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Abstract 

Several brain imaging studies have assumed that response conflict is present in 

Stroop tasks. However, this has not been demonstrated directly. We examined the time-

course of stimulus and response conflict resolution in a numerical Stroop task by 

combining single-trial electro-myography (EMG) and event-related brain potentials 

(ERP). EMG enabled the direct tracking of response conflict and the peak latency of the 

P300 ERP wave was used to index stimulus conflict. In correctly responded trials of the 

incongruent condition EMG detected robust incorrect response hand activation which 

appeared consistently in single trials. In 50-80% of trials correct and incorrect response 

hand activation coincided temporally, while in 20-50% of trials incorrect hand activation 

preceded correct hand activation. EMG data provides robust direct evidence for response 

conflict. However, congruency effects also appeared in the peak latency of the P300 

wave which suggests that stimulus conflict also played a role in the Stroop paradigm. 

Findings are explained by the continuous flow model of information processing: Partially 

processed task-irrelevant stimulus information can result in stimulus conflict and can 

prepare incorrect response activity. A robust congruency effect appeared in the amplitude 

of incongruent vs. congruent ERPs between 330-400 ms, this effect may be related to the 

activity of the anterior cingulate cortex. 

Keywords: 

response competition, anterior cingulate cortex, numerical Stroop paradigm, 

continuous flow model, ERP, EMG 
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Introduction 

It is a major question whether conflict is resolved at the level of stimulus 

representations or at the level of motor response preparation (Hock and Egeth, 1970; 

Morton and Chambers, 1973; Posner and Snyder, 1975). The Stroop paradigm is the most 

popular experimental model of conflict situations (Stroop, 1935; MacLeod, 1991). In this 

paradigm both task-relevant and task-irrelevant stimulus dimensions deliver information. 

Participants have to respond according to the task-relevant dimension while neglecting 

the task-irrelevant dimension. Generally, it is assumed that the Stroop paradigm evokes 

both stimulus and response conflict. Accordingly, several functional magnetic resonance 

imaging (fMRI) studies attempted to separate brain correlates of stimulus and response 

conflict in various Stroop paradigms (for reviews see van Veen and Carter 2005; Liston 

et al. 2006). However, no Stroop studies measured response conflict directly at the level 

of effectors. Hence, conclusions about response conflict rest on assumptions about mental 

processes involved in paradigms. Here we have filled this gap by measuring response 

conflict directly, by using electro-myography (EMG). Furthermore, we used EMG to 

guide the interpretation of event-related brain potential (ERP) data, in order to relate ERP 

findings to response conflict effects. 

Stimulus conflict is due to a mismatch at the level of the representations of 

stimulus dimensions (Hock and Egeth, 1970). Response conflict appears when the 

relevant and irrelevant stimulus dimensions are processed, up to response initiation, in 

parallel. In the congruent condition of a Stroop task both the task-relevant and the task-

irrelevant stimulus dimensions prepare similar responses. In contrast, in the incongruent 

condition the task-relevant and the task-irrelevant stimulus dimensions may prepare 
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opposing response tendencies. It is this motor conflict that may hinder performance. 

Several ERP studies have investigated conflict processing in Stroop tasks by exploiting 

the high temporal resolution of ERPs. One line of ERP studies attempted to separate 

stimulus and response conflict by examining the latency of ERP effects (for reviews see 

Szűcs and Soltész, 2007; 2008). Some studies assumed that relatively early (at around 

200 ms) congruency effects modulating ERP amplitude precede response preparation. 

Hence, early congruency effects in amplitude were interpreted as expressions of stimulus 

conflict (Aine and Harter, 1984; Atkinson et al. 2003). Other studies tested the latency of 

the P300 ERP wave, whose latency is usually thought to correlate with the completion of 

stimulus analysis but not with response preparation (Kutas et al. 1977; McCarthy and 

Donchin, 1981; Donchin, 1981). Duncan-Johnson and Koppel (1981) and Ilan and Polich 

(1999) could not demonstrate congruency effects in the latency of the P300 ERP wave in 

the classical color-word Stroop task (Stroop, 1935). Hence, it was concluded that 

congruency effects were not related to stimulus conflict; rather, they were assumed to be 

related to response conflict. In contrast, we demonstrated congruency effects on P300 

latency in a numerical Stroop task (Szűcs, Soltész, Jármi and Csépe, 2007; adult group). 

This finding suggests that stimulus conflict could, in fact, play a role in Stroop tasks. 

Another line of ERP Stroop studies has focused on the analysis of topographical 

features of ERPs. The most prominent topographic effect identified by this research is a 

negativity appearing at around 350-500 ms in incongruent minus congruent difference 

potentials (most previous ERP studies did not use a neutral condition when examining the 

topography of congruency effects; for a review see Szűcs and Soltész, 2007). This 

negativity is usually called the N450 (West 2003) and has been interpreted in two ways: 



 5 

On the one hand, some studies (Liotti et al. 2000; West, 2003) considered it as a correlate 

of the activity of the Anterior Cingulate Cortex (ACC) because several fMRI studies have 

demonstrated ACC activation in Stroop tasks (Milham et al. 2001; van Veen and Carter 

2005; Liston et al. 2006). The ACC has been implicated in response conflict detection 

and resolution (Botvinick et al. 1999; van Veen et al. 2001; Milham et al. 2001; Kerns et 

al. 2004; Botvinick et al. 2004). Hence, an ACC source of the effect would suggest that 

the N450 is related to response conflict detection and resolution. On the other hand, some 

studies (Rebai et al. 1997) suggested that the congruency effect was related to the N400 

wave which is thought to index semantic integration (Kutas and Hillyard, 1980) and 

appears at semantically unexpected events even when these are represented by single 

digits (Szűcs, Soltész, Czigler and Csépe, 2007). This explanation would suggest that the 

congruency effect is more related to conflict at the level of stimulus representations. 

Currently data cannot clearly discriminate between the above two hypotheses. 

@ Figure 1 

In this study the numerical version of the Stroop paradigm was used which we 

used in previous similar studies (Fig. 1.). In this paradigm participants judge which of 

two simultaneously presented digits is larger in physical size
 
(Henik and Tzelgov, 1982). 

In the neutral condition the two digits are of equal numerical value. That is, the task-

irrelevant stimulus dimension (numerical magnitude) delivers neutral information relative 

to the task-relevant stimulus dimension (physical size). In the congruent condition the 

task-relevant and task-irrelevant dimensions are in coherence with each other. In the 

incongruent condition the task-relevant and task-irrelevant dimensions are in conflict 

with each other. Performance is worse in the incongruent (conflict) condition in 
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comparison to the congruent and neutral conditions. An advantage of the numerical 

Stroop paradigm over the classical color word Stroop paradigm (Stroop, 1935) is that the 

numerical paradigm easily enables the parametric manipulation of task-difficulty. This 

can be done by varying the physical size difference between digits. In the easy condition 

the physical size difference between digits is large. In the difficult condition the physical 

size difference between digits is small (the size difference between digits is harder to 

discriminate). Manipulating task difficulty is advantageous because it is thought to 

modulate the amount of response conflict (Posner 1978; MacLeod, 1991 for review). 

