
Generating XACML Enforcement Policies
for Role-Based Access Control

of XML Documents

Alberto De la Rosa Algarín1(&), Timoteus B. Ziminski1,
Steven A. Demurjian1, Yaira K. Rivera Sánchez1,

and Robert Kuykendall2

1 Department of Computer Science and Engineering,
University of Connecticut, Storrs, USA

{ada,tbz,steve,yaira}@engr.uconn.edu
2 Department of Computer Science, Columbia University, New York, USA

rrk2136@columbia.edu

Abstract. Ensuring the security of electronic data has morphed into one of the
most important requirements in domains such as health care, where the
eXtensible Markup Language (XML) has been leveraged via standards such as
the Health Level 7’s Clinical Document Architecture and the Continuity of
Care Record. These standards dictate a need for approaches to secure XML
schemas and documents. In this paper, we present a secure information engi-
neering method that is capable of generating eXtensible Access Control
Markup Language (XACML) enforcement policies, defined in a role-based
access control model (RBAC), that target XML schemas and their instances,
allowing instances to be customized for users depending on their roles.
To achieve this goal, we extend the Unified Modeling Language (UML) with
two new diagrams: the XML Schema Class Diagram, which defines the structure
of an XML document in UML style; and, the XML Role-Slice Diagram, which
defines roles and associated privileges at a granular access control level. We
utilize a personal health assistant mobile application for medication and chronic
disease management to demonstrate the enforcement component of our work.

Keywords: Security and policy modeling � Security policies � XML � XA-
CML � Role-based access control

1 Introduction

Securing sensitive and private information has evolved into a needed requirement in
domains such as healthcare informatics, where the daily workflow depends on the
secure management and exchange of information, often in time-critical situations. In
healthcare informatics, the eXtensible Markup Language (XML) is used for data and
information exchange across heterogeneous systems via XML standards such as
Health Level Seven’s clinical document architecture (CDA) [10] for health infor-
mation exchange and the Continuity of Care Record (CCR) for capturing clinical
patient data. In such settings, security protection must be insured so individuals have

� Springer-Verlag Berlin Heidelberg 2014
K.-H. Krempels and A. Stocker (Eds.): WEBIST 2013, LNBIP 189, pp. 21–36, 2014.
DOI: 10.1007/978-3-662-44300-2_2

the appropriate credentials to access all of the required data (clinical, genomic, other
phenotypic, etc.) in accordance with the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) [1]. For the purposes of our work, we propose a secure
information engineering method using the Unified Modeling Language (UML) to
define and enforce XACML role-based access control (RBAC) security policies that
allow XML schemas to be controlled and instances customized based on role, time,
and usage.

The main objective of this paper is to create security policies defined and realized
in XACML that target XML schemas and their instances to provide granular docu-
ment-level security. The enforcement of these policies permits document instances to
look different to authorized users at specific times based on the user’s role. In contrast
to the general research done in XML security, which typically embeds security pol-
icies as part of the XML schema’s definition, our approach allows policies to be
evolved and applied to an application’s XML instances without changes to instances
and schemas. This approach results in a separation of concerns for facilitating security
policy evolution without impacting XML instances.

To support this process, we have defined a security framework for XML in prior
work [9] as shown in Fig. 1. The general approach is to have a set of XML schemas
corresponding to an application (middle right in Fig. 1), which will be instantiated for
the executing application (bottom right of Fig. 1). From a security perspective, our
intent is to insure that when users attempt to access the instances, that access will be
customized and filtered based on their defined user role and associated security
privileges (role restricted, or RR, bottom left of Fig. 1). To achieve this in a secure
information engineering context, the framework in Fig. 1 contains two new UML
diagrams: the XML Schema Class Diagram (XSCD) that represents the structure of an
XML document in UML style design artifacts; and, the XML Role-Slice Diagram
(XRSD) that supports RBAC through the definition of granular access to XML
schemas (and associated instances) based on role.

This paper to extends our earlier work [9] by concentrating on the left hand side of
Fig. 1 (the XACML Policy Mapping box) for the definition and generation of XA-
CML security policies and their enforcement at the runtime level on XML instances to
insure that filtered, correct, and required data is securely delivered. The emphasis of
this paper is on the generation of XACML security policies from XRSD diagrams that
allow for the enforcement of those policies at runtime, which changes to the policy
able to be made so that there is no impact on the original XML schema and its existing
instances. Our proposed security framework will be applied to the health care domain,
specifically to the CCR schema, using a case study of a mobile health application,
Personal Health Assistant (PHA), for general health management.

