively modified data
be also kept separate, ii) a mechanism to track data accesses in
order to detect any data dependence violations, iii) a mechanism
to spawn threads in different cores or contexts, iv) a mechanism to
rollback (i.e., squash and restart) incorrectly executed threads, v) a
mechanism to commit the correctly speculatively modified data to
the safe state, and vi) a mechanism to keep track of the ordering of
threads with respect to the original sequential execution order.

22 HT

Under the helper threads (also called subordinate microthreads)
approach, small threads are run concurrently with a main thread.
The purpose of the helper threads is not to directly contribute to the
actual program computation, which is still performed in full by the
main thread, but to facilitate the execution of the main thread indi-
rectly. Common ways to accelerate the execution of the main thread
involve initiating memory requests ahead of time (i.e., prefetching;
such that the results are hopefully in the cache by the time they are
needed by the main thread) and resolving branches ahead of time.
Usually, depending on how the helper threads are generated (see
below), the execution of helper threads is speculative in that they
may be following some incorrect control flow path and/or produc-
ing and consuming incorrect data. In this multithreaded execution
model there is no particular ordering among multiple helper threads
and all are discarded at the end of their execution. Figure 1(b) de-
picts this execution model.

Helper threads are usually generated by the compiler or program-
mer and often consist of slices of instructions from the main thread
(e.g., only those instructions directly involved in the computation
of some memory address or branch condition). Depending on the
size and complexity of the helper threads it may be possible to keep
all their intermediate results in the registers, but it may be necessary
to allow for spills to the memory hierarchy, which in turn requires
providing storage for speculative versions of data. The compiler
marks the main thread with fork-like spawn instructions at points
where particular helper threads should be initiated.

The architectural support required by HT consists of three main
components: i) a mechanism to allow helper threads to operate in
their own context and, possibly, to enforce that speculatively modi-
fied data be also kept separate, ii) a mechanism to spawn threads in
different cores or contexts, and iii) a mechanism to discard threads
when finished.

23 RA

Under the runahead approach, when the main thread hits a long-
latency operation (e.g., an L2 miss) it halts execution and a runa-
head thread continues execution either ignoring or predicting the
outcome of the long-latency operation. The purpose of the runa-
head thread is not to directly contribute to the actual program com-
putation, which is often still performed in full by the main thread
once it resumes, but to facilitate the execution of the main thread
indirectly after it resumes. As with HT, common ways to acceler-

412

ate the execution of the main thread involve prefetching and early
branch resolution. Unlike HT, runahead threads do not run concur-
rently with the main thread. The execution of the runahead thread
is speculative since the outcome of the long-latency operation is ei-
ther ignored or predicted. Thus, in most proposed models the runa-
head thread is discarded once the main thread resumes execution.
In more aggressive models, however, if the predicted outcome of
the long-latency operation is correct the execution of the runahead
thread is incorporated into the main thread before stopping the ex-
ecution of the runahead thread. Figure 1(c) depicts this execution
model.

Runahead threads are generated on-the-fly by the hardware and,
like the common HT case, consist of a selection of instructions
from the main thread. Strictly speaking, in many proposals in
the literature, the runahead threads are in fact obtained by simply
checkpointing the main thread and letting it run ahead instead of ex-
plicitly spawning a new thread elsewhere. Also like HT, it may be
possible to keep all the intermediate results of the runahead thread
in the registers, but it may be necessary to allow for spills to the
memory hierarchy.

The architectural support required by RA consists of five main
components: i) a mechanism to allow runahead threads to oper-
ate in their own context and, possibly, to enforce that speculatively
modified data be also kept separate, ii) a mechanism to decide
when to generate runahead threads or to switch the main thread
into runahead mode, iii) a mechanism to discard incorrectly exe-
cuted threads, and iv) and v) optional mechanisms to check if the
runahead thread has executed based on correct or incorrect pre-
dicted outcomes and, if so, to incorporate the runahead state and
data into the main thread.

Table 1 summarizes the architectural support required by the
three multithreaded execution models in columns 2 to 4 (the last
column shows the support used by our unified scheme, which is
described in Section 3).

l Mechanism | TLS | HT | RA | Unified ||

Data Versioning
Data Dep. Tracking
Spawn Threads
Discard/Rollback
Commit State
Order Threads
Checkpoint Threads
Value Predict L2 Misses

NN
IR
NN

O N[X O N[X X~

o<« <]«
SRR
NENENENENEN

Table 1: Hardware support required for the different models
of multithreaded execution and for our unified approach. O
stands for optional feature, X stands for feature not required,
and v stands for feature required.

3. COMBINING TLS, HT, AND RA
EXECUTION

3.1 Basic Idea

Each of the multithreaded execution models that we consider —
TLS, HT, and RA - is best at exploiting different opportunities for
accelerating the performance of a single-threaded application. We
expect a unified scheme both to perform as well as the best model
across a variety of applications and to even outperform the best
model. The latter can happen if the unified scheme can adapt to
the different acceleration opportunities of different program phases

or if the acceleration opportunities are additive (e.g., if ILP can be
exploited in addition to TLP for some program phase).

The basic idea of our proposal for combining TLS, HT, and RA
execution is to start with a TLS execution and to convert some TLS
threads into helper threads by switching them to runahead execu-
tion mode. Threads that have been converted to helper threads ex-
ecute the same instructions as they would in TLS mode, but runa-
head execution is achieved by allowing them to predict the results
of L2 misses instead of stalling, as done in the RA execution model
(as opposed to being achieved by some compiler/programmer slic-
ing mechanism). These converted helper threads can no longer con-
tribute to the actual parallel computation (i.e., they can never com-
mit) but can only help the remaining TLS threads execute more ef-
ficiently. In a multicore environment with TLS this can be achieved
when the converted helper threads bring data into L2 that will be
later used by the remaining TLS threads. Note that in TLS the L1
cache is versioned so that no sharing and, thus, no prefetching, can
occur across helper threads and TLS threads.

Combining TLS, HT, and RA execution is a reasonable approach
for three main reasons. Firstly, because we start by employing only
TLS, we first try to extract all the available TLP. This makes sense
in a system with several cores since, if TLP can be exploited, it
is more likely that this will yield better performance than trying to
speed up a single main thread. When we fail to speculatively extract
TLP, we may utilize the extra hardware resources to improve the
ILP of the main thread, whereas a base TLS system would be idle.
Secondly, accommodating HT and RA execution within the TLS
execution model requires only slight modifications to the base TLS
system (Table 1). Finally, starting from TLS threads and implicitly
generating runahead slices according to the RA model is a simple
and automatic way of generating helper threads (no programmer
intervention is required).

While the basic idea is simple, developing a fully working sys-
tem requires dealing with a few implementation issues. The key
issue relates to the policy of when, where and how to create HT.
These decisions are critical because in our HT/RA model threads
do not contribute to TLP and consume TLP resources (e.g., cores,
caches), so that a conversion policy must balance the potential in-
crease in ILP with the potential loss of TLP. Another aspect of this
is whether helper threads are simply converted from existing TLS
threads in place, or whether new TLS threads are specifically cre-
ated elsewhere for the purpose of becoming helper threads. This
decision also affects how to manage helper threads in the context of
an extended TLS environment. In particular, the TLS environment
imposes a total ordering on the threads in the system, which is rea-
sonable for TLS threads, but becomes slightly more involved when
some threads are TLS and some are HT. Also, a question is what to
do with a helper thread when it detects a data dependence violation
and when one of its predecessors is squashed. These issues are dis-
cussed in Section 3.2. Finally, another important issue relates to the
policy of converting threads back from HT to TLS threads. Since
our simplified HT/RA model does not allow for their execution to
be integrated into the TLS execution, this latter policy boils down
to how to destroy HT and free up resources for further TLS threads.
This issue is discussed in Section 3.3.

3.2 When, Where and How to Create HT

We identify two suitable occasions for creating a helper thread:
at thread spawn and when a TLS thread suffers an L2 cache miss.
By creating a helper thread on every thread spawn, we make the
assumption that the original thread will benefit from prefetching,
which may not be always true. On the other hand, creating a helper
thread on an L2 miss will only help if the original thread will suffer

413

more L2 misses later. Luckily TLS threads exhibit locality in their
misses, that is, they either suffer many misses in the L2 cache or
they do not suffer any (due to changes in the working set). Thus, as-
suming that an L2 miss will be followed by other misses is a reason-
able assumption. We experimented with both approaches and found
out that indeed this was the case and that the approach of spawning
helper threads on a L2 miss performs better (Section 6.2.1).