In a series of ERP studies we have identified robust ERP amplitude markers of 

conflict in the numerical Stroop paradigm (Szűcs Soltész, Jármi and Csépe, 2007; Szűcs 

and Soltész, 2007; 2008). In these studies we analyzed amplitude effects in relation to the 

timing of the Lateralized Readiness Potential (LRP). The LRP is computed from the 

voltage recorded at electrodes positioned over the motor cortex, and it is thought to index 

movement preparation (Gratton et al. 1988; De Jong et al. 1988). We assumed that effects 

preceding LRP onset were related to stimulus conflict, while the timing and topography 

of effects following LRP onset may have been related to both stimulus and response 

conflict. In our Stroop studies we have identified ERP amplitude effects in the 

incongruent relative to the neutral condition both before and after LRP onset, including 

the previously mentioned N450 effect. Overall it was suggested that our findings 

provided evidence for both stimulus and motor conflict in Stroop tasks. 

Our previous findings were explained within the framework of the continuous 

flow model of Eriksen and Schultz (1979). This model assumes that perceptual stimulus 

processing and response activation/organization cannot be separated clearly. Rather than 
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following each other in a serial fashion, the stages overlap and perceptual processing 

influences response preparation in a continuous fashion.  That is, perceptual information 

accumulates gradually and the outcome of this analysis is continuously fed into the 

response system where it continuously affects response activity. Consequently, even 

partially processed perceptual stimulus attributes will result in motor activation even 

before the completion of final perceptual analysis. According to the model, a motor 

response is triggered when the activation level of a response exceeds a criterion (Eriksen 

and Schultz, 1985; Eriksen et al. 1985; Coles et al. 1985; Gratton et al. 1988; Smid et al. 

1990). The perceptual flow model can explain the presence of both stimulus and response 

conflict in Stroop tasks. However, a shortcoming of our previous studies was that 

similarly to other studies of the Stroop effect we could not directly measure motor-

conflict. Hence, data interpretation relied on assumptions about the temporal relations of 

ERP effects and the LRP onset. 

Currently the strongest neuroimaging evidence supporting the response-conflict 

theory of the Stroop effect comes from a single functional near-infrared imaging study 

(fNIRS) (DeSoto et al. 2001). This study sampled brain activity at 25Hz temporal 

resolution in a manual spatial Stroop task. The study measured lateralized fNRIS activity 

over motor cortices, exploiting the fact that fNIRS data is not subject to volume 

conduction like ERPs. Hence, unlike the LRP, lateralized fNRIS activity is able to 

characterize response preparation in motor cortices in a hand-specific manner. The 

average fNIRS phase value during an 80 ms period preceding the response was computed 

and brain activity was characterized by measuring the phase of the optical signal. This 

technique was based on the fact that increased phase-delay of the optical signal 
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(increased average time of flight of photons through the head) can serve as a marker of 

increased physiological activity of the brain (Gratton and Limkeman, 1983). Results 

showed increased phase-delay over the motor cortex ipsilateral to response hand in 

incongruent but not in the congruent trials, and increased phase-delay over the motor 

cortex contralateral to response hand in both congruent and incongruent trials. Put 

otherwise, the motor cortex associated with the correct response hand was activated in 

both the congruent/incongruent conditions, while the motor cortex associated with the 

incorrect response was activated only in the incongruent condition. This data was 

interpreted as demonstrating selective incorrect response activation in the incongruent 

condition, supporting the response competition theory of the Stroop effect.  

Further direct evidence for response competition in other tasks have been found in 

seminal studies using EMG to represent correct and incorrect response activation. These 

studies have argued that according to the motor response competition theory effectors 

involved in preparing and executing a potential incorrect response may be subliminally 

activated, even in correctly responded trials. Hence, EMG may have the potential to 

observe incorrect effector activation in a direct manner. Such data can provide direct 

evidence for response conflict and motor response competition. This proved to be a 

fruitful approach in the Eriksen flanker task (Eriksen et al. 1985; Coles et al. 1985; 

Gratton et al. 1988) and the Simon task (Hasbroucq et al. 1999; Burle et al. 2002), where 

EMG was successfully used to demonstrate latent muscle activity in incorrect response 

hands. 

Building on the above studies, here we have not only recorded ERPs but also 

recorded EMG synchronized with ERPs in a numerical Stroop task. First, we exploited 
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previously used ERP measures: peak latency measures (timing), amplitude, topography 

and the measurement of the onset of the LRP (Duncan-Johnson and Koppel, 1981; Ilan 

and Polich 1999; Liotti et al. 2000; West 2003; West and Alain, 1999; Szűcs Soltész, 

Jármi and Csépe, 2007; Szűcs and Soltész, 2007; 2008). Second, EMG was also 

measured. We hypothesized that if response conflict plays a crucial role in the numerical 

Stroop task than the activation of the incorrect response hand should be detected by 

EMG, even in correctly responded trials of the incongruent condition. One caveat may 

have been that incorrect response hand EMG activity may have appeared in all slowly 

responded trials, irrespective of experimental condition. In order to exclude this 

alternative explanation we conducted separate analyses of trials that were deemed as 

having either a quick or slow response. This way we examined whether incorrect hand 

EMG activity was related to performance and whether it was specific to the incongruent 

condition. That is, true incorrect response activation must be specific to the incongruent 

condition both in slow and quick response trials. In order to investigate the consistency of 

the relationship of EMG amplitude and performance we correlated single-trial EMG 

amplitude with reaction time (RT). If incorrect response activation is closely related to 

behavioral congruency effects, then the correlation of EMG amplitude and RT can be 

expected. 

Apart from the potential co-activation of correct and incorrect response hands in 

the incongruent condition it is a further question whether the timing of correct and 

incorrect hand activity is co-incident or whether correct hand activation follows incorrect 

hand activation (DeSoto et al. 2001). In order to study this question, we also compared 

the timing of EMG activity in correct and incorrect response hands in single trials. 
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Furthermore, EMG was used to guide the analysis of high-resolution 129-channel electro-

encephalography data. This enabled effective examination of the temporal relationship of 

the N450 ERP effect and motor conflict. If the N450 is related to ACC motor conflict 

detection/resolution its timing must be closely related to the activity of the incorrect 

response hand. The effect of numerical (semantic) distance on ERP data was also tested, 

because such effects have been related to the classical N400. Hence, semantic distance 

effects in the N450 time range would link the N450 to the classical N400 (Niedeggen & 

Rösler 1999; Szucs & Csépe 2005). 

Materials and Methods 

Participants 

18 adults’ data (mean age 25±5 years; 5 males, 3 left-handed) were analyzed. 

Participants were graduate and undergraduate students at the University of Cambridge. 

The study received ethical approval from the Psychology Research Ethics Committee of 

the University of Cambridge. 

Stimuli and procedure 

A stimulus consisted of two Arabic digits shown simultaneously in the middle of 

a 19-inch computer screen. Stimuli were white digits on black background. A trial started 

with a fixation sign shown for 300 ms (the drawing of an eye). This was followed by a 

delay for about 1000 ms (a random interval between ± 50 ms was added to 1000 ms in 

order to suppress alpha activity which may time-lock to stimulus-presentation). After this 

the stimulus appeared for 3000 ms, or until the participant gave a behavioral response. 