The remainder of this paper is organized as follows. In Sect. 2, we present related
work on XML security and access control, focusing on the approaches of embedded
security and general access control. Section 3 provides background information on
NIST RBAC, XML and XACML, the CCR standard; and a review of the key facets of
our XML security framework that are needed to explain XACML policy generation.
In Sect. 4, we present the mapping process and rules that generate XACML policies
process from the XRSDs of a given XML schema, including an algorithm. In Sect. 5,
we demonstrate the XACML policy interplay and enforcement with PHA, describing

22 A. De la Rosa Algarín et al.

in detail the way that the patient and provider use them for information sharing and the
achievement of enforcement. We finish the paper by offering concluding remarks and
ongoing work in Sect. 6.

2 Related Work

The work of [5] presents an access control system that embeds the definition and
enforcement of the security policies in the structure of the XML documents in DTDs
in order to provide customizable security. This provides a level of generalization for
documents that share the same DTD, similar to our work where security policies act
against XML schemas to control XML instances. Two differences are: their work
targets outdated XML DTD’s while ours utilizes schemas, and their polices are
embedded into both DTD and instance, requiring changes to instances when policies
change; our work allows changes with no impact on instances.

Another effort [6] details a model that combines the embedding of policies and
rewriting of access queries to provide security to XML datasets. The XML schema is
extended with three security attributes: access, condition, and dirty. While this work is
similar to our work by targeting security in XML instances via policies, it differs by
requiring changes to instance when the policy is modified and does not consider XML
document writing (see Sect. 5.3).

XACML Policy
Mapping

XSCD –
Schema 1

XML1
Instance 1

XML2
Instance 1

XML3
Instance 1

XML3
Instance 2

XML1
Instance 3

XML1
Instance 2

Original XML Instances

XML
schema

2

XML
schema

3

XML
schema

1

XACML Policy -
Schema 1

XACML Policy produces the Role
Restricted XML instances

XML1 RR
Instance 3

Software Application Level

XML1 RR
Instance 2

XML1 RR
Instance 1

XRSDs –
Schema 1

Access Control Policies

Permissions

ConstraintsRoles

Role Hierarchy

Fig. 1. Security framework for XML.

Generating XACML Enforcement Policies 23

Efforts by [2, 3] present Author-X, a Java-based system for DAC in XML doc-
uments that provides customizable protection to the documents with positive and
negative authorizations. Author-X employs a policy-based DTD document that prunes
an XML instance based on the security policies, which is similar to our approach, but
focuses on discretionary access control where we focus on RBAC. The work of [14]
considers the scenario of a federated access control model, in which the data provider
and policy enforcement are handled by different organizations. This approach relates
to ours with regards to the separation of the security policies from the data to be
handled, but differs in the specifics of where the policies’ details are stored.

The work of [13] has presented a model consisting of access control policies over
outmoded DTD’s with XPath expressions to achieve XML security. Their model is
similar to ours, as it aims to provide different authorized views of an XML document
based on the user’s credentials. However, the significant difference is that this
approach combines query rewriting and authentication methods, whereas our
approach can be applied to any non-normative XACML architecture (having a policy
enforcement point) for both reading and updating, as well as XPath or XQuery
queries.

The work of [15] presents an approach of supporting RBAC to handle the special
case of role proliferation, which is an administrative issue that happens in RBAC
when roles are changed, added, and evolve over time, making security of an orga-
nization difficult to manage. Our approach doesn’t address role proliferation; however,
by separating our security into an XACML policy, we do insulate role proliferation
from impacting an application’s XML schemas and instances.

3 Background

The NIST RBAC [12] standard has permissions assigned to roles which are assigned
to users. NIST RBAC has four reference models. In RBAC0, policies can be defined at
the role level instead of the individual level. In RBAC1, parent roles can pass down
common privileges to children roles. In RBAC2 the separations of duty (SoD) and
cardinality constraints are provided, ensuring the role that grants permissions
(authorization role) exists in a different entity to the other roles. The last reference
model, RBAC3, introduces the concept of sessions (lifetime of a user, role, permission
and their association for a runtime setting).

XML facilitates information exchange across systems by providing a common
structure to information that is hierarchically structured and tagged, where tags can be
used to represent the semantics of the information. XML offers the ability to define
standards via XML schemas, which serve as both the blueprint and validation agents
for instances to comply and be used for information exchange purposes. The Conti-
nuity of Care Record (CCR) standard allows the creation of documents with patient
information (demographics, social security number, insurance policy details, medi-
cations, procedures, etc.) and a common structure for uniform information exchange
across institutions. The CCR schema contains elements for virtually all health
information items, and is represented with extended granularity for better detail
keeping. For example, Fig. 2 shows a subset of the official CCR schema

24 A. De la Rosa Algarín et al.

corresponding to the complexType element StructuredProductType, which is utilized
to represent medications and their attributes. This StructuredProductType is used
throughout this paper to explain the modeling and policy generation in an example
health care scenario.