As for the location where to execute the helper thread there are
two possibilities: in the same core where the original TLS thread
was executing (thus, effectively converting the TLS thread into a
helper thread) or in a different idle core (thus, effectively cloning
the original TLS thread and converting the clone into a helper
thread, see Figure 2(a)). Obviously, the first option will sacrifice
the exploitation of TLP, which may not be easily recovered by the
benefits of the helper thread. On the other hand, the second option
leads to an increased number of threads in the system, which in-
creases the pressure on resources, possibly leading to performance
degradation. If we decide to convert an existing thread, we simply
have to checkpoint and mark the thread as a helper thread. This
thread will proceed until the end of its execution disregarding long
latency events and restart signals. If we instead create a new thread,
we will have to do so using the existing TLS spawning model and
marking the thread as a helper thread. We experimented with both
approaches and found out that the latter performs better when it
is coupled with throttling heuristics that restrict the system’s load
(Section 6.2.2).

Throughout this work we optimistically assume that TLS threads
will perform useful work. Since helper threads require resources
that could otherwise be used by TLS threads, indiscriminately cre-
ating helper threads at every L2 cache miss may prove detrimental
to the final system’s performance. Thus, it is important to make the
helper threads as transparent as possible. A simple way of doing
this is by allowing only a small number of helper threads to exist at
any given time and to ensure that TLS threads will always be given
priority over these helper threads. Although spawning on an L2
miss will create helper threads only for the threads that will likely
benefit from prefetching, this may still result in the creation of too
many threads. For this reason we only create a helper thread for
the L2 misses if there is a free processor. Additionally, we do not
allow any of the helper threads to perform any thread spawn them-
selves. In all cases, if we spawn a normal TLS thread and we do not
have any free processor available, we pre-empt one of the running
helper threads by killing it. We experimented with these different
approaches and found out that keeping the number of helper threads
small with the policies above gives better results (Section 6.2.3).

We also found that by allowing only the most speculative thread
to spawn a helper thread on an idle core we can achieve most of the
benefits one can achieve by allowing multiple helper threads to co-
exist (Section 6.2.4). This is to be attributed to a chain-prefetching
effect, under which a helper thread prefetches only for the most
speculative thread, which in turn goes faster and prefetches for its
parent thread. An example of this can be seen in Figure 3, where
under normal TLS (Figure 3(a)) both Thread 1 and Thread 2 suf-
fer L2 misses at about the same time. When we clone Thread 2,
we manage to get rid only of the second miss from Thread 2 (Fig-
ure 3(b)). However, this makes Thread 2 reach the third miss faster
and, thus, prefetch it for Thread 1.

In addition to throttling the use of resources, another reason for
only allowing the most speculative thread to spawn a helper thread
is that it greatly simplifies the unified TLS+HT protocol. By doing
so, we separate the TLS and the helper threads in the total thread
ordering scheme. This in turn means that we do not have to deal
with complex interactions, such as the case that a helper thread

More speculative

More speculative

More speculative

—_— —_ —_—
> > >
Thread 1 Thread 1 Thread 1
Thread 2 Spawned Thread 2 Thread 2 Spawned e Thread 2 Thread 2 Spawned . Thread 2
~.
Thread 2 has L2 Clone of Thread 2 has L2 Clone of Thread 2 has L2 Clone of
miss and spawns c=p===sfreq=---=- Thread 2 miss and spawns c=fp===cFeq------ Thread 2 miss and spawns =F= Thread 2
clone ~. Clone .~ clone .~
Thread 1 Commits ==f-=-- Thread 1 Commits --f=---bd Thread 1 Commits ==f-=--
N i
LSt ~N. ~.
. Thread 2 get -
Thread 2 finds spawn | .-~ read 2 ge .
R -1 restarted or killed
and kills clone d Kills ¢l
Thread 2 finishes .alececcaanaaaan X and Kills clone
and kills clone \..
Time Time Time
JV \4 A\ 4

(b)

(©

Figure 2: Helper threading with clones: (a) A thread is cloned on an L2 miss. (b) The clone is killed on a thread spawn. (c) The clone

is killed on a restart/Kill of the thread that spawned it.

triggers a data dependence violation with a more speculative TLS
thread or that a more speculative TLS thread attempts to consume
a version produced by the helper thread.

3.3 When to Terminate a Helper Thread

A helper thread should be terminated in any of the following five
cases. The first case is when the helper thread reaches the com-
mit instruction inserted by the compiler that denotes the end of the
thread. The second case is when the parent thread that created the
helper thread reaches the commit instruction (Figure 2(a)). The
third case is when the parent thread finds a TLS spawn instruction
(Figure 2(b)). Fourth, if the thread that created the helper thread
receives a restart or kill signal, the helper thread has to be killed as
well to facilitate keeping the ordering of threads in the system (Fig-
ure 2(c)). Finally, helper threads use predicted values for the level
two cache misses and as such they might follow incorrect execution
paths. So the fifth case occurs when one of these paths causes an
exception.

4. AMETHODOLOGY TO QUANTIFY ILP
AND TLP PERFORMANCE GAINS IN
SPECULATIVE MULTITHREADED
EXECUTIONS

With multithreaded execution models part of the performance
variation observed is due to overlapped execution of instructions
from multiple threads where these instructions contribute to the
overall computation — we call this a TLP contribution. Another part
of the performance variation is due to indirect contributions that im-
prove (or degrade) the efficiency of execution of the threads — we
call this an ILP contribution. For instance, with TLS the parallel ex-
ecution of threads leads to a TLP contribution but also prefetching
effects may lead to an ILP contribution. This may happen when
some threads share data so that the first thread to incur a cache
miss effectively prefetches for the others such that the others will
appear to have an improved ILP. Note that it is also possible that
due to contention for resources, threads appear to have a degraded
ILP. Note also that with speculative multithreaded models the pos-
sibility of squashes and re-execution of threads leads to even more
intricate relationships between TLP and ILP contributions. Accu-
rately quantifying the TLP and ILP contributions toward the final

414

observed performance variation is critical in order to reason and
act upon the behavior of multithreaded execution models. In this
section we present a methodology to quantify these TLP and ILP
contributions in multithreaded execution models using easy to col-
lect timing information from the actual execution. The model is a
variation of that proposed in [15]: it requires one extra simulation
run but provides a more accurate estimate of the ILP contribution
(Section 6.3).

The performance model is based on measuring the following
quantities from the execution: 1) the execution time of the origi-
nal sequential code (Tscq); 2) the execution time of the modified
TLS code when executed in a single core (711,); 3) the sum of exe-
cution times among all threads that actually commit (3, T;, for all
threads 7 that commit); and 4) the execution time of the modified
TLS code when executed in multiple cores (17¢). Figure 4 de-
picts these quantities for a simple example with two threads. With
these quantities, the overall performance variation (Sq;;) is given
by Equation 1 and the performance variation (usually a slowdown)
due to the TLS instrumentation overhead (S1,) is given by Equa-
tion 2. The latter is needed in order to account for the variations
needed in the binaries that execute the sequential and the multi-
threaded versions of the program.

_ Tseq
Sant = T, (D
Tseq
Sip = T, 2

The overall performance variation of the multithreaded execu-
tion over the TLS code executed in a single core (Scomp) is given
by Equation 3. This performance variation reflects the combined
effects of both ILP and TLP and the equality shown in Equation 4
holds.

_ Dy
Scomb - Tmt (3)
Scomb = Silp X Stlp (4)

The performance variation of the multithreaded execution over
the TLS code executed in a single core and that can be attributed to
ILP effects (Siip) is given by Equation 5.

Thread 1
Single Thread

Tseq

. T2
. Time
Time

A\ 4

Tip
Thread 2

More speculative

Thread 1

Thread 2
T T

- 4

Squas’ Tmt
N T2'
Time

T 1= T1
T2' 1= T2

Figure 4: Quantifying ILP and TLP benefits.

More speculative

—_—
>

Thread 1
Thread 2

@ L2 Cache Miss
@ L2 Cache Hit

Time \L

L2 miss on the
same address

(@)

More speculative

—_—
>

Thread 1

Thread 2
"~ Clone of
_ Thread 2

@ L2 Cache Miss
@ L2 Cache Hit

Time \L
L2 miss only for
Thread 2

(b)

Figure 3: Chain Prefetching effect: (a) Under normal TLS ex-
ecution both threads find L2 cache misses concurrently. (b)
The clone prefetches for Thread 2, which in turn prefetches for
Thread 1.