The inter-trial interval was 1000 ms. 
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The following number pairs were used as stimuli in the congruent and 

incongruent conditions: 1-2, 2-1, 8-9, 9-8, 1-8, 8-1, 2-9 and 9-2. The following number 

pairs were used in the neutral condition: 1-1, 2-2, 8-8 and 9-9. The two digits in a pair 

were of different physical font size. In one half of trials the physical size of digits was 40 

and 45 points. In the other half the physical size of digits was 40 and 50 points. This 

manipulation defined the task difficulty factor: the physical size difference between digits 

was either small (5 points: difficult condition) or large (10 points: easy condition). The 

numerical distance between digits was either 1 or 7 in the congruent and incongruent 

conditions (numerical distance factor), and 0 in the neutral condition. Exactly the same 

digits were used for both the numerical distance 1 and 7 conditions. By using two 

numerical distances we kept the number of levels of the task-irrelevant factor at the same 

value of the number of levels of the task-relevant factor. In the congruent condition the 

physical larger digit was also numerically larger than the other one. In the incongruent 

condition the physically larger digit was numerically smaller than the other one. In the 

neutral condition the two digits were of the same numerical value. In half of the trials the 

physically larger number appeared on the right, in the other half, on the left. The same 

held for the position of the numerically larger number as well. Congruency, size 

difference, numerical distance, and the side of the response (left or right hand) were 

manipulated orthogonally. 

Participants’ task was to indicate with a button press whether the physically larger 

number appeared on the left or on the right. Participants pressed response buttons with 

their thumbs. Stimuli in stimulus sequences were pseudo-randomized in a way that 

controlled for the number and distribution of response side (left or right) combined with 
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congruency in one stimulus sequence. All 36 possible combinations of response side (4 

combinations: right after right, left after right, left after left and right after left) and 

congruency (9 possible pairs of congruent, incongruent and neutral) were controlled for 

and evenly distributed within a stimulus sequence in order to avoid any response 

preparation bias. Each participant received a unique pseudo-randomized sequence of 

stimuli, equating response preparation effects both within- and across subjects. There 

were 6 experimental blocks with 96 trials in each block (576 stimuli). The experiment 

was preceded by 24 practice trials. Stimuli were delivered by Presentation 11 (Neuro-

behavioral systems). 

Behavioral data analysis 

Accuracy and RT  were analyzed by Congruency (neutral, congruent and 

incongruent) × Difficulty (small vs. large size difference) × Numerical distance (1 vs. 7) 

× Side of response (left vs. right hand) repeated measures ANOVAs. By definition 

numerical distance was zero in the neutral condition. Therefore, in the above ANOVA 

half of neutral trials were randomly assigned to the numerical distance 1 condition, and 

the other half was assigned to the numerical distance 7 condition. Tukey-HSD tests were 

used for post-hoc analyses. Because the effect of numerical distance may be suppressed 

in the above ANOVA, another Congruency (congruent and incongruent only) × 

Difficulty × Numerical distance × Side of response ANOVA was run merely to confirm 

findings relating to the numerical distance factor. 

In a third analysis, individual trials in each subject in each congruency condition 

were sorted into slow and fast response trials. Fast trials were defined as trials responded 

faster than the mean RT of a particular participant in the congruent condition. Slow trials 
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were defined as trials responded slower than the mean RT of a particular participant in 

the incongruent condition. In order to compare RT in slow and fast trials a Speed (Fast 

vs. Slow) × Congruency × Difficulty × Numerical Distance × Side of response ANOVA 

was run. Tukey tests for Speed × Congruency contrasts were used to evaluate congruency 

effects in fast and slow trials. In all behavioral and physiological ANOVAs Greenhouse-

Geisser epsilon (ε) correction was used when necessary. Original df values and corrected 

p values are reported. Behavioural data was analyzed in Statistica 7.0. 

Electro-myography (EMG) recording and pre-processing 

EMG was measured by EMG110C amplifiers using an MP150 data acquisition 

unit (Biopac Inc.). Two disposable cloth-based hypoallergenic Ag-AgCl EL504 recording 

disc electrodes were connected by 110S shielded touch-proof leads. Active electrodes 

were placed along the left and right flexors of the thumb (flexor pollicis brevis). An 

electrode on the left elbow served as ground. Before electrode application the skin was 

washed with soap, gently abraded and washed with alcohol. The electrodes were attached 

by adhesive solid gel. EMG was sampled at 1000Hz, band-pass filtered between 10-250 

Hz (Fridlund and Cacioppo, 1986), rectified and scaled relative to the maximum 

amplitude measured in each individual (Lehman and McGill, 1999). Hence, EMG is 

expressed as percent of the maximum value measured. EMG was also baseline-corrected 

relative to the -100 to 0 ms interval preceding stimulus presentation. EMG epochs 

extended from -100 to 998 ms relative to stimulus presentation. 

Electro-myography data analysis 

EMG data was analyzed in Matlab 7.1 and Statistica 7.0. The deviation of EMG 

amplitude from zero was tested by point-by-point one-sample t-tests run against zero for 
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each Congruency × Difficulty condition. Deviations from zero were considered 

significant if they reached significance over a minimum of 20 consecutive sampling 

points at p<0.025. A Congruency × Difficulty ANOVA was run on the mean EMG 

amplitude of the interval found to show significant deviations from zero. Single trial 

analysis was used to assess the relationship of EMG amplitude and RT. First, EMG trials 

were sorted as a function of RT. 

In a single trial analysis individual trials were pooled across all subjects for all 

Congruency × Difficulty conditions. The EMG amplitude measured at individual 

sampling points of each trial was correlated with the RT measured in each particular trial. 

Point-by-point correlations were considered significant if they appeared for at least 20 

consecutive sampling points (20 ms) at p<0.025. In order to avoid that outliers drive 

correlations, trials with RTs longer than the overall mean RT plus 3 standard deviations 

were removed from correlational analyses. A further single-trial analysis examined 

whether the activation of the correct response hand temporally followed the activation of 

the incorrect response hand, or whether the activation of response hands temporally 

overlapped. This question was analyzed in 1588 trials collected in the difficult 

incongruent condition where response conflict was the most robust. The activation 

difference between the correct and incorrect response hands was characterized by the 

difference of the peak latency of the largest amplitude sampling point in single-trials 

(measured in trials smoothed by a 50 ms running average window). In the incorrect 

response hand the peak latency and amplitude were measured between 100-400 ms, 

during the interval where significant incorrect response hand activation was found. A 

larger interval was used than the exact 214-378 ms interval with significant incorrect 
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hand activation so that single trial variability could be captured more successfully. 

However, analyses were also re-run on data measured when finding peaks was not 

constrained to the 100-400 ms interval. In the correct response hand the peak latency and 

amplitude were defined as the latency/amplitude of the most positive EMG peak found 

during the whole analysis epoch (in the correct hand EMG peak amplitude tightly 

correlated with RT). 