Our prior work has defined new UML security diagrams for supporting RBAC
[16] via the UML meta-model. Using this as a basis, we have extended this work to
define two new UML artifacts [8, 9]: the XML Schema Class Diagram (XSCD), which
contains architecture, structure characteristics, and constraints of an XML schema;
and the XML Role Slice Diagram (XRSD), which has the ability to add permissions to
the various elements of the XSCD. Figure 3a shows the StructuredProductType
complex type of the CCR schema modeled as an interconnection of UML classes. We
represent each xs:complexType in the schema as a UML class with their respective
UML stereotype. If an xs:element is a descendant of another schema concept, then this
relation is represented as an equivalent class – subclass relation. This holds true for
xs:sequence, xs:simpleType, etc. XML schema extensions (xs:extension) are repre-
sented as associations between classes. Data-type cardinality requirements (minOc-
curs, maxOccurs) and other XML constraints are represented with a «constraint»
stereotype on the attribute. The xs:element type is represented with a «type» stereo-
type. Due to space limitations, we only show the Product xs:element and three main
sub-elements: BrandName, ProductName, and Strength.

<xs:complexType name="StructuredProductType">
 <xs:complexContent>
 <xs:extension base="CCRCodedDataObjectType">
 <xs:sequence>
 <xs:element name="Product" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductName"
 type="CodedDescriptionType"/>
 <xs:element name="BrandName"
 type="CodedDescriptionType" minOccurs="0"/>
 <xs:element name="Strength" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="MeasureType">
 <xs:sequence>
 <xs:element name="StrengthSequencePosition"
 type="xs:integer" minOccurs="0"/>
 <xs:element name="VariableStrengthModifier"
 type="CodedDescriptionType" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Concentration" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>

Fig. 2. Segment of the CCR schema’s StructuredProductType.

Generating XACML Enforcement Policies 25

The next step is to apply security policies to the XSCD (top left of Fig. 1) by
defining an XRSD that is capable of defining role-based access control policies or
permissions on the attributes of the XSCD based on role, thereby achieving fine
grained control. We note that permissions on XML documents are read, no read, write,
and no write, represented in the XRSD as the respective stereotypes, «read/write»,
«read/nowrite», «noread/write», and «noread/nowrite». As an example, Fig. 3b
defines Physician and Nurse XRSDs with permissions against the XSCD in Fig. 3a.
Note that in Fig. 3b, the CCR complex type StructuredProductType element Product
allows a role to have read and write permissions (Physician) or only read permissions
(Nurse). While a Physician role can get all of the information regarding a drug and be
able to create new instances following the schema, a Nurse role may be limited to read
the drug details and cannot create new records.

4 Generating Policies from the XML Role Slice Diagram

In this section, we describe the generation of an XACML security policy (see Fig. 1
again) in order to allow XML instances to be customized and delivered to users based
on role. As a result, security privileges defined at a schema level do not impact the
XML instances of an application when privileges evolve, separating the security
concern from the application data. By extracting the security policies targeting XML
schemas and their instances into an external component of the framework, our
approach avoids the high cost of updating XML schemas and instances when security
policies change, in contrast to those approaches which embed the security policies as
part of the XML schema and instance structure [5, 6].

«complexType»
StructuredProductType

«element»
Product«complexType»

«sequence»

«type» CodedDescriptionType

«element» ProductName

«type» CodedDescriptionType
«constraint» minOccurs=0

«element» BrandName

«element» Strength
«constraint» minOccurs=0
«constraint» maxOccurs=-1

«extension»
CCRCodedDataObjectType

<<XRSD>>
Physician

«read/write» + access()

(a) (b)

<<element>> ProductName

«read/write» + access()

<<element>> BrandName

«read/write» + access()

<<element>> Strength

«read/write» + access()

<<element>>
StrengthSequencePosition

«read/write» + access()

<<element>>
VariableStrengthModifier

<<XRSD>>
Nurse

«read/nowrite» + access()

<<element>> ProductName

«read/nowrite» + access()

<<element>> BrandName

«read/nowrite» + access()

<<element>> Strength

«read/nowrite» + access()

<<element>>
StrengthSequencePosition

«read/nowrite» + access()

<<element>>
VariableStrengthModifier

Fig. 3. XML Schema Class Diagram (a) and XML Role Slice Diagram (b).

26 A. De la Rosa Algarín et al.

To accomplish this, we present an approach to generating XACML security
policies from the XRSD (see Fig. 3b). Towards this objective, Sect. 4.1 presents a
process and architecture for the mapping of XRSDs that are used to generate a
XACML policy for the schema based on the roles, using a portion of the CCR schema
and its attributes; this achieves fine-grained control on CCR and results in an XACML
policy that enforces the security as defined in XRSD against XSCD. Then, in
Sect. 4.2, we present and explain an algorithm for this mapping process, which
revolves around a set of equivalence rules between the XRSD and XACML structures;
again, we use CCR as an example to illustrate the algorithm.