T
ilp — Z Tz

Thus, S;;, can be computed with the measurements of 7%, and
all T;’s. The performance variation of the multithreaded execution
over the TLS code executed in a single core and that can be at-
tributed to TLP effects (Syp) can be computed by substituting the
results of Equations 3 and 5 into Equation 4. Finally, we observe
that the equality shown in Equation 6 holds, which shows that the fi-
nal observed performance variation can be quantitatively attributed
to the variations in the binary, to the ILP contributions, and to the
TLP contributions.

S &)

San = S1p X Sip X Stp (6)

Comparing our model with that proposed in [15] it can be shown

415

that the key difference is that the ILP estimate in that model is ul-
timately derived from the "code bloat" factor fu0q+, While it is de-
rived in our model from the actual instrumentation slowdown S1.
The problem with using fi;04+ as a proxy for the actual slowdown is
that it implicitly assumes that the CPI of the unmodified sequential
execution and that of the TLS-instrumented sequential execution
are the same. In reality, however, the TLS instrumentation does
affect the CPI as it involves the addition of mainly function calls
and memory operations to set up thread spawns, which in turn have
a different CPI from the rest of the thread. Obviously, this impact
on CPI will be more pronounced for smaller threads than for larger
ones. In our experiments (Section 6.3) we measured the difference
in CPI and the ultimate impact on the ILP contribution estimation
and found out that it can be significant in several cases.

S. EVALUATION METHODOLOGY

5.1 Simulation Environment

We conduct our experiments using the SESC simulator [14]. The
main microarchitectural features are listed in Table 2. The system
we simulate is a multicore with 4 processors, where each processor
is 4-issue out-of-order superscalar. The branch predictor is a hybrid
bimodal-gshare predictor. The minimum branch misprediction la-
tency is 12 cycles while we also employ speculative updates of the
global history register along the lines of [8]. Each processor has
a multi-versioned L1 data cache and a non-versioned L1 instruc-
tion cache. All processors share a non-versioned unified L2 cache.
For the TLS protocol we assume out-of-order spawning [15]. Our
scheme requires on top of the aforementioned TLS support a value
predictor so as to predict the value to be returned by missing loads.
Throughout most of the evaluation we use a simple last-value pre-
dictor, but we show later that a better value predictor could improve
the overall performance significantly. Our scheme also requires to
transfer register state on a spawning of a clone thread. This is im-
plemented using microcode and it adds an additional cost to the
creation of a clone thread of 100 cycles. Note that normal TLS
threads only require 20 cycles, since register state transfering is
done through memory (the compiler inserts spills to memory).

5.2 Benchmarks

We use the integer programs from the SPEC CPU 2000 bench-
mark suite running the Reference data set. We focus on these appli-
cations because they represent a set of well accepted benchmarks
that make difficult both the extraction of ILP (for RA/HT) and TLP
(for TLS). We use the entire suite except eon, which cannot be
compiled because our infrastructure does not support C++, and gcc
and perlbmk, which failed to compile in our infrastructure. For

|| Parameter | TLS (4 cores) |
Frequency 5GHz
Fetch/Issue/Retire Width 4/4/4
L1 ICache 16KB, 2-way, 2 cycles
L1 DCache 16KB, 4-way, 3 cycles
L2 Cache 1IMB, 8-way, 10 cycles
L2 MSHR 32 entries
Main Memory 500 cycles
I-Window/ROB 80/104
Ld/St Queue 54/46
Branch Predictor 96Kbit Hybrid Bimodal-Gshare
BTB/RAS 2K entries, 2-way/32 entries
Minimum Misprediction 12 cycles

I Extra Hardware |
l Value Predictor | 4K entries, Last-Value |

Table 2: Architectural parameters.

reference, the sequential (non-TLS) binaries where obtained with
unmodified code compiled with the MIPSPro SGI compiler at the
O3 optimization level. The TLS binaries were obtained with the
POSH infrastructure [11]. In order to directly compare them, we
execute a given number of simulation marks, which pinpoint spe-
cific code segments. This is necessary because the binaries are dif-
ferent, due to re-arrangements of the code by POSH. We simulate
enough simulation marks so that the corresponding sequential ap-
plication graduates more than 750 million instructions.

6. EXPERIMENTAL RESULTS

We start by showing the bottom-line results of our scheme when
compared with both TLS and a flavor of runahead execution that
uses value prediction but always reverts to the checkpoint made
before going into runahead mode (i.e., it discards all computation
done in the runahead thread and, thus, does not exploit any TLP).
We next try to quantitatively explain how our scheme works and
provide a detailed analysis of the reasons that led us to the proposed
design.

6.1 Comparing TLS, Runahead and the
Unified Scheme

Figure 5 shows how our proposed scheme performs when com-
pared with both TLS and runahead execution with value predic-
tion. Each of the bars shows the total speedup and the proportion
of the speedup that can be attributed to ILP and TLP based on the
methodology discussed in Section 4. Speedups are relative to se-
quential execution with the original sequential binary. With the
light grey shade below the 1.0 point we denote the base case each
of the schemes starts from when running on a single core (TLS and
unified scheme have worse quality of code; this is the S1, factor of
Section 4) and with the next two shades the proportion of speedup
due to ILP and TLP accordingly 2. The leftmost bars correspond
to the base TLS, the middle bars to runahead execution with value
prediction, and the rightmost bars to our unified scheme.

Considering the base execution models alone, we first note that
while TLS performs better than runahead execution for most appli-
cations, for some applications the performance of both schemes is
comparable (gzip and parser). We also note that, despite the main
target of TLS being the exploitation of TLP, for most applications

Note that the breakdown shows proportions of speedup due to each cate-
gory and the height of each portion cannot be directly read as the speedup
coming from ILP and TLP.

416

c B Speedup due to ILP
2 3.0 @ Speedup due to TLP

g 2.2 s
Runahead

D 1.8 Unified
167
o 1.4]
B 1.29

s o s M

parser twolf vortex vpr avg

Milanalanall n Baba

bzip2 crafty gap gzip mcf

Figure 5: Speedup breakdown based on our model. Leftmost
bar is for TLS, middle bar is for Runahead with value predic-
tion, and rightmost bar is for our unified approach.

the benefits of ILP in the base TLS scheme are comparable to the
TLP benefits.

Comparing our unified scheme with TLS and runahead, we see
that the unified scheme performs at least as well as the best of
other schemes for all applications and often outperforms the best
scheme. The performance advantage of the unified scheme indi-
cates that often the speedups of runahead execution and TLS are
additive. In fact, even in applications where runahead execution
fails to deliver any speedups (crafty, gap and vortex), our unified
scheme achieves speedups equal to or better than TLS. When com-
pared with TLS, we see that our unified scheme obtains greater
performance gains from ILP while maintaining most of the TLP
benefits. Interestingly, in some cases our unified scheme is bet-
ter than the base TLS scheme even in terms of TLP. One possible
reason for this is that faster speculative threads will uncover violat-
ing reads faster and thus perform restarts earlier. This is an effect
similar to having lazy or eager invalidations, where it is known
that eager invalidations procure better results due to increased TLP.
When compared with runahead execution, we see that our unified
scheme obtains gains from TLP while maintaining most of the ILP
benefits. Again, in some cases our unified scheme leads to higher
ILP benefits than the base runahead execution. The likely reason
for this is the deeper prefetching effect that can be achieved by per-
forming runahead execution from a speculative thread, which leads
to the chain-prefetching effect described in Section 3.2. Overall,
we see that our unified execution model achieves speedups of up
to 41.2%, with an average of 10.2%, over the existing state-of-the-
art TLS system and speedups of up to 35.2%, with an average of
18.3%, over runahead execution with value prediction.

Figure 6 depicts the number of L2 misses on the commiting path
for all the schemes normalized to the sequential case. This figure
allows us to quantify the ammount of prefetching happening in each
scheme. Note that all three schemes have smaller miss rates than
sequential execution on average since all of them perform some
sort of prefetching. Runahead execution leads to only a relatively
small reduction in L2 misses and, in fact, for some applications
like parser and twolf it actually increases the number of L2 misses
substantially. This happens because it suffers L2 misses on data
that will not be useful for the main thread. For TLS prefetcing is
more substantial, but still for some applications like mcf, parser
and twolf) TLS suffers from more misses than the sequential ex-
ecution. This happens due to code bloating and the overall lower
quality of the code produced (some compiler optimizations are re-
stricted by the TLS pass). The unified scheme on the other hand,
is able to prefetch singnificantly more useful cache lines reducing
the miss rate by 41% on average when compared with the miss rate

of sequential execution. We expect that the importance of prefetch-
ing will increase as the gap between the processor and the memory

widens.
B Runahead
OTLS
M Unified

bzip2

crafty gap 9zip mcf parser twolf vortex vpr avg

Figure 6: Normalized L2 misses over sequential execution for
the commited path of the Runahead execution, TLS and our
unified scheme.