Event-related brain potential recording and pre-processing 

@ Figure 2 

EEG was recorded by an Electrical Geodesics system with a 129-channel Hydro-

Cell Net. Landmark electrode positions are depicted in Fig. 2. (All electrodes are shown 

in Supplementary Figure 1.). The sampling rate was 500 Hz, an on-line band-pass filter 

of 0.01-70 Hz was used. The data was band-pass filtered between 0.01-30 Hz offline, and 

was recomputed to average reference. Epochs extended from -100 to 998 ms relative to 

stimulus presentation. Data was baseline corrected relative to the -100 to 0 ms interval. 

Epochs containing voltage deviations exceeding ±100 µV relative to baseline at any of 

the recording electrodes and epochs containing ocular artefacts (visually detected by the 

experimenters at electrodes below, above and next to the eyes) were rejected. 

Event-related potential analysis 

The LRP was computed as proposed by Gratton et al. (1988): 

[   (ER - EL) LEFT HAND response   +   (EL - ER) RIGHT HAND response   ] / 2, 

where EL denotes the amplitude of the ERP at an electrode placed over the left 

motor cortex, and ER denotes the amplitude of the ERP at an electrode placed over the 

right motor cortex. In the traditional 10-20 electrode system electrode C3 is used as EL 
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and electrode C4 is used as ER. Hydro-Cell Net electrode 36 has equivalent position to 

electrode C3 and Hydro-Cell Net electrode 104 has equivalent position to C4. Hence, 

electrode 36 was used as EL, and electrode 104 was used as ER (see Fig. 2). According 

to convention a negative LRP indicates a correct response tendency, and a positive LRP 

indicates an incorrect response tendency.  The deviation of the LRP from baseline was 

tested by point-by-point two-tailed one-sample t-tests run against zero. Effects were 

considered significant when they reached significance at p<0.025 over a minimum of 10 

consecutive sampling points (20 ms). 

The overall temporal course of congruency effects was illustrated by the global 

field power (GFP). The GFP is computed as the mean potential deviation of all recording 

electrodes, and it reflects the spatial standard deviation of the data (Lehmann and 

Skrandies, 1980; Skrandies, 1995). A large GFP is computed when ERPs show high 

peaks and troughs and steep potential gradients simultaneously on several electrode 

channels. Hence, the GFP is an excellent method for summarizing robust ERP effects 

appearing at many electrodes in a single curve. Importantly, the GFP characterizes the 

latency of robust distributed ERP effects by a single curve. 

The peak latency of the P300 wave was determined between 300-600 ms. The 

peak latency was defined as the sampling point with the most positive amplitude on 

centro-parietal electrodes 7, 129, 106, 31, 80, 54, 55, 79, 61, 62, 78, 67, 72, and 77. These 

electrodes were chosen because the maximum amplitude of the P300 happened at these 

electrodes. The peak latency of the occipital P100 wave (sampling point with the most 

positive amplitude) was determined between 70-140 ms. The peak latency of the occipital 

N200 wave (sampling point with the most negative amplitude) was determined between 
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120-220 ms. The peak latency of the P100 and N200 was measured on electrodes 65, 66, 

70, 68, 69, 73, 83, 84, 90, 88, 89 and 94 where these waves showed the largest amplitude. 

The peak latency of ERP waves was tested by Speed × Congruency × Physical distance × 

Electrode ANOVAs. 

Effects in ERP amplitude were first examined by point-by-point Speed (fast vs. 

slow trials) × Congruency (congruent vs. incongruent) × Numerical distance (1 vs. 7) 

repeated-measures ANOVAs. There was no effect of numerical distance, nor were any 

interactions found. Hence, further analysis continued with a point-by-point Speed (fast 

vs. slow trials) × Congruency (neutral, congruent and incongruent) × Difficulty (small vs. 

large) repeated-measures ANOVAs. In order to protect against Type-I errors a 

conservative significance level of p<0.005 was chosen for EEG analysis. Time intervals 

where statistical effects reached significance (p<0.005) over a minimum of 10 

consecutive sampling points at least at 6 electrode channels were considered to 

demonstrate significant effects. Pair-wise comparisons between all congruency 

conditions were carried out by point-by-point Speed (fast vs. slow trials) × Congruency × 

Size difference (small vs. large) repeated-measures ANOVAs. These ANOVAs included 

only two levels of congruency (1: neutral vs. congruent. 2: neutral vs. incongruent. 3: 

congruent vs. incongruent.). Pair-wise comparisons were restricted to electrodes and 

time-intervals where the overall ANOVA with three levels of congruency identified 

congruency effects. Pair-wise comparison effects were considered significant when 

effects reached significance (p<0.005) over a minimum of 10 consecutive sampling 

points at least at 6 electrode channels. The topography of congruency effects was 

visualized as congruent minus neutral, incongruent minus neutral, and incongruent minus 
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congruent difference potentials. Speed × Congruency × Difficulty × Electrode ANOVAs 

were run on the mean amplitude of ERPs in time intervals and at the electrodes where 

point-by-point ANOVAs discovered interactions. These ANOVAs were run separately 

for electrodes showing effects of opposite polarity (usually due to phase reversal between 

anterior vs. posterior electrodes). This avoids that opposite polarity effects cancel out in 

an overall ANOVA. 

Brain electric source analysis was done with the BESA method implemented in 

EEGLab 6 (Delorme and Makeig, 2004). The analysis was run on the mean topography 

of the incongruent condition between 330-400 ms. The analysis was run blind, that is, no 

initial dipole was seeded. Rather, the algorithm found a single dipole best fitting the scalp 

distribution. 

Results 

Behavioral results 

@ Table 1 

Behavioral results are shown in Table 1. There were 3.4% more correct responses 

in the congruent and neutral than in the incongruent conditions (F(2,34)=20.71; ε=0.569; 

p=0.0001. Tukey congruency contrasts for congruent vs. incongruent: p=0.0001; Neutral 

vs. incongruent: p=.0001). Accuracy was 2.5% worse in the difficult than in the easy 

condition (F(1,17)=22.33; p<0.0002). Incongruent trials were responded less accurately 

in the difficult than in the easy condition (Congruency×Difficulty: F(2,34)=18.82; 

ε=0.640; p=0.0001).  

RT was 30 ms slower in the difficult than in the easy condition (F(1,20)=100.7; 

p=0.0001). There was a congruency effect (F(2,34)=78.49; ε=0.767; p=0.0001). 
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Incongruent trials were responded 25 ms slower than neutral trials (Tukey test: 

p<0.0001.) and 30 ms slower than congruent trials (p<0.0001). The incongruent vs. 

neutral discrepancy was larger in the difficult than in the easy condition (32 vs. 20 ms; 

Congruency×Difficulty interaction: F(2,34)=4.47; ε=0.994; p=0.0189). However, the 

incongruent vs. neutral difference was equally strong in both the difficult and in the easy 

conditions (Tukey p from Congruency×Difficulty contrasts for both levels of difficulty: 

p=0.0001). The Congruency × Difficulty × Numerical distance × Side of response 

ANOVA with two levels of congruency replicated results of the ANOVAs with 3 levels 

of congruency. 