4.1 Mapping the XML Role Slice Diagram to the XACML
Policy Construct

As given in Fig. 1, XRSDs (Fig. 3b) act as the blueprint of the role-based access-
control policy for reading and writing permissions for a specific element or component
of an XML schema for any given role, and represent the portions of the application’s
XML schemas that are to be allowed (or denied) access at an instance level. To map
the XRSD into an XACML policy, we use XACML’s language structure and pro-
cessing model which consists of a PolicySet, a Policy, and a Rule. An XACML
PolicySet is utilized to make the authorization decision via a set of rules in order to
allow for access control decisions. A PolicySet can contain multiple Policy structures,
and each Policy contains the access control rules. As a result, the Policy structure acts
as the smallest entity that can be presented to the security system for evaluation. Based
on our understanding of XACML and its usage, we are taking an approach that each
XRSD must be mapped into a XACML Policy structure with its own set of rules that
represent the appropriate enforcement for roles against a schema. Note that multiple
XACML Policy structures may be generated, resulting in a PolicySet for a specific set
of XML schemas that comprise a given application.

The collection of Policy structures is contained in a PolicySet, combined via an
algorithm specified by the PolicySet’s PolicyCombiningAlgId attribute that targets the
particular XML schema. The XACML specification defines four standard combining
algorithms: Deny-overrides (in which a policy is denied if at least one of the rules is
denied); Permit-overrides (in which a policy is permitted if at least one of the rules is
permitted); First-applicable (in which the result of the first rule’s evaluation is treated
as the result of all evaluations); and, Only-one-applicable (in which the combined
result is the corresponding result to the acting rule). For our intent with XML instance
security, and the way we map the XRSD into an XACML Policy, the combining
algorithm of choice is Deny-overrides. With this algorithm, if a single Rule or Policy
is evaluated to Deny, the evaluation result of the rest of the Rule elements under the
policy is also Deny. While this might be the case when focusing on access control for
XML instances in the document-level, as in our approach, other higher-level systems
(e.g., software applications that utilize the XML instance, etc.) can very well deploy
security policies with different combining algorithms.

In Fig. 5, we present the main sections of the mapped XACML policy for the
Physician XRSD in Fig. 3b that is utilizing data as defined in the XSCD in Fig. 3a.

Generating XACML Enforcement Policies 27

To create an XACML Policy structure per each XRSD, we present the following
mapping equivalences and rules.

Policy and Rule Descriptors and Structure:

– Policy’s PolicyId attribute value is the XRSD’s Role value concatenated to Ac-
cessControlPolicy (e.g., the Physician role in Fig. 3b)

– Rule’s RuleId attribute value is the XRSD’s Role value concatenated to the
XRSD’s higher order element (e.g. in Fig. 3b it would be Product as defined in the
XSCD in Fig. 3a), also concatenated to ‘‘ProductRule’’.

– Rule’s Description value is the XRSD’s Role concatenated to ‘‘Access Control
Policy Rule’’.

– There are two XACML Rules under a higher level Target element, one for allowed
and one for denied permissions.

– XACML Policy and Rules target and match the role (Subject, e.g., Physician in
Figs. 3b and 4), the schema elements (Resources, e.g., ProductName, BrandName
and Strength in Figs. 3a, b and 4), and the permissions (Actions, e.g., read and write
in Figs. 3b and 4).

Rule Target’s Subject (Fig. 4a):

– Only one XACML Subject and SubjectMatch per Rule.
– SubjectMatch’s MatchId uses the function ‘‘string-equal’’ to evaluate the user’s role

as modeled in the XRSD.
– AttributeValue of the Subject is a string, and the value is the XRSD’s Role (e.g.,

Physician in Figs. 3b and 4).
– SubjectAttributeDesignator’s AttributeId is the role attribute.
– While more than one Rule per Policy might exist, the Subject is equal in both cases.

This means that the role to be considered for policy evaluation is the same for
operations that are allowed or denied.

Rule Target’s Resources (Fig. 4b):

– One XACML Resource per permitted XRSD element.
– Each Resource’s ResourceMatch has a MatchId that determines the usage of the

function ‘‘string-equal’’.
– Resource’s AttributeValue’s is the XRSD’s element names from the XSCD (e.g.,

ProductName, BrandName and Strength in Figs. 3a, b and 4).
– Resource’s ResourceAttributeDesignator is an AttributeId that determines the tar-

get-namespace and datatype of the element.

Rule Target’s Actions (Fig. 4c):

– One XACML Action per operation permitted exists (e.g., read and write in Figs. 3b
and 4).

– ActionMatch’s MatchId uses the function ‘‘string-equal’’.
– ActionAttributeDesignator’s AttributeId value is action-write or action-read.