Figure 7 shows the fraction of isolated and clustered misses seen
on the commited path for the various execution models. Cluster-
ing is identified as the presence of other in-flight memory requests
when the commit path suffers another L2 cache miss. This fig-
ure is then complementary to Figure 6 in explaining the prefetch-
ing effects of each model as it can capture partial prefetches (i.e.,
prefetches that do not completely eliminate a cache miss, but lead
to a reduction in the waiting time). Note that Runahead execu-
tion does very well in clustering the misses and in fact is able to
do much better than both TLS and our unified scheme. As noted
above, this significant increase in number of outstanding memory
requests with Runahead execution does not always translate into
fewer L2 misses seen by the commit path (Figure 6), but in some
cases it does lead to partial prefetches and improved ILP (Figure 5).
Our unified scheme manages to cluster the misses much better than
TLS does, leading to further benefits from partial prefetches.

Sequential

Runahead
TLS
l ¥ Unified

M % of Isolated L2 Misses
@ % of Clustered L2 Misses

100.07
90.07
80.07
70.07
60.07
50.07
40.07
30.07
20.07
10.07

Threads

of L2 misses in C

bzip2 mcf twolf

vortex

crafty gap gzip parser vpr

Figure 7: Breakdown of the L2 misses in isolated and clustered
for sequential, Runahead, TLS, and our unified scheme.

6.2 Understanding the Trade-Offs in our
Unified Scheme

6.2.1 When to Create a HT

As we discussed earlier in Section 3.2, there is a choice to be
made whether to create a new helper thread on an L2 cache miss
or at thread spawn time. Figure 8 shows the speedup of each of the
two policies. As the figure clearly shows, cloning on L2 misses is
always better. The reason is that it is more targeted and, thus, it
does not increase the number of running threads unless there are

417

prefetching needs (i.e., at least one actual L2 miss). This is evident
from the ILP/TLP breakdown where we see that the main differ-
ence between the two scheme is mostly in the ILP benefits.

B Speedup due to ILP
@ Speedup due to TLP

3.0

Create HT at Spawn
Create HT on L2 Miss

P e e M g ol oo 8

bZ|p2 crafty a g2|p mcf parser twolf vortex vpr avg

Figure 8: Impact of choosing between creating helper threads
on an L2 Miss or at thread spawn

6.2.2 Converting Existing Threads into HT vs.
Spawning New HT

An interesting trade-off is whether one should try to convert
some of the normal TLS threads to helper threads (checkpointing),
or whether one should create separate helper threads (cloning). As
we discussed in Section 3.2, converting some TLS threads to helper
threads will increase the ILP but it will do so at the expense of the
TLP we can extract. Figure 9 compares the two schemes. As the
figure shows, spawning a new helper thread leads to better perfor-
mance in all but one case (crafty). It is interesting to note that
in most cases the performance advantage of the cloning approach
comes not only from increased TLP, as one would expect, but also
from increased ILP. It is also worth noting that for the converting
approach, although in all of the cases the ILP gains are significant,
for some benchmarks this scheme performs even worse than the
base TLS.

Converting into HT
%Creatng new HT
T T T

H Speedup due to ILP
[Speedup due to TLP

aubudinh

Speedup over Sequential Execution
cooox=m=~2=NMMNND
PELEE LR LR L

bzip2 crafty gap gzip mcf parser twolf vonex vp! avg

Figure 9: Converting TLS threads to Helper threads, as op-
posed to spawning distinct helper threads.

6.2.3 Effect of the Load of the System

Helper threads require resources that could otherwise be used by
normal TLS threads. Figure 10(a) shows the average distribution
of number of threads that exist at a given time in a four core system
with TLS. We can see that almost 90% of the time there are only
up to two threads running. This means that as long as we create a
small number of helper threads we should not harm the extracted
TLP.

In Figure 10(b) we first show a helper thread spawning policy
under which we create a new helper thread on every L2 cache miss.

=3
=)

0.7 B Running Threads c
° £ 3.0
E 067 2 287

= >
5 0.5 [2.67
=] S 247

2 €
2 0.4 @ 2.27

a 5
5 03] 3 2.0
s 2 1.8

S]
5 0.27 3 167
s g 1.4

o 0.1 °
2 1.27
m i

2 3 4

H Speedup due to ILP
[Speedup due to TLP

Spawning on Every L2 Miss
Load Aware HT Spawning

o M]

Number of Threads

(@)

b2|p2

craﬂy a QZ|p mcf twolf vonex

(b)

parser vpr avg

Figure 10: (a) Distribution of number of threads on a four core system. (b) Evaluating the effect of load aware HT spawning.

Under this scheme we allow multiple helper threads to co-exist.
This scheme does not check if there is any available core to run the
new helper thread on (if there is no free core, threads are placed in
queues waiting to execute as we do with normal TLS spawns), and
the clones are not killed when we spawn a new TLS thread. We
compare this with our load-aware scheme, under which we only
allow one helper thread to exist at a time and we kill helper threads
in order to pre-empt them. The benefits of employing a load-aware
scheme are more pronounced in applications with a large number
of threads like mcf and twolf. The benefits come mainly from better
ILP since, we are making the contention on the common L2 cache
smaller and we are poluting it less.

6.2.4 Single vs. Multiple Helper Threads

In our approach, we chose to create a single helper thread by
cloning the most speculative thread because of its fairly straight-
forward implementation overhead and reasonable expected perfor-
mance benefits. We compare our scheme with two other schemes:
one where we only allow the safe thread to create a clone, and one
where we allow multiple clones to run in the system. Note that
both schemes respect our load-aware policies (Section 6.2.3) so that
they do not interfere negatively with the normal TLS threads. This
means that for our four core system we can have at most two nor-
mal and two clone threads running concurrently (as opposed to our
scheme where we will only have one clone thread). As Figure 11
shows, cloning only for the safe thread gives only a fraction of the
achievable benefits. This is mainly due to worse ILP, which makes
sense if we take into account that we are only prefetching for one
thread. In fact, Figure 12 shows that creating a helper thread for the
most speculative task performs substantially more useful prefetch-
ing than the scheme where we only create a helper thread for the
safe thread. On the other hand, creating a clone for all the threads
is slightly better than our scheme for all applications except mcf.
Figure 13 shows the clustering of memory requests for all three
schemes. In most cases the difference in clustering is not very sig-
nificant. However, the clustering helps explain the case of mcf with
our scheme and with cloning for all threads: even though the miss
rates are comparable (Figure 12), the effect of partial prefetching is
much more pronounced with the unified scheme.

6.2.5 Effect of a Better Value Predictor

Throughout our study we have employed a simple last value pre-
dictor. In this section perform a sensitivity analysis of our scheme
on this building block. As we see in Figure 14, a better value pre-
dictor (i.e., a perfect one in this case) would lead to significantly
increased benefits for the unified scheme. The improvement will
come in terms of better ILP, which is justified by the improved

418

B Speedup due to ILP
@ Speedup due to TLP

N
NHPRQ

HT for Safe Thread
HT for Every Thread

R HT for Most Speculative
[
ERE
o
914
B 1.29

410 [EEE e EES T Wﬂﬁﬁ

equential Execution

bZ|p2 crafty gap g2|p mcf parser twolf vortex vpr avg

Figure 11: Comparing the effect in performance when creating
multiple HT or a single HT.

W HT for Safe Thread
@ HT for Every Thread
M HT for Most Speculative

bzip2 mcf twolf vortex

crafty

gap gzip parser vpr avg

Figure 12: Normalized L2 misses over sequential execution
when creating multiple HT or a single HT.

prefetching capability resulting from always following the correct
path. We see that there is still ample room for improvement for at
least four out of the nine benchmarks used in this paper. We intend
to further investigate the effect of value prediction in future work.