@ Table 2 

Correctly responded trials in each condition were sorted into slow and fast 

categories in each subject. The proportion of fast and slow trials is shown in Table 2. RT 

for fast and slow trials is shown in Table 1C-D. Fast trials were responded 104 ms faster 

than slow trials (Speed: F(1,17)=145.39; p<0.0001). There was a Congruency effect 

(F(2,34)=28.14; ε=0.901; p<0.0001) and a Speed × Congruency interaction 

(F(2,34)=14.13; ε=0.952; p<0.0001). According to Speed × Congruency post-hoc Tukey 

contrasts there were no congruency effects in fast trials. In contrast, in slow trials the RT 

was slower in the incongruent than in the neutral (Tukey p<0.0001) and congruent 

(p<0.001) conditions. The effect of Difficulty (F(1,17)=37.45; p<0.0001) and the Speed × 

Difficulty interaction (F(1,17)=23.58; p=0.0001) were significant. Post-hoc tests 

demonstrated that difficulty had an effect in slow trials only (Tukey p from Speed × 

Difficulty contrasts: p=0.0002). 

Group-level electro-myography results 
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@ Figure 3 

@ Table 3 

The EMG recorded in the correct and incorrect response hands is shown in Fig. 

3A. The EMG of the correct response hand robustly deviated from the baseline during the 

response period (see time intervals in Table 3A). In addition, in the incongruent 

condition there was significant EMG activity in the incorrect response hand between 222-

322 ms.  In the difficult condition the incorrect response-hand activity appeared between 

214-334 ms, in the easy condition it appeared between 229-294 ms. In a secondary 

analysis the mean EMG amplitude was determined in each Congruency × Difficulty 

condition between 222-322 ms (Fig. 3B.). There was a congruency effect (F(2,34)=18.18; 

ε=0.793; p<0.0001). Post-hoc Tukey tests (congruent vs. incongruent: p=0.001; neutral 

vs. incongruent: p=0.0001) revealed that amplitude was larger in incongruent (4.9%) 

trials than in congruent (1.9%) and neutral trials (0.47%). Difficult trials showed larger 

amplitude than easy trials (3.74% vs. 1.12%; F(1,17)=24.98; p<0.0001). The difficulty 

effect appeared only in incongruent trials (Tukey p from Congruency × Difficulty 

contrasts: 0.0001; Congruency × Difficulty interaction (F(2,34)=10.17; ε=0.716; 

p<0.002). 

@ Figure 4 

EMG in conditions with significant deviations from baseline in slow and fast 

trials are shown in Fig. 4. Time intervals with significant EMG deviations in the correct 

response hand are summarized in Table 3B-C. In fast trials the EMG of the incorrect 

response hand never deviated significantly from baseline. In slow trials the EMG of the 

incorrect hand deviated from the baseline in the incongruent condition between 214-352 
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ms (difficult condition) and between 254-294 ms (easy condition). There were no 

significant EMG deviations in any other conditions. The mean EMG amplitude of the 

254-294 ms interval was entered into a Speed × Congruency × Difficulty ANOVA. This 

interval was chosen because EMG in both the easy and difficult incongruent conditions 

significantly deviated from the baseline during this interval. Nevertheless, results were 

confirmed by other ANOVAs run on the mean EMG amplitude measured between 214-

352 ms and 222-322 ms. 

@ Figure 5 

Mean amplitudes between 254-294 ms and 95% confidence intervals are shown in 

Fig. 5. Slow trials had larger amplitude than fast trials (5.1% vs. 0.45%; F(1,17)=11.82; 

p=0.003). There was a congruency effect (F(2,34)=8.93; ε=0.937; p=0.001). Post-hoc 

Tukey tests revealed that incongruent trials (4.85%) had larger amplitude than neutral 

(0.67%) and congruent (2.85%) trials (p<0.0006 for both incongruent vs. 

neutral/congruent contrasts). Difficult trials had larger amplitude than easy trials (3.89% 

vs. 1.68%; F(1,17)=16.26; p=0.008). Post-hoc tests showed that no congruency effects 

were significant in fast trials. In contrast, amplitude in slow incongruent trials was larger 

than in slow neutral and slow congruent trials (Tukey p from Speed × Congruency 

contrasts: 0.0001 for both; Speed × Congruency: F(2,34)=6.10; ε=0.870; p=0.008). In 

addition, the amplitude was larger in the slow congruent condition than in the slow 

neutral condition (p=0.0346). 

The effect of task difficulty was significant only in slow trials (Tukey p from 

Speed × Difficulty contrasts: 0.0002; Speed × Difficulty: F(1,17)=18.63; p=0.005). The 

difficulty effect was significant only in the incongruent condition but not in other 



 22 

conditions (Tukey p from Congruency × Difficulty contrasts: 0.0003; Congruency × 

Difficulty: F(2,34)=5.51; ε=0.734; p=0.0168). There was a triple, Speed × Congruency × 

Difficulty, interaction. Post-hoc Speed × Congruency × Difficulty Tukey contrasts 

revealed that slow incongruent difficult trials had larger amplitude than any other 

conditions (p<0.0002 for all contrasts). In addition, amplitude in the slow congruent 

difficult condition was larger than amplitude for both levels of difficulty in the neutral 

condition (p<0.002 for both contrasts). 

Single-trial electro-myography results 

@ Figure 6 

In order to assess the relationship of EMG amplitude and RT single trial analysis 

was used. Fig. 6. shows trials in the difficult incongruent condition sorted as a function of 

RT. Mere visual inspection reveals that slower trials were systematically accompanied 

with larger EMG amplitude in the incorrect response hand during the time interval where 

significant incorrect response hand activation was detected at the group-level (surrounded 

by continuous vertical lines in Fig. 6.). Using single-trial data, EMG amplitude was 

correlated with the RT at each sampling point. In the difficult incongruent condition 

significant positive correlations were found between incorrect response hand EMG 

amplitude and RT between 277-378 ms: The larger was the EMG amplitude in the 

incorrect hand the longer was the RT (surrounded by dashed vertical lines in Fig. 6.). 

There were no reliable correlations between incorrect hand EMG amplitude and RT in 

other conditions. There were significant correlations between correct response hand EMG 

amplitude and RT in all conditions (see Table 4). Negative correlations between correct 

response hand EMG amplitude and RT appeared between approximately 200-380 ms. 
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That is, the larger was the EMG amplitude in the correct response hand, the shorter was 

the RT. 

@ Table 4 

Further analyses were done on the 1588 trials collected in the difficult 

incongruent condition in order to see whether the activation of correct and incorrect 

response hands temporally coincided with each other in individual trials, or rather, the 

activation of the correct response hand followed the activation of the incorrect response 

hand. In the incorrect response hand the EMG peak amplitude strongly correlated with 

the RT (r=0.4683; p<0.0001). This confirms that the peak amplitude detected in the 

incorrect response hand provided a measure closely related to performance (in the correct 

hand there was weaker correlation because peak amplitude values were more stable 

across trials: r=0.1781; p<0.0001). The activation difference between correct and 

incorrect response hands was characterized by the difference of the peak latency of the 

sampling point with the largest amplitude in EMG epochs. The mean and median 

temporal difference between the EMG peak latency in correct and incorrect hands was 

62.3 ms and 50.5 ms respectively (standard deviation: 76.1 ms). 