28 A. De la Rosa Algarín et al.

– ActionMatch’s Attributevalue is the permission, read or write, depending on the
stereotypes of the XRSD (e.g., read and write in Figs. 3b and 4).

Collectively, our approach presents three types of mappings: a role mapping
(Fig. 4a) which maps a specific role (e.g., Physician) to a Policy’s Subject; an element
mapping (Fig. 4b),which maps an attribute (e.g., ProductName, Brand, Strength) to a
Policy’s Resource; and a permission mapping (Fig. 4c) which establishes permissions
for the element (read and/or write) as Policy Actions. These mapping equivalences
and rules permit each XACML Policy to capture the information modeled on the
XRSD, while simultaneously limiting the amount of policies needed to only one per
role. While each policy will have two high level Target elements, each with its own
rules for those permissions that are allowed, the Effect of the Rule will be Permit,
while those that are denied will have an Effect of Deny. Note that a special case is
given to those roles where the permissions are all positive (a «read/write» stereotype
in the XRSD) or all negative (a «noread/nowrite» stereotype in the XRSD). In these

(a)

<Subjects>
<Subject>
<SubjectMatch MatchId="…:function:string-equal">
<AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">

Physician
</AttributeValue>

 <SubjectAttributeDesignator AttributeId="…:attribute:role"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>

</SubjectMatch>
</Subject>

</Subjects>

<Resources>
<Resource>
<ResourceMatch MatchId="…:function:string-equal">
<AttributeValue DataType=" XMLSchema#string">

ccr:schema:product:productname
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="…:resource:target-namespace"
DataType=" XMLSchema#string"/>

</ResourceMatch>
</Resource>
<Resource>
<ResourceMatch MatchId="…:function:string-equal">
<AttributeValue DataType="XMLSchema#string">

ccr:schema:product:brandname
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="…:resource:target-namespace"
DataType=" XMLSchema#string"/>

</ResourceMatch>
</Resource>
<Resource>
<ResourceMatch MatchId="…:function:string-equal">
<AttributeValue DataType=" XMLSchema#string">

ccr:schema:product:strength
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="…:resource:target-namespace"
DataType=" XMLSchema#string"/>

</ResourceMatch>
</Resource>

</Resources>

<Actions>
<Action>
<ActionMatch MatchId="…:function:string-equal">
<AttributeValue DataType="XMLSchema#string">

read
</AttributeValue>
<ActionAttributeDesignator

AttributeId="…:action:action-read"
DataType="XMLSchema#string"/>

</ActionMatch>
</Action>
<Action>
<ActionMatch MatchId="…:function:string-equal">
<AttributeValue DataType="XMLSchema#string">

write
</AttributeValue>
<ActionAttributeDesignator

AttributeId="…:action:action-write"
DataType="XMLSchema#string"/>

</ActionMatch>
</Action>

</Actions>

(b)

(c)

Fig. 4. Mapped XACML Policy for the Physician role from the XRSD.

Generating XACML Enforcement Policies 29

cases, only one higher-level Target element with one Rule is necessary, and the
positivity or negativity of the stereotype determines the Effect of the rule (if «read/
write», then Permit, else if «noread/nowrite», then Deny).

4.2 Algorithm for the Mapping Process

The process of mapping the XRSDs to an XACML Policy can be automated, as shown
by Fig. 5. The XRSD and schema to be secured serve as the parameters, while the
XACML schema is used as template for the resulting instances. The first step of the
algorithm determines whether or not all of the permission stereotypes in the XRSD are
all positive or negative (either «read/write» or «noread/nowrite», respectively). If they
are, then only one Target and Rule is needed to completely generate an equivalent
Policy, and the algorithm proceeds down the left side branch. In this case, the algo-
rithm proceeds through a series of steps. First, the template of the XACML Policy is
created (based on the XACML schema) with one high-level target and rule.
Depending on the permission stereotypes from the XRSD, the Policy Rule is set with
an effect of Permit («read/write») or Deny («noread/nowrite»). Then, as shown in

Are all XRSD’s permission stereotypes «read/write» or «noread/nowrite»?

NOYES

Map XRSD’s Role to XACML Subject

Map XRSD’s elements to XACML’s Resources

Map XRSD’s permissions to XACML’s Actions

• Create XACML Policy Template
• Create Policy Target and Rule

Rule Effect = Permit Rule Effect = Deny

Complete XACML Role Based Policy

• Create XACML Policy Template

Create Two Rules Effect
= Permit

Create Two Rules Effect
= Deny

allowed restricted

Only one Target and one Rule needed

«read/write» «noread/nowrite»

Four Targets and four Rules needed

Map XRSD’s Role to
XACML Subject

Map XRSD’s Role to
XACML Subject

Policy
Read Rule

Policy
Write Rule

Policy
Noread

Rule

Policy
Nowrite

Rule

Map read
XRSD’s

elements
to

XACML’s
Resources

Map write
XRSD’s

elements
to

XACML’s
Resources

Map
noread
XRSD’s

elements
to

XACML’s
Resources

Map
nowrite
XRSD’s

elements
to

XACML’s
Resources

Set
XACML
Action to

Read

Set
XACML
Action to

Write

Set
XACML
Action to
Noread

Set
XACML
Action to
Nowrite

XACML Policy Sanitation

Fig. 5. Mapping from the XML Role Slice Diagram to the XACML Policy.