6.3 Performance Model Comparison

As discussed in Section 4, the difference between our speedup
breakdown model and that of [15] is that we propose to measure
the actual execution time degradation of the TLS execution when
running on a single core compared to the original sequential exe-
cution (S1p), instead of estimating this factor with the instruction
code bloat (foroat). In reality 1/S1p # foioat, which will lead to
some innacuracy in the model of [15]. In fact, since the added TLS
instrumentation consists of several memory operations and some
function calls, we expect that 1/S1, < fiioat and the model of
[15] will under-estimate the contribution of ILP.

HT for Safe Thread
HT for Every Thread

W % of Isolated L2 Misses
@ % of Clustered L2 Misses

100.04 HT for Most Speculative

90.0
80.0
70.0
60.0
50.0
40.07
30.07
20.07
10.07

Percentage of L2 misses in Committed Threads

crafty gap gzip mcf parser twolf vortex

vpr

avg

Figure 13: Breakdown of the L2 misses in isolated and clus-
tered when creating multiple HT or a single HT.

< 4.0 B Speedup due to ILP

o 4 @ Speedup due to TLP

5 3.87

2 3.6

5 3.4

55

S 2581

3 2.67 Oracle Value Predictor

$ 24 Last Value Predictor

= 2.27

2 2.07

g 1.87

5 1.67

B 1.4 H ;

Q

@ 1.2 F m ﬁ m

U% g)g T T E T T T T T T T
bzip2 crafty gap gzip mcf parser twolf vortex vpr avg

Figure 14: Performance impact of value prediction accuracy.

We measured the difference between the ILP and the TLP esti-
mates of both models and show the results in Table 3. Although
for some applications the errors are fairly small, this is not the case
for some others like gap and mcf where there is a difference of
15.3% (for ILP estimation) and 13% (for TLP estimation). More
importantly, in some cases the two models do not agree, so that the
model proposed in [15] indicates that there is no ILP contribution
(or there is a slowdown due to ILP degradation) whereas our model
contradicts this. The benchmarks where this is the case are shown
in Table 3 with bold. We thus believe that the extra simulations
required by our model are well justified, since they provide a much
clearer picture of what is happening.

Benchmark | bzip2 | crafty | gap | gzip | mcf | parser | twolf | vortex | vpr | avg
% ILP Diff. | 1.81 045 | 153 (267 | 1.11 | 481 2.26 297 | 349|387
% TLP Diff. | 5.09 7.19 1002 (289|130 9.32 5.98 6.64 | 2.01 | 579

Table 3: Difference of ILP and TLP benefit estimation be-
tween our performance model and the one proposed in [15].
With bold we denote cases where our model presents speedup
whereas the previously proposed does not.

7. RELATED WORK

Thread Level Speculation.

Thread level speculation has been previously proposed (e.g., [7,
10, 12, 16, 17]) as a means to provide some degree of parallelism
in the presence of data dependences. The vast majority of prior
work on TLS systems has focused on architectural features directly
related to the TLS support, such as protocols for multi-versioned
caches and data dependence violation detection. All these are or-
thogonal to our work. In particular, we use the system in [15] as our

419

baseline. Benefits due to prefetching were also reported for TLS
systems in [15]. In our work we that by employing a unified specu-
lative multithreading approach, one can obtain further benefits from
prefetching. The work in [19] showed in a limit study that it might
be beneficial to continue running some threads that are predicted
to squash, so as to do prefetching. However, the benefits shown
there were minimal if one considers the simplifications in the sim-
ulation infrastracture used. In general, deffering the squashes so as
to prefetch is not beneficial because we negate the TLP benefits.
Checkpointing TLS threads was also proposed in [5]. However,
checkpointing in a TLS execution model is used to improve TLP by
supporting squash and rollbacks to a checkpointed state instead of
to the start of the thread. In our work we employ checkpointing in a
combined execution model to allow for improved ILP while main-
taining similar TLP levels. Finally, [15] also proposed a model to
quantitatively break down the performance improvements between
TLP and ILP. Our model is slightly more computationally intensive
as it require one extra simulation run, but our results show that it is
much more accurate.

Helper Threads.

It has been previously proposed to use small helper threads on
otherwise idle hardware resources [3, 4, 18, 20]. There helper
threads usually try to resolve highly unpredictable branches and
cache misses that the main thread would have to stall upon other-
wise. Because helper threads try to improve the ILP of the main
thread, they fail to procure any significant benefits in applications
where the out-of-order engine is able to extract most of the ILP.
As we showed in previous sections, in these cases we can achieve
some addtional improvements by trying to extract TLP as well.

Runahead Execution.

Runahead execution [1, 6, 13] is a scheme that generates accu-
rate data prefetches by speculatively executing past a long latency
cache miss, when the processor would otherwise be stalled. Runa-
head execution is similar to the helper thread schemes, although
instead of using different hardware resources, it uses otherwise idle
processor cycles to perform prefetching. Additionally, runahead
execution does not rely on the programmer to manually extract the
prefetching slices. Two more recent proposals, Checkpointed Early
Load Retirement [9] and CAVA [2], build on [13] by adding value
prediction. In contrast with runahead execution, correctly predict-
ing the value of a missing load eliminates the need to rollback to a
checkpoint when the load returns. The work in [2] showed, how-
ever, that most of the benefits from this scheme do not come from
negating the roll-backs, but rather from the fact that by value pre-
dicting, prefetches are more accurate.

8. CONCLUSIONS

Thread Level Speculation, Helper Threads and Runahead Execu-
tion have been separately shown to improve overall performance of
some sequential applications. However, given the different nature
of the performance benefits provided by each model, one would ex-
pect that combining them in a unified execution model would lead
to greater performance gains and over a wider range of applications
compared to each model alone. Despite these opportunities no one
has attempted to combine these multithreaded execution models.

In this paper we propose to combine all three multithreaded exe-
cution models in a super-set unified model that can exploit the ben-
efits of each model depending on application characteristics. More
specifically, the resulting system attempts to exploit TLP specula-
tively with TLS execution but when this fails or when additional

opportunities exist for exploiting ILP the system also employs a
version of HT that is based on RA. We chose this model of HT
so that its threads interact seamlessly with TLS threads and only
small modifications to the TLS protocol and the TLS architectural
support are required. In the paper we discussed in detail this inter-
action and how to tune the HT and TLS models to work synergys-
tically. Another contribution of this paper is a simple methodology
that allows one to model the performance gains with TLS and the
unified execution model such that gains can be accurately attributed
to either TLP or ILP. This methodology, then, allows one to quan-
titatively reason about the behavior of the execution models and to
investigate tradeoffs in the unified model.

Experimental results show that our unified execution model
achieves speedups of up to 41.2%, with an average of 10.2%,
over an existing state-of-the-art TLS system and speedups of up
to 35.2% with an average of 18.3% when compared with a flavor
of runahead execution for a subset of the SPEC2000 Int benchmark
suite.

9.
(1]

REFERENCES

R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W.
M. Hwu. “Beating In-Order Stalls with ‘Fea-Ficker’
Two-Pass Pipelining.” Intl. Symp. on Microarchitecture,
pages 387-398, December 2003.

L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas.
“CAVA: Using Checkpoint-Assisted Value Prediction to
Hide L2 Misses.” ACM Trans. on Architecture and Code
Optimization, vol. 3, no. 2, pages 182-208, June 2006.

R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.
Patt. “Simultaneous Subordinate Microthreading (SSMT).”
Intl. Symp. on Computer Architecture, pages 186-195, May
1999.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. “Speculative Precomputation:
Long-Range Prefetching of Delinquent Loads.” Intl. Symp.
on Computer Architecture, pages 14-25, June 2001.

C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry.
“Tolerating Dependences Between Large Speculative
Threads Via Sub-Threads.” Intl. Symp. on Computer
Architecture, pages 216-226, June 2006.

J. Dundas and T. Mudge. “Improving Data Cache
Performance by Pre-Executing Instructions Under a Cache
Miss.” Intl. Conf. on Supercomputing, pages 68-75, July
1997.

L. Hammond, M. Wiley, and K. Olukotun. “Data Speculation
Support for a Chip Multiprocessor.” Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 58-69, October 1998.

(2]

(3]

(4]

(5]

(6]

(7]

420

[8] S.Jourdan, J. Stark, T.-H. Hsing, and Y. N. Patt. “Recovery
Requirements of Branch Prediction Storage Structures in the
Presence of Mispredicted-Path Execution.” Intl. Journal of
Parallel Programming, vol. 25, 1997.

N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez.
“Checkpointed Early Load Retirement.” Intl. Symp. on
High-Performance Computer Architecture, pages 16-27,
February 2005.