The distribution of correct hand minus incorrect hand EMG peak latency 

difference values in single trials is shown in Insert 1 in Fig. 6. The cumulative 

distribution is shown in Insert 2 in Fig. 6. In 48.17% of trials the correct hand minus 

incorrect hand EMG peak latency difference ranged between -60 ms and +50.5 ms 

(21.09% of trials showed a temporal lag of -60<lag<0 ms). In 29 trials (1.83% of trials) 

the temporal difference was smaller than -60 ms (the negative value means that correct 

hand EMG peaked earlier than incorrect hand EMG). In the remaining 50% of trials the 
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temporal difference ranged between +50.5 and +230 ms except in two trials with the 

longest RT (843 ms) where the difference was 331 and 451 ms. The above shows that in 

about half the trials correct and incorrect hand activation very tightly overlapped.  

If we further consider that EMG activity was already well noticeable during the 

interval preceding and following the EMG peak latency, than the proportion of trials with 

overlapping correct and incorrect hand activation is even larger. For example, a 5% EMG 

value seems to be a reasonable activation threshold because at this level EMG deflection 

from baseline was already well noticeable. With regard to this threshold, the amplitude of 

correct hand EMG exceeded 5% during the time interval ±80 ms around the peak latency 

in the fastest trials and ±100-150 ms around the peak latency in the slowest trials. When 

considering a ±100-150 ms range around the peak latency, about 70-80% of trials can be 

considered to show overlapping activity in the correct and incorrect response hands 

(73.92% of trials showed a temporal activation difference of -60<lag<100 ms; and 

81.35% of trials showed a temporal activation difference of -60<lag<150 ms). When 

finding the largest peak amplitude was not constrained to 100-400 ms in the incorrect 

hand, the data changed little, both the mean and the median of the correct-incorrect hand 

time difference was 51 ms (standard deviation: 149 ms). 46.41% of trials had time 

difference between -70 ms and +50 ms (68.38%: -70<lag<100 ms; 76.70%: 70<lag<150 

ms). 

Another question is how the temporal activation difference between correct and 

incorrect response hands relates to RT. First, the EMG peak latency in the correct hand 

had practically perfect correlation with RT (r=0.9914; p<0.0001), and the EMG peak 

latency in the incorrect hand also strongly correlated with RT (r=0.5760; p<0.0001). 
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Second, correct – incorrect hand peak latency difference values sorted according to the 

RT are shown in Insert 3 in Fig. 6. The correct – incorrect peak latency difference was 

strongly correlated with RT (r=0.8716; p<0.0001). The 29 trials with smaller difference 

than -60 ms and the two trials with larger difference than +230 ms were excluded from 

the above correlation in order to avoid that outliers drive correlations (these trials are 

visible at the sides of the distributions shown in Insert 3 in Fig. 6). Nevertheless, 

correlations were significant when including these trials as well (r=0.8679; p<0.0001). 

Further, in order to check whether correlation results were affected by constraining 

finding the EMG peak amplitude to the 100-400 ms time interval, correlations were also 

run on data where EMG peaks could be found without any constraints. The correlations 

remained practically unchanged (r=0.8728; p<0.0001 both when including all trials and 

when excluding trials with outlier temporal difference values. 

Lateralized readiness potential 

@ Table 5 

As expected, the RT was associated by large negative stimulus and response-

locked LRP deflections in all conditions (The stimulus-locked LRP is shown in 

Supplementary Figure 2., the response-locked LRP is shown in Supplementary Figure 

3.). The timing of the stimulus-locked LRP was in perfect agreement with correct hand 

EMG. Intervals where the LRP signaled significant correct response preparation are 

shown in Table 5. The stimulus-locked LRP showed brief incorrect response activation 

between 228-248 ms (11 sampling points) in the slow difficult incongruent trials only. 

The response-locked LRP showed brief incorrect response activation between -298 ms to 

-284 ms (8 sampling points) and shortly thereafter between -262 ms to -248 ms (8 
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sampling points) in fast difficult incongruent trials. Neither the stimulus-locked, nor the 

response-locked LRP signaled incorrect response activation in any other conditions. 

Latency of event-related brain potentials  

@ Figure 7 

ERPs on the vertex electrode are shown in Fig. 7A. (Further electrodes are shown 

in Supplementary Figure 4.). The time-course of ERPs is summarized by the GFP in 

Fig. 7B-D. The robust GFP peak between 250-600 ms coinciding with the P300 is well 

visible in these figures. Importantly, the GFP belonging to the congruent condition peaks 

markedly faster from about 270 ms than the GFP in the congruent and neutral conditions.  

The mean peak latency of the P300 is shown in Table 6. The P300 peaked 45 ms earlier 

in fast than in slow trials (383 vs. 428 ms; F(1,17)=22.99; p<0.0001). The P300 peaked 

13 ms earlier in the easy than in the difficult condition (399 vs. 412 ms; F(1,17)=12.23; 

p=0.0027). There was a congruency effect (congruent: 398 ms; incongruent: 415 ms; 

neutral: 403 ms; F(2,34)=7.53; ε=0.689; p=0.0065). Post-hoc Tukey tests revealed that 

the congruent vs. incongruent (p=0.0017) and the incongruent vs. neutral (p=0.0342) 

differences were significant. There were no significant interactions. There were no 

significant main effects or interactions on the peak latency of the occipito-parietal P100 

and N200 waves. 

@ Table 6 

Amplitude and topography of event-related brain potentials 

A first analysis showed no effect of numerical distance in the data. Second, a 

Speed × Congruency × Difficulty ANOVA was run on the amplitude of ERPs. This 

analysis revealed that there were speed main effects over several electrodes between 140-
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170 ms and 280-380 ms and 460-650 ms (see GFP in Fig. 7C. and topography in 

Supplementary Figure 5.). Later speed effects can be explained by the latency shift of 

the P300 in slow relative to fast trials. The main effect of difficulty appeared between 

360-420 ms and 560-720 ms (see GFP in Fig. 7C. and topography in Supplementary 

Figure 6.). Congruency main effects appeared in four consecutive intervals between 180-

210, 270-300, 330-400, and 560-610 ms (see GFP in Fig. 7B.). The topography of 

congruency effects is depicted in Fig. 8. Between 180-210 ms ERPs in the incongruent 

condition were more negative than in the neutral condition over left occipital electrodes. 

Between 270-300 ms ERPs in the congruent condition were more positive than in the 

neutral condition over several occipito-parietal electrodes. This congruent vs. neutral 

difference resulted in more negative ERPs in the incongruent than in the congruent 

conditions. Between 330-400 ms ERPs in the incongruent condition were more negative 

than in the neutral condition over central electrodes. There was a similar effect in the 

congruent condition with an additional effect of left occipital ERPs being more positive 

in the congruent than in the neutral condition. Between 560-610 ms central ERPs were 

more positive in the incongruent than in the neutral condition. 

@ Figure 8 

Congruency × Difficulty interactions appeared over several electrodes between 

410-440 ms (see GFP in Fig. 7D., topography and graphs in Supplementary Figure 7.). 