30 A. De la Rosa Algarín et al.

Fig. 4, a threefold mapping is performed between: the XRSD role and Rule’s Subject;
the XRSD elements and the Rule’s Resources; and, the XRSD permission stereotypes
and Rule’s Actions; this finalizes the XACML Policy.

However, if not all permission stereotypes in the XRSD are all positive or neg-
ative, then the XACML Policy will require multiple high-level targets and rules, and
the algorithm would proceed down the right side branch in Fig. 5. In this case, the first
step is also creating the template XACML Policy, but with four high level Targets and
Rules (two with the Effect of Permit, the others with the Effect of Deny). The ful-
fillment of these rules then depends on the permission stereotypes on each element.
For those who have a positive permission (read or write), the elements are mapped as
resources of the respective rule, and the permissions are mapped as actions. After the
mapping process completes for each rule, the XACML Policy is finalized.

The enforcement process is straightforward. If a user has a role that has a no read
permission (like the Nurse role), the policy enforcement point (PEP - or equivalent
structure in the enforcing security architecture) filters the secured XML schema and
the instance requested based on the permitted and allowed elements. For write
operations, a similar enforcement takes place. These policies can also be applied to
XSLT [4] or other query tools (e.g., XPath, XQuery, etc.) in order to provide filtered
results to different role queries. This is an alternative to the traditional XML security
approach of query rewrites, provided that the XSLT, XPath, and XQuery tools have a
PEP that evaluates the XACML schema.

To summarize, Fig. 4 has the XACML policy created from the XRSD presented in
Fig. 3b for the Physician role targeting the XML schema’s Product element (note that
because of space, not all equivalent XACML resources were included). The Physician
role exhibits the special case of having all permissions allowed («read/write» on all
elements). Because of this, only one Target with one Rule (with the Effect value of
Permit) is needed. The Subject’s AttributeValue is Physician (the role from the
XRSD), and the resources are elements from the CCR schema (as also shown by the
XRSD in Fig. 3b). Since the Physician role has both read and write permissions
allowed for these elements, the two actions are part of the single Rule.

5 Policy Enforcement Process with Personal Health
Assistant

In this section, we present the prototyping of the generated XACML policies on XML
instances, transitioning from the mapping process is Sect. 4 to the enforcement pro-
cess on the Personal Health Assistant (PHA) mobile application for health information
management. In detail, in Sect. 5.1, we briefly review the general architecture for
enforcement and its components (PHA, Microsoft HealthVault – MSHV - and our
enforcement Middle-Layer Server). Section 5.2 presents the workflow utilized by the
middle-layer server to enforce the permissions (read and write) set by the patient on
the resulting XML instances.

Generating XACML Enforcement Policies 31

5.1 General Architecture and Components

Personal Health Assistant (PHA) (Fig. 6) is a test-bed mobile application, developed
in the University of Connecticut, for health information management that allows:
patients to view and update their personal health record stored in their MSHV account
and authorize medical providers to access certain portion of the protected health
information (lower left); and, providers to obtain the permitted information from their
respective patients (lower right). The patient version of PHA allows users to perform a
set of actions regarding their health information (view and edit their medication list,
allergies, etc.). Security settings can be set at a fine granular level, and using this
information, policies are generated and stored in the patient’s MSHV account (upper
middle). The provider version of PHA allows the users (e.g., medical providers) to
view and edit the medical information of their patients as long as they are permitted to
do so as dictated by the security settings created by the patient.

In the overall architecture in Fig. 6, MSHV acts as the main data source and stores
data in a proprietary structure that can be exported as XML structures, which in turn
can be converted into a CCR compliant instance. To recreate the non-normative
XACML architecture, our Middle-Layer Server acts as the policy access, information,

Microsoft HealthVault Middle-Layer Server

Provider Layer (Enforcement)Patient Layer (Data Transfer)

Provider List Patient List

•Set Security Policies
•Save Medications
•Save Allergies
•Save Procedures
•Save Demographic Info

•Get Patient Information
•Write-back Information
•Enforce XACML Policies

Microsoft HealthVault -
Patient’s Account

XACML Policies

• Medications

• Allergies

PHA - Patient

XACML Policies

Provider List

• Medications
• Allergies

• Procedures
• Demographics

PHA - Provider

Patient List

• Procedures

• Demographics

• Medications
• Allergies

• Procedures
• Demographics

HV Objects +
XACML

Write-back: HV
Objects

Reading: CCR
Instance + XACML

JSONJSON JSON

Reading: JSON
(from filtered
CCR instance)

Writing: JSON
(with update payload)

Fig. 6. PHA mobile applications and architecture.