V. Krishnan and J. Torrellas. “Hardware and Software
Support for Speculative Execution of Sequential Binaries on
a Chip-Multiprocessor.” Intl. Conf. on Supercomputing,
pages 85-92, June 1998.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. “POSH: a TLS Compiler that Exploits Program
Structure.” Symp. on Principles and Practice of Parallel
Programming, pages 158-167, March 2006.

P. Marcuello and A. Gonzdlez. “Clustered Speculative
Multithreaded Processors.” Intl. Conf. on Supercomputing,
pages 365-372, June 1999.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. “Runahead
Execution: An Alternative to Very Large Instruction
Windows.” Intl. Symp. on High-Performance Computer
Architecture, pages 129-140, February 2003.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L.
Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
“SESC simulator.” http://sesc.sourceforge.net.

J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J.
Torrellas “Tasking with Out-Of-Order Spawn in TLS Chip
Multiprocessors: Microarchitecture and Compilation.” Intl.
Conference on Supercomputing, pages 179-188, June 2005.
G. S. Sohi, S. E. Breach and T. N. Vijaykumar. “Multiscalar
Processors.” Intl. Symp. on Computer Architecture, pages
414-425, June 1995.

J. G. Steffan and T. C. Mowry. “The Potential for Using
Thread-Level Data Speculation to Facilitate Automatic
Parallelization.” Intl. Symp. on High-Performance Computer
Architecture, pages 2-13, February 1998.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg.
“Slipstream Processors: Improving Both Performance and
Fault Tolerance.” Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, pages
257-268, October 2000.

F. Warg. “Techniques to Reduce Thread-Level Speculation
Overhead.” PhD Thesis, Department of Computer Science
and Engineering, Chalmers University, 2006.

C. Zilles and G. Sohi. “Execution-Based Prediction Using
Speculative Slices.” Intl. Symp. on Computer Architecture,
pages 2-13, June 2001.