The mean amplitude of this interval on electrodes showing significant effects was entered 

into an overall Speed × Congruency × Difficulty × Electrode ANOVA. The ANOVA for 

frontal electrodes showed a Congruency × Difficulty interaction (F(2,34)=15.03; 

ε=0.947; p<0.0001). Post-hoc Congruency × Difficulty Tukey contrasts revealed that the 
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difficulty effect was significant in the congruent (p=0.0001) and incongruent (p=0.001) 

conditions but not in the neutral condition (p=0.7). The ANOVA for posterior electrodes 

showed a Congruency × Difficulty interaction (F(2,34)=9.88; ε=0.858; p=0.0009). Post-

hoc Congruency × Difficulty Tukey contrasts revealed that the Difficulty effect was 

significant in the congruent (p=0.0067) but not in the incongruent (p=0.2) and neutral 

conditions (p=0.3). There were no other significant interactions on the amplitude of 

ERPs. 

The congruency effect over central electrodes between 330-400 ms was of special 

interest because previous studies (Liotti et al. 2000; West et al. 2003) attributed an 

incongruent vs. congruent ERP difference with similar timing, topography and polarity to 

the conflict resolution activity of the ACC. Liotti et al. (2000) used source analysis. 

Therefore, for the sake of comparability across studies and to check the plausibility of the 

ACC as the neural generator of the congruency effect we ran blind dipole source analysis 

on our high spatial density 129-channel ERP data. The mean topography (330-400 ms) of 

the incongruent condition was fed into the BESA algorithm implemented by EEGLab 

(Fig. 9.). All dipoles were found in the ACC. When using all trials a dipole was found in 

the dorsal? ACC in Brodmann area 24 (MNI coordinates: x=-2; y=-3; z=33; residual 

variance: 12.34%). When using only quickly responded trials a dipole was found in the 

ACC in Brodmann area 33 (x=-7; y=14; z=25; residual variance: 18.77%). When using 

only slowly responded trials a dipole was again found in the ACC in Brodmann area 24 

(x=2; y=-11; z=36; residual variance: 23.18%). 

@ Figure 9 

Discussion 
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In this study our objective was to demonstrate response conflict directly in the 

effectors and to disentangle ERP markers of stimulus and response conflict. To this end 

we combined EMG and ERP in a numerical Stroop task. EMG enabled us to measure 

response hand activation and response conflict, directly. EMG findings were in line with 

the predictions of the motor response conflict theory (Morton and Chambers, 1973; 

Posner and Snyder, 1975). Correct and incorrect response hands were activated in parallel 

and robust incorrect response hand activation happened in the incongruent condition. 

Incorrect response activation happened only in trials that had a slow response. That is, 

incorrect response hand activation was related to a reduction in performance. Significant 

incorrect response hand activation happened only in incongruent difficult (between 214-

352 ms) and incongruent easy (254-294 ms) trials. This indicated that incorrect response 

hand activation was not due to a general non-specific EMG activity increase in all slow 

trials. Rather, it was related to a mechanism highly specific to the incongruent condition. 

In theory, group-level EMG effects may have been the consequence of increased 

EMG activity in a relatively small number of outlier trials. However, single-trial analysis 

(from which trials with outlier RT were excluded) demonstrated that group-level EMG 

effects appeared consistently across all trials. By sorting trials according to RT it became 

visible that the onset/offset and duration of EMG activity was closely related to RT in the 

difficult incongruent condition. This consistent EMG activity resulted in the significant 

group-average EMG findings. Further, single-trial EMG amplitude of the incorrect 

response hand positively correlated with single-trial RT between 200-380 ms: when 

incorrect response hand EMG activity increased, the RT became longer. Similarly, the 

peak amplitude of EMG in the incorrect response hand strongly correlated with RT. 
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These observations confirm the direct relationship between incorrect response hand 

activation and performance. 

The parallel activation of correct and incorrect response hands attests two points; 

first, both task-relevant and task-irrelevant stimulus dimensions were processed up to the 

level of response preparation. This fits the predictions of the continuous flow model of 

information processing (Eriksen and Schultz, 1979). Second, in consequence to the above 

point, when the task-irrelevant dimension delivered conflicting information with the task-

relevant dimension, incorrect motor activity was prepared. As suggested by the motor 

response conflict theory, the preparation of the incorrect response hand could, in 

principle, explain the performance decrease in the incongruent condition (Morton and 

Chambers, 1973; Posner and Snyder, 1975). Our data is in strong agreement with a 

fNIRS (DeSoto et al. 2001) and a fMRI (Cohen-Kadosh et al. 2007) study
1
 testing for 

concurrent activation of motor cortices related to correct and incorrect responses. 

Similarly, some of our previous LRP studies also demonstrated substantial incorrect 

response hand activation in Stroop tasks (Szűcs, Soltész, Jármi and Csépe, 2007; Szűcs et 

al. 2009). 

Besides establishing that partial processing of perceptual information was able to 

prepare incorrect response activity, a further question regards the dynamics of this 

process (DeSoto et al. 2001).  Is correct and incorrect response hand activation 

temporally coincident, or rather, correct hand activation follows incorrect hand 

activation? Our single trial data provides robust evidence for concurrent correct and 

incorrect response activation in about 50-70% of trials. In another 30-50% of trials 

                                                
1 It is to note that the course temporal resolution of fMRI studies does not allow discriminating between 

motor cortex activities appearing before and after the button press response; and also does not allow 

deciding whether correct/incorrect motor activity is concurrent (De Soto et al. 2001). 
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correct hand activation followed incorrect hand activation. Concurrent response 

activation happened in trials with fast RT, while correct hand activation followed 

incorrect hand activation by increasingly longer time-lags in trials with longer RT. At the 

same time incorrect hand activation reached significance at group-level only in slow, but 

not in fast trials. This suggests that there may be two alternative scenarios of incorrect 

response activation. First, in slow trials with strong incorrect response activation (large 

EMG amplitude in the incorrect hand) the correct response may be strongly inhibited and 

therefore activated relatively late (large temporal difference between correct and incorrect 

hand EMG peak latency). In contrast, in trials with weaker incorrect response activation 

the incorrect response cannot inhibit the correct response effectively which results in 

concurrent correct and incorrect response activation. 

As expected, there was stronger response conflict in the difficult than in the easy 

incongruent condition. This appeared in the form of Congruency × Difficulty and Speed 

× Congruency × Difficulty interactions in EMG data. First, there was no significant 

incorrect hand activation and there were no difficulty effects in fast trials. Second, 

incorrect hand activation was longer and the amplitude was larger in slow difficult 

incongruent trials than in slow easy incongruent trials. Correspondingly, correlations 

between RT and incorrect hand EMG amplitude appeared only in the difficult 

incongruent but not in the easy incongruent condition, nor in any other conditions. Third, 

while the deviation in EMG amplitude, from baseline, did not reach significance for any 

time interval in the congruent condition, the EMG amplitude was larger in slow difficult 

congruent trials than in slow easy and difficult neutral trials. There was no similar 

difference between the easy congruent and the neutral conditions. This, again, suggests 
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that increasing task-difficulty is likely to increase incorrect response tendencies, even in 

the congruent condition. Overall task-difficulty seems to have resulted in increased 

incorrect response tendency in the incongruent and congruent conditions but not in the 

neutral condition. 