32 A. De la Rosa Algarín et al.

decision, and enforcement points. To accomplish proper enforcement, we restrict all
communication via our in-house developed Middle-Layer Server. With regards to data
exchange, we have utilized JSON structures due to our familiarity and extensive
experience with the format. Note that while we utilize JSON for transfers between
PHA and the Middle-Layer Server, the security enforcement (done between the
middle-layer server and MSHV) is performed on XML instances with XACML
policies.

5.2 Enforcing XACML Policies on XML Instance and Segments

In this section, we describe the way that the XACML policy is enforced when han-
dling reading and writing requests on XML instances whose schema has been secured
when using the provider version of PHA. These two processes, though they utilize the
same XACML policies to function, follow different workflows. We discuss the way
that a medication object (StructuredProductType) from the CCR compliant instance
from MSHV is secured (filtered) based on role and presented to the provider. We then
explain the way that writing control is enforced with the same XACML policy.

The general process of securing the CCR instance for reading begins with a
request from the provider version of PHA. When an initial request is made, the server
retrieves the list of patients tied to the provider pertaining information. When a patient
is selected, the server retrieves the corresponding XACML policy that targets the
patient’s information based on the requester’s role. When a provider selects a category
of health information (e.g., medications, procedures, etc.), the Middle-Layer Server,
enforces the pertinent rules of the retrieved XACML policy. The process of this
enforcement, as shown in Fig. 7a, involves the verification of the relevant rule (by
evaluating the string representation of the users’ role with the Subject role of the
policy). After the relevant rule has been found (by utilizing the Resources’ attributes),
the reading permission is enforced by verifying it against the policy’s Action
elements.

If the action of the rule that is evaluated to Permit contains the read permission,
then the CCR instance is not filtered. To support granular access control, recall from
Sect. 4.2 that when stereotypes are not all-positive or all-negative (that is, there exists
a combination of permissions over elements of the XML schema), more than one
policy would match with respect to the role and resources. In this case, all policies will
be evaluated and combined using the policy combination algorithm explained in
Sect. 4.1. Once the CCR instance and segments have been filtered by the enforcement
of the XACML policy, the resulting XML document is translated to JSON for the
consumption of the provider version of the PHA application.

The process of securing the CCR schema for writing begins with a request from
the provider’s PHA. When a provider wants to update a patient’s record (e.g., med-
ication’s StructuredProductType), the request is sent to the Middle-Layer Server tied
to the update data as a JSON object, which verifies the target on which the rules of the
requester’s XACML Policy act upon. The server then evaluates the requester’s role
against the policy in order to determine if the write is allowed.

Generating XACML Enforcement Policies 33

The low-level enforcement of the XACML policy for writing permissions as given
in Fig. 7b involves the same steps as when enforcing for reading (filtering) the doc-
ument. If the user requesting an update operation has a role with a permission that
allows it to occur (the write Action in the XACML Policy’s Rule), the CCR instance is
updated with the sent data, and validated with the CCR schema before the write-back
to MSHV. If validation against the schema is successful, then the write-back occurs,
and the update performed by the provider is saved in the patient’s MSHV record. If
the requester has a role that is not allowed to perform writing operations on the desired
element, the request is dropped.

6 Conclusions and Ongoing Work

XML plays a pivotal role in the healthcare domain via the creation of standards such
as CDA and CCR, which presents challenges in providing a robust security model for
XML to ensure HIPAA compliance in the usage, transmission, and sharing of pro-
tected health information. To address this problem, our prior work [9] presented a
security framework for XML that created UML-like artifacts for XML schemas and
security, the XSCD and the XRSD. Using these as a basis, this paper has focused on
the automatic generation of XACML policies from XRSDs (Sect. 4) that enforce the
security defined on XML schemas against their corresponding instances. This allows
the ‘‘same’’ instance to appear differently to specific users at a particular time. To
demonstrate the feasibility and validity of our approach, Sect. 5 applied the generated
XACML policies to the personal health assistant mobile application that allows
patients to grant privileges to medical providers, and providers to view and update the
data.

Initial Request:
Patient Health

Information

Retrieval of XACML
policies

Does XACML
exist?