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AachenBT-Bold
 /AachenBT-Roman
 /AdLibBT-Regular
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Alefbet-Normal
 /AlexeiCopperplate
 /Algerian
 /AlgerianBasD
 /AlgerianD
 /AllegroBT-Regular
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /Americana
 /Americana-Bold
 /AmericanaBT-Bold
 /AmericanaBT-ExtraBold
 /AmericanaBT-ExtraBoldCondensed
 /AmericanaBT-Italic
 /AmericanaBT-Roman
 /Americana-ExtraBold
 /Americana-Italic
 /AmericanGaramondBT-Bold
 /AmericanGaramondBT-BoldItalic
 /AmericanGaramondBT-Italic
 /AmericanGaramondBT-Roman
 /AmericanTextBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /AmericanUncD
 /AmerigoBT-BoldA
 /AmerigoBT-BoldItalicA
 /AmerigoBT-ItalicA
 /AmerigoBT-MediumA
 /AmerigoBT-MediumItalicA
 /AmerigoBT-RomanA
 /AmerTypewriterITCbyBT-Bold
 /AmerTypewriterITCbyBT-Medium
 /AmoebiaSans
 /Architecture-Normal
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArnoldBoeD
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /ArsisD-Regu
 /ArsisD-ReguItal
 /AtlanticInline
 /AuroraBT-BoldCondensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeGothicC-Book
 /AvantGardeGothicC-Demi
 /AvantGardeGothicC-DemiOblique
 /AvantGardeGothicC-Oblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BakerSignet
 /BakerSignetBT-Roman
 /BalloonBT-Bold
 /BalloonBT-ExtraBold
 /BalloonBT-Light
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Bard-Normal
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /BaskOldFace
 /BauerBodoniBT-Black
 /BauerBodoniBT-BlackCondensed
 /BauerBodoniBT-BlackItalic
 /BauerBodoniBT-Bold
 /BauerBodoniBT-BoldCondensed
 /BauerBodoniBT-BoldItalic
 /BauerBodoniBT-Italic
 /BauerBodoniBT-Roman
 /BauerBodoniBT-Titling
 /Bauhaus93
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bedrock-Normal
 /Beehive-Normal
 /Beesknees
 /BellGothic-Black
 /BellGothic-Bold
 /BellGothic-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BelweBT-Bold
 /BelweBT-Light
 /BelweBT-Medium
 /BelweBT-RomanCondensed
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BerlinSans-Bold
 /BerlinSans-Demi
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BerlinSans-Roman
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BibleScrT
 /BinnerD
 /Birch
 /BlackadderITC-Regular
 /BlacklightD
 /BlippoBT-Black
 /BodoniBE-Bold
 /BodoniBE-BoldExp
 /BodoniBE-BoldItalic
 /BodoniBE-BoldItalicExp
 /BodoniBE-BoldItalicOsF
 /BodoniBE-BoldOsF
 /BodoniBE-Italic
 /BodoniBE-ItalicExp
 /BodoniBE-ItalicOsF
 /BodoniBE-Light
 /BodoniBE-LightExp
 /BodoniBE-LightItalic
 /BodoniBE-LightItalicExp
 /BodoniBE-LightItalicOsF
 /BodoniBE-LightSC
 /BodoniBE-Medium
 /BodoniBE-MediumExp
 /BodoniBE-MediumItalic
 /BodoniBE-MediumItalicExp
 /BodoniBE-MediumItalicOsF
 /BodoniBE-MediumSC
 /BodoniBE-Regular
 /BodoniBE-RegularExp
 /BodoniBE-RegularSC
 /Bodoni-BoldCondensed
 /Bodoni-Book
 /Bodoni-BookItalic
 /BodoniBT-Bold
 /BodoniBT-BoldCondensed
 /BodoniBT-BoldItalic
 /BodoniBT-Book
 /BodoniBT-BookItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-PosterCompressed
 /Bodoni-PosterItalic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /BookmanITCbyBT-Demi
 /BookmanITCbyBT-DemiItalic
 /BookmanITCbyBT-Light
 /BookmanITCbyBT-LightItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Boulevard
 /BradleyHandITC
 /BremenBT-Black
 /BremenBT-Bold
 /Brisk-Normal
 /BritannicBold
 /Britannic-Bold-DTC
 /Britannic-Medium-DTC
 /Broadway
 /BroadwayBT-Regular
 /BroadwayEngravedBT-Regular
 /Brochure-Normal
 /BrodyD
 /Brush445BT-Regular
 /Brush738BT-RegularA
 /BrushScriptBT-Regular
 /BrushScriptMT
 /BusoramaITCbyBT-Medium
 /BusterD
 /BuxomD
 /CaflischScript-Bold
 /CaflischScript-Regular
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Calligraphic421BT-RomanB
 /Calligraphic810BT-Italic
 /Calligraphic810BT-Roman
 /CamelliaD
 /Cancun-Normal
 /Carleton-Normal
 /CarminaBT-Black
 /CarminaBT-BlackItalic
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /CasablancaAntique-Italic
 /CasablancaAntique-Normal
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastleT-Bold
 /CastleT-Book
 /CastleT-Ligh
 /CastleT-Ultr
 /Catalogfonts
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /CaxtonBT-Light
 /CaxtonBT-LightItalic
 /Centaur
 /CentaurMT
 /CentaurMT-Bold
 /CentaurMT-BoldExpert
 /CentaurMT-BoldItalic
 /CentaurMT-BoldItalicExpert
 /CentaurMT-BoldItalicOsF
 /CentaurMT-BoldOsF
 /CentaurMT-Expert
 /CentaurMT-Italic
 /CentaurMT-ItalicA
 /CentaurMT-ItalicAlternate
 /CentaurMT-ItalicExpert
 /CentaurMT-ItalicOsF
 /CentaurMT-SC
 /CentaurMT-SwashCapitals
 /Century
 /Century725BT-BoldCondensed
 /Century725BT-RomanCondensed
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldstyleBT-Bold
 /CenturyOldstyleBT-Italic
 /CenturyOldstyleBT-Roman
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /CenturySchoolbook-Italic
 /Charlesworth-Bold
 /Charlesworth-Normal
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondensed
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /ChiselD
 /CircleD
 /CityD-Bold
 /CityD-Ligh
 /CityD-Medi
 /ClarendonBT-Black
 /ClarendonBT-Bold
 /ClarendonBT-BoldCondensed
 /ClarendonBT-Heavy
 /ClarendonBT-Light
 /ClarendonBT-Roman
 /ClarendonBT-RomanCondensed
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CloisterBlackBT-Regular
 /CMBX10
 /CMBXSL10
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI9
 /CMR10
 /CMR5
 /CMR6
 /CMR7
 /CMR9
 /CMSL10
 /CMSL8
 /CMSS10
 /CMSS12
 /CMSY10
 /CMSY6
 /CMSY7
 /CMSY9
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialScriptBT-Regular
 /CommonBullets
 /CompactaBT-Black
 /CompactaBT-Bold
 /CompactaBT-BoldItalic
 /CompactaBT-Italic
 /CompactaBT-Light
 /CompactaBT-Roman
 /CooperBlack
 /CooperBT-Black
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-BlackItalicHeadline
 /CooperBT-BlackOutline
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopperplateGothic-Light
 /Copperplate-ThirtyOneAB
 /Copperplate-TwentyNineAB
 /CorporateSansBQ-Bold
 /CorporateSansBQ-BoldItalic
 /CorporateSansBQExp-Bold
 /CorporateSansBQExp-BoldItalicOsF
 /CorporateSansBQExp-ExtBoldItalicOsF
 /CorporateSansBQExp-ExtraBold
 /CorporateSansBQExp-ItalicOsF
 /CorporateSansBQExp-Light
 /CorporateSansBQExp-LightItalicOsF
 /CorporateSansBQExp-Medium
 /CorporateSansBQExp-MediumItalicOsF
 /CorporateSansBQExp-Regular
 /CorporateSansBQ-ExtraBold
 /CorporateSansBQ-ExtraBoldItalic
 /CorporateSansBQ-Italic
 /CorporateSansBQ-Light
 /CorporateSansBQ-LightItalic
 /CorporateSansBQ-Medium
 /CorporateSansBQ-MediumItalic
 /CorporateSansBQ-Regular
 /Cosmic-Normal
 /CosmicTwo-Normal
 /Cottage-Normal
 /CountdownD
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Critter
 /CroissantD
 /CurlzMT
 /Czar-Bold
 /Czar-BoldItalic
 /Czar-Italic
 /Czar-Normal
 /Dauphin-Normal
 /DavidaBoldBT-Regular
 /Decorated035BT-Regular
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /DeVinneBT-Italic
 /DeVinneBT-ItalicText
 /DeVinneBT-Roman
 /DeVinneBT-Text
 /DexGothicD
 /DextorD
 /DextorOutD
 /DiskusD-Medi
 /DomBoldBT-Regular
 /DomCasual
 /DomCasualBT-Regular
 /DomDiagonalBT-Bold
 /DomDiagonalBT-Regular
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-ExtraBoldItalic
 /Dutch801BT-Italic
 /Dutch801BT-ItalicHeadline
 /Dutch801BT-Roman
 /Dutch801BT-RomanHeadline
 /Dutch801BT-SemiBold
 /Dutch801BT-SemiBoldItalic
 /EckmannD
 /EdwardianScriptITC
 /Egyptian505BT-Bold
 /Egyptian505BT-Light
 /Egyptian505BT-Medium
 /Egyptian505BT-Roman
 /Eklektic-Normal
 /ElegantGaramondBT-Bold
 /ElegantGaramondBT-Italic
 /ElegantGaramondBT-Roman
 /Elephant-Italic
 /Elephant-Regular
 /EmbassyBT-Regular
 /Emboss
 /EmpireBT-Regular
 /EnglischeSchT-Bold
 /EnglischeSchT-DemiBold
 /EnglischeSchT-Regu
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasContour
 /ErasITC-Bold
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-Condensed
 /Eurostile-ExtendedTwo
 /EwieD
 /Exotic350BT-Bold
 /Exotic350BT-DemiBold
 /Exotic350BT-Light
 /Expo-Normal
 /ExPonto-Regular
 /FelixTitlingMT
 /Fences
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /FetteFraD
 /Firenze
 /FlamencoD
 /FlamencoInlD
 /Flareserif821BT-Bold
 /Flareserif821BT-Light
 /Flareserif821BT-Roman
 /FlashD-Bold
 /FlashD-Ligh
 /FlemishScriptBT-Regular
 /FootlightMTLight
 /FormalScript421BT-Regular
 /ForteMT
 /FrakturBT-Regular
 /FrankfurterHigD
 /FrankfurtGothic-Bold
 /FrankfurtGothic-BoldItalic
 /FrankfurtGothicHeavy-Italic
 /FrankfurtGothicHeavy-Normal
 /FrankfurtGothic-Italic
 /FrankfurtGothic-Normal
 /FrankHighlight-Normal
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FranklinGothic-Roman
 /Freeform710BT-Regular
 /Freeform721BT-Black
 /Freeform721BT-BlackItalic
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /Freehand471BT-Regular
 /Freehand521BT-RegularC
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScrD
 /FreestyleScript
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /FrysBaskervilleBT-Roman
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /FuturaBoldOblique
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-Condensed
 /Futura-CondensedBold
 /Futura-CondensedBoldOblique
 /Futura-CondensedExtraBold
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-CondensedOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /FuturaLtCnBTItalic
 /FuturaMdCnBTItalic
 /FuturaMedium
 /FuturaMediumOblique
 /Futura-Oblique
 /Galleria-Normal
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /GandoBT-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /GaramondICGHand
 /GaramondICGHandItalic
 /Garamond-Italic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondLight
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /GaramondLightItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondNo4CyrTCY-Medi
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /Gautami