Drop Request:
Deny access

Package as equivalent
JSON for PHA

Respond Request:
JSON

NO

YES

Policy Enforcement
and Instance Filtering

Match User Role with
Policy Rules’ Subject

Role

Verify Actions and
Targeted Resources per

Rule

Filter CCR instance with
Guidance from Policy

Export filtered CCR
instance

Initial Request:
Information Update

Evaluation of target and
policy writing rules

Is role allowed?

Drop Request:
Deny access

Write-back to CCR
XML instance

Validation of
updated CCR
with schema

Drop Request:
Invalid

JSON Data
Payload

Validation
passed?

Save data in
HealthVault

Respond
Request:
Success

NO

YES

YES

NO

(a) (b)

Fig. 7. Enforcing reading (a) and writing permissions (b) permissions in PHA.

34 A. De la Rosa Algarín et al.

Our on-going work includes the extension of the work in this paper to support
discretionary and mandatory access control, as well as applying our security frame-
work to other platforms (e.g. Open mHealth [11], etc.). These new approaches present
many challenges; such as varied data representations (JSON, RDF, etc.), as well as the
creation of more complex applications from the combination of different independent
systems [7].

References

1. Baumer, D., Earp, J.B., Payton, F.C.: Privacy of medical records: IT implications of
HIPAA. In: Tavani, H.T. (ed.) Ethics, Computing, and Genomics, pp. 137–152. Jones and
Bartlett, Sudbury (2006)

2. Bertino, E., Carminati, B., Ferrari, E.: Access control for XML documents and data. Inf.
Secur. Techn. Rep. 9, 19–34 (2004)

3. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents. ACM
Trans. Inf. Syst. Secur. (TISSEC) 5, 290–331 (2002)

4. Clark, J.: Xsl Transformations (Xslt). World Wide Web Consortium (W3C). http://www.
w3.org/TR/xslt (1999)

5. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., et al.: Design and
implementation of an access control processor for XML documents. Comput. Netw. 33,
59–75 (2000)

6. Damiani, E., Fansi, M., Gabillon, A., et al.: A general approach to securely querying XML.
Comput. Stan. Interfaces 30, 379–389 (2008)

7. De la Rosa Algarín, A., Demurjian, S.A.: An approach to facilitate security assurance for
information sharing and exchange in big data applications. In: Akhgar, B., Arabnia, H.R.
(eds.) Accepted in Emerging Trends in Information and Communication Technologies
Security. Elsevier, Amsterdam (2013)

8. De la Rosa Algarín, A., Demurjian, S.A., Ziminski, T.B., et al.: Securing XML with role-
based access control: case study in health care. In: Ruiz Martínez, A., Pereñíguez García,
F., Marín López, R. (eds.) Architectures and Protocols for Secure Information Technology,
pp. 334–365. IGI Global, Hershey (2013)

9. De la Rosa Algarín, A., Demurjian, S. A., Berhe, S., et al.: A Security Framework for XML
Schemas and Documents for Healthcare, pp. 782–789 (2012)

10. Dolin, R.H., Alschuler, L., Boyer, S., et al.: HL7 clinical document architecture, release 2.
J. Am. Med. Inform. Assoc. 13, 30–39 (2006)

11. Estrin, D., Sim, I.: Open mHealth architecture: an engine for health care innovation.
Science 330, 759–760 (2010). (Washington)

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., et al.: Proposed NIST standard for role-based
access control. ACM Trans. Inf. Syst. Secur. (TISSEC) 4, 224–274 (2001)

13. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML security views. In: SACMAT
2005: Proceedings of the 10th ACM Symposium on Access Control Models and
Technologies, pp. 77–84. ACM Press, New York (2005)

14. Leonardi, E., Bhowmick, S., Iwaihara, M.: Efficient database-driven evaluation of security
clearance for federated access control of dynamic XML documents. In: Kitagawa, H.,
Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 299–306.
Springer, Heidelberg (2010)

Generating XACML Enforcement Policies 35

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

15. Müldner, T., Leighton, G., Miziołek, J.K.: Parameterized role-based access control policies
for XML documents. Inf. Secur. J. A Globa. Persp. 18, 282–296 (2009)

16. Pavlich-Mariscal, J.A., Michel, L., Demurjian, S.A.: A formal enforcement framework for
role-based access control using aspect-oriented programming. In: Briand, L.C., Williams,
C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 537–552. Springer, Heidelberg (2005)

36 A. De la Rosa Algarín et al.

http://www.springer.com/978-3-662-44299-9

	Generating XACML Enforcement Policies for Role-Based Access Control of XML Documents
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Generating Policies from the XML Role Slice Diagram
	4.1 Mapping the XML Role Slice Diagram to the XACML Policy Construct
	4.2 Algorithm for the Mapping Process

	5 Policy Enforcement Process with Personal Health Assistant
	5.1 General Architecture and Components
	5.2 Enforcing XACML Policies on XML Instance and Segments

	6 Conclusions and Ongoing Work
	References