 /GeographicSymbols-Normal
 /Geometric231BT-BoldC
 /Geometric231BT-HeavyC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /Geometric415BT-BlackA
 /Geometric415BT-BlackItalicA
 /Geometric415BT-LiteA
 /Geometric415BT-LiteItalicA
 /Geometric415BT-MediumA
 /Geometric415BT-MediumItalicA
 /Geometric706BT-BlackB
 /Geometric706BT-BlackCondensedB
 /Geometric706BT-BoldCondensedB
 /Geometric706BT-MediumB
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeometricSlab703BT-XtraBoldCond
 /GeometricSlab703BT-XtraBoldItal
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glacier-Italic
 /Glacier-Normal
 /GlaserSteD
 /GloucesterMT-ExtraCondensed
 /GoldMine-Normal
 /GorillaITCbyBT-Regular
 /Gothic725BT-BlackA
 /Gothic725BT-BoldA
 /Gothic821CondensedBT-Regular
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudyStout
 /Griffon-Normal
 /GriffonShadow-Normal
 /GrizzlyITCbyBT-Regular
 /Haettenschweiler
 /HandelGotD-Bold
 /HandelGotD-Ligh
 /HandelGothicBT-Regular
 /HarlowD
 /HarlowSolid
 /Harpoon-Normal
 /Harrington
 /HehenHebT-Bold
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboBT-Regular
 /Honda
 /HoratioD-Bold
 /HoratioD-Ligh
 /HoratioD-Medi
 /HorndonD
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist777BT-BlackB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HuxleyVerticalBT-Regular
 /IceAgeD
 /Imago-ExtraBold
 /Impact
 /ImpressBT-Regular
 /ImprintMT-Shadow
 /ImpulsBT-Regular
 /Incised901BT-Black
 /Incised901BT-Bold
 /Incised901BT-BoldCondensed
 /Incised901BT-Compact
 /Incised901BT-Italic
 /Incised901BT-Light
 /Incised901BT-Nord
 /Incised901BT-NordItalic
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Industrial736BT-Roman
 /Informal011BT-Black
 /Informal011BT-Roman
 /InformalRoman-Regular
 /IowanOldStyleBT-Black
 /IowanOldStyleBT-BlackItalic
 /IowanOldStyleBT-Bold
 /IowanOldStyleBT-BoldItalic
 /IowanOldStyleBT-Italic
 /IowanOldStyleBT-Roman
 /Ireland-Normal
 /ItcEras-Bold
 /ItcEras-Book
 /ItcEras-Medium
 /Jokerman-Regular
 /JuiceITC-Regular
 /Jupiter-Normal
 /KabarettD
 /KabelBd
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /Keypunch-Normal
 /Keystroke-Normal
 /Kids-Normal
 /KisBT-Italic
 /KisBT-Roman
 /Korinna-Bold
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /Korinna-KursivBold
 /Korinna-KursivRegular
 /Korinna-Regular
 /KristenITC-Regular
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /KunstlerScript
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LasVegasD
 /Latha
 /LatinExtraCondensedBT-Regular
 /LatinWidD
 /LatinWide
 /LcdD
 /LetterGothic
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LibertyBT-Regular
 /LibertyD
 /LibraBT-Regular
 /LithographBold
 /LithographLight-Normal
 /Lithograph-Normal
 /Lithos-Black
 /Lithos-Regular
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LuciaBT-Regular
 /LucianBT-Bold
 /LucianBT-Roman
 /Lucida
 /Lucida-Bold
 /Lucida-BoldItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /Lucida-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /MachineITCbyBT-Regular
 /Madrone
 /Magneto-Bold
 /MaiandraGD-Regular
 /MandarinD
 /Mangal-Regular
 /MariageD
 /MathematicalPi-Four
 /MathematicalPi-Three
 /MaturaMTScriptCapitals
 /MetropolitainesD
 /MICR10byBT-Regular
 /MICR12byBT-Regular
 /MICR13byBT-Regular
 /MicrogrammaD-BoldExte
 /MicrogrammaD-MediExte
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-BlackOsF
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-BoldItalicOsF
 /Minion-BoldOsF
 /Minion-Condensed
 /Minion-CondensedItalic
 /MinionCyr-Bold
 /MinionCyr-BoldItalic
 /MinionCyr-Italic
 /MinionCyr-Regular
 /MinionCyr-Semibold
 /MinionCyr-SemiboldItalic
 /Minion-DisplayItalic
 /Minion-DisplayItalicSC
 /Minion-DisplayRegular
 /Minion-DisplayRegularSC
 /MinionExp-Black
 /MinionExp-Bold
 /MinionExp-BoldItalic
 /MinionExp-DisplayItalic
 /MinionExp-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Regular
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-ItalicSC
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Minion-Regular
 /Minion-RegularSC
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Minion-SemiboldItalicSC
 /Minion-SemiboldSC
 /Minion-SwashDisplayItalic
 /Minion-SwashItalic
 /Minion-SwashSemiboldItalic
 /MiraraeBT-Bold
 /MiraraeBT-Roman
 /MisterEarlBT-Regular
 /Mistral
 /Modern20BT-ItalicB
 /Modern20BT-RomanB
 /Modern735BT-RomanA
 /Modern-Regular
 /MonaLisaRecut
 /MonaLisaSolid
 /MonotypeCorsiva
 /MotterFemD
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MT-Extra
 /MTMI
 /MTSY
 /MT-Symbol
 /MT-Symbol-Italic
 /MurrayHillBT-Bold
 /MusicalSymbols-Normal
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NevisonCasD
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /News701BT-BoldA
 /News701BT-ItalicA
 /News701BT-RomanA
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NicolasCocT-Blac
 /NicolasCocT-Regu
 /NicolasCocT-ReguItal
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NormandeBT-Italic
 /NormandeBT-Roman
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OkayD
 /OldEnglishTextMT
 /OldTowneNo536D
 /Onyx
 /OnyxBT-Regular
 /Optima-BoldOblique
 /Optima-Oblique
 /Optimum-Bold-DTC
 /Optimum-BoldItalic-DTC
 /Optimum-Roman-DTC
 /Optimum-RomanItalic-DTC
 /OrandaBT-Bold
 /OrandaBT-BoldCondensed
 /OrandaBT-BoldItalic
 /OrandaBT-Italic
 /OrandaBT-Roman
 /OrandaBT-RomanCondensed
 /Orator
 /OratorBT-FifteenPitch
 /OratorBT-TenPitch
 /OrbitBbyBT-Regular
 /OriginalGaramondBT-Bold
 /OriginalGaramondBT-BoldItalic
 /OriginalGaramondBT-Italic
 /OriginalGaramondBT-Roman
 /Ottawa-Bold
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Palette-Normal
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParisianBT-Regular
 /ParkAvenue
 /ParkAvenueBT-Regular
 /Pepper-Normal
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhyllisD
 /PioneerITCbyBT-Regular
 /Pipeline-Normal
 /PiranesiItalicBT-Regular
 /Playbill
 /PlaybillBT-Regular
 /PlazaD-Regu
 /Poetica-ChanceryI
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /Poplar
 /Posse-Normal
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Postino
 /Postino-Italic
 /President-Normal
 /PrincetownD
 /PrincetownSolid
 /Pristina-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /PTBarnumBT-Regular
 /PumpTriD
 /Quicksilver
 /QuillScript
 /Raavi
 /RageItalic
 /RaleighBT-Bold
 /RaleighBT-DemiBold
 /RaleighBT-ExtraBold
 /RaleighBT-Light
 /RaleighBT-Medium
 /RaleighBT-Roman
 /Ravie
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /RevueBT-Regular
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanaBT-Bold
 /RomanaBT-Roman
 /RunicMT-Condensed
 /SansExtended-Medium-DTC
 /SansExtended-Regular-DTC
 /SansExtended-RegularOblique-DTC
 /SansExtraBlackCondensed-DTC
 /Sanvito-Light
 /Sanvito-Roman
 /SchadowBT-BlackCondensed
 /SchneidlerBT-Black
 /SchneidlerBT-BlackItalic
 /SchneidlerBT-Bold
 /SchneidlerBT-BoldItalic
 /SchneidlerBT-Italic
 /SchneidlerBT-Light
 /SchneidlerBT-LightItalic
 /SchneidlerBT-Medium
 /SchneidlerBT-MediumItalic
 /SchneidlerBT-Roman
 /ScriptMTBold
 /SeagullBT-Bold
 /SeagullBT-Heavy
 /SeagullBT-Light
 /SeagullBT-Medium
 /SerpentineD-Bold
 /SerpentineD-BoldItal
 /ShelleyAllegroBT-Regular
 /ShelleyAndanteBT-Regular
 /ShelleyVolanteBT-Regular
 /ShotgunBlanksBT-Regular
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SkidoosD
 /SloganD
 /SnapITC-Regular
 /SnellBT-Black
 /SnellBT-Bold
 /SnellBT-Regular
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /Spartan-BookClassified
 /Spartan-HeavyClassified
 /Square721
 /Square721Blk
 /Square721BT-Bold
 /Square721BT-BoldCondensed
 /Square721BT-BoldExtended
 /Square721BTItalic
 /Square721BT-Roman
 /Square721BT-RomanCondensed
 /Square721BT-RomanExtended
 /Square721DmItalic
 /Square721DmNormal
 /SquareSlabserif711BT-Bold
 /SquareSlabserif711BT-Light
 /SquareSlabserif711BT-Medium
 /SquireD-Bold
 /SquireD-Regu
 /Staccato222BT-Regular
 /Staccato555BT-RegularA
 /Stencil
 /StencilBT-Regular
 /StopD
 /StuyvesantBT-Regular
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss911BT-ExtraCompressed
 /Swiss911BT-UltraCompressed
 /Swiss921BT-RegularA
 /Swiss924BT-RegularB
 /SwitzerlandNarrow-Bold
 /SwitzerlandNarrow-BoldItalic
 /SwitzerlandNarrow-Italic
 /SwitzerlandNarrow-Normal
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolProportionalBT-Regular
 /Tahoma
 /Tahoma-Bold
 /TangoBT-Regular
 /Technical-Italic
 /Technical-Normal
 /TektonMM
 /TektonMM-Oblique
 /TempusSansITC
 /ThunderbirdBT-Regular
 /Tiepolo-Book
 /TiffanyITCbyBT-Demi
 /TiffanyITCbyBT-DemiItalic
 /TiffanyITCbyBT-Heavy
 /TiffanyITCbyBT-HeavyItalic
 /TiffanyITCbyBT-Light
 /TiffanyITCbyBT-LightItalic
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /TimeScrD-Bold
 /TimeScrD-Ligh
 /TimeScrD-Medi
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Traffic
 /Trajan-Bold
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TriplexConBlackOldstyle
 /TrumpetLite
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UniversityRomanBT-Bold
 /UniversityRomanBT-Regular
 /UptightNeon
 /URWWoodTypD
 /Utopia-Italic
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRoundedBT-Regular
 /VAGRounded-Light
 /VAGRoundedLt
 /VAGRounded-Thin
 /VanDijk
 /Veljovic-Black
 /Veljovic-MediumItalic
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VictorianD
 /Viking-Normal
 /VinerHandITC
 /VinetaBT-Regular
 /Viva-BoldExtraExtended
 /VivaldiD
 /Vivaldii
 /Viva-Regular
 /VladimirScrD
 /VladimirScript
 /VolutaScript
 /VolutaScript-Alternates
 /VolutaScript-Swash
 /Vrinda
 /Webdings
 /WeddingTextBT-Regular
 /Willow
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Outline
 /WindsorBT-Roman
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-BoldExtended
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
 /ZzTeX-Doodads
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