We suggest that the increasing perceptual difficulty resulted in enhanced incorrect 

hand activity because the slower processing of the relevant stimulus dimension provided 

more time for the processing of the task-irrelevant dimension to advance and to influence 

motor preparation (Szűcs and Soltész, 2007). Further, we speculate that increased task-

difficulty may have resulted in the appearance of incorrect response tendencies in the 

congruent condition, because the mere presence of discrepant numerical values may have 

activated potential alternative, but incorrect response tendencies in some congruent trials. 

In contrast, in the neutral condition, the numerical dimension did not deliver differential 

information. Hence no incorrect response tendencies appeared in the neutral condition. 

Previously it has been suggested that response conflict appears only when task-difficulty 

is low (Cohen-Kadosh et al. 2007). Besides pointing out at several difficulties with this 

conclusion earlier (Szűcs and Soltész, 2008), here we also provide direct EMG evidence 

for increased response conflict when task-difficulty is high, relative to when it is low. 

Whereas our EMG data provides evidence for response conflict, the P300 data 

also provides evidence for stimulus conflict in the numerical Stroop task. Robust 

congruency effects were detected not only in RT but in P300 peak latency as well. These 

P300 congruency effects replicate our previous findings (Szűcs, Soltész, Jármi and 

Csépe, 2007, adult group). In contrast to present results two studies could not find 

congruency effects in the latency of the P300 in vocal and manual versions of the classic 
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color-word Stroop paradigm (Duncan-Johnson and Koppel, 1981; Ilan and Polich, 1999). 

Importantly, the power of previous studies seems to be adequate when considering the 

number of participants and the number of trials in each congruency condition (Duncan-

Johnson and Koppel, 1981: approximately 106 trials per condition; 12 subjects; vocal 

task; Ilan and Polich: 64 trials per condition; 32 subjects, manual task.). On the one hand 

this suggests that P300 effects may differ across different Stroop tasks. For example, the 

size/number incongruent condition may evoke stronger stimulus conflict than the 

color/word incongruent condition, because physical size may be a more salient property 

than color. This speculation is supported by the fact that unlike in the classic color-word 

Stroop task, congruency effects are bidirectional in the numerical Stroop task (Henik and 

Tzelgov, 1982; for review see Szűcs and Soltész, 2007). On the other hand, our EMG 

findings demonstrate that not only stimulus but also response conflict played a role in our 

Stroop task. This is in line with the conclusions of Duncan-Johnson and Koppel (1981) 

and Ilan and Polich (1999). 

Our EMG and P300 peak latency data confirms the frequent assumption that both 

stimulus and response conflict may contribute to the Stroop effect (van Veen and Carter 

2005; Liston et al. 2006). We suggest that the continuous flow model of information 

processing (Eriksen and Schultz, 1979) is able to explain the findings. Partially processed 

task-irrelevant stimulus information can result in stimulus conflict and at the same time 

can also prepare incorrect motor activity. In the incongruent condition, the parallel 

processing of the task-irrelevant stimulus dimension slowed down perceptual processing 

(congruency effects on P300 latency) and the partially processed irrelevant stimulus 

information also resulted in significant incorrect response hand activation as predicted by 
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the continuous flow model (Eriksen and Schultz, 1979). Alternatively, in the congruent 

condition the parallel processing of the task-irrelevant stimulus dimension resulted in 

faster stimulus processing (P300 latency) and probably contributed to the enhanced 

amplitude of correct response hand EMG. This suggests that congruency effects 

appearing in brain imaging parameters may indeed contain a mixture of effects related to 

both stimulus and response-conflict. 

The amplitude and topography of ERPs showed a series of congruency effects. 

The topography and timing of effects were aligned with our previous study using a 

similar Stroop task (physical comparison task in Szűcs and Soltész, 2007). Importantly, 

no congruency effects appeared in the latency of the occipital P1 and N2 waves which 

suggests that congruency effects in amplitude were not due to early latency differences 

between conditions. In contrast to this, the latency of the P300 wave clearly contributed 

to congruency effects. Notably, the earlier peak latency of the P300 can explain the 

enhanced positivity in the congruent vs. neutral condition between 270-300 ms. This is 

exactly the time interval when the faster onset of the P300 in the congruent, than in the 

neutral condition, is most visible (see Fig. 7B.). Similarly, the faster offset of the P300 in 

the congruent, than in the neutral condition, can also explain why central electrodes 

showed more negative voltage in the congruent than in the neutral condition between 

330-400 ms. 

However, between 330-400 ms there was a very clear amplitude decrease 

(negativity) in the incongruent relative to the congruent condition over central electrode 

sites which cannot be explained by latency shifts of the P300. This negativity appeared in 

both fast and slow trials right after the offset of significant incorrect hand EMG activity. 
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The negativity closely resembled the N450 effect in timing, polarity, amplitude and 

topography (Liotti et al. 2000; West, 2003; Szűcs and Soltész, 2007; 2008). On the one 

hand, considering our data, at least two arguments go against a classical N400 

explanation of the effect. First, the effect seems to offset earlier than a typical N400 

response, even when comparing to single-digit identity matching tasks (Szűcs, Soltész, 

Czigler and Csépe, 2007). Secondly, there was no numerical distance effect in this time 

range in our data. This suggests that as long as ERP data could detect there was no 

evidence that the effect was sensitive to semantic relationships. This does not fit a N400 

explanation (Kutas and Hillyard, 1980). However, the alternative ACC explanation offers 

a clear prediction about the dominant neural source of the N450. 

Previously Liotti et al. (2000) localized the source of the N450 in the ACC using 

64-channel EEG data. In order to check consistency with the results of Liotti et al., we 

have carried out blind single dipole source localization on our data. It is to emphasize that 

the accuracy of EEG source localization results is unreliable because of the inverse 

problem of EEG, and therefore must be interpreted cautiously. In our data the blind 

source localization algorithm found dipoles in the ACC, in all analyses. The coordinates 

of dipoles corresponded to the ACC activations identified by fMRI studies that employed 

Stroop tasks (for a review see Barch et al. 2001). This provides some convergent 

evidence for the view that the source of the congruency effect is the ACC (Liotti et al. 

2000; West, 2003). Traditionally, ACC involvement in Stroop tasks has been interpreted 

as an expression of the response conflict detection/resolution. However, the lack of 

Congruency × Speed interactions in our data goes against the response conflict 

detection/resolution explanation. Response conflict was stronger in slow than in fast 
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trials. Hence, a Speed × Congruency interaction in ERP amplitude could have also been 

expected if the N450 had really been related to response conflict. While it is possible that 

interactions were missing because of lack of power, another possibility is that the N450 is 

not related to response conflict. For example, a recent fMRI study has shown that ACC 

activity can increase even when there is no response conflict, and concluded that the 

ACC may be involved in the selective activation of correct responses, rather than in 

response conflict detection/resolution per se (Roelofs, Turennout and Coles, 2006). In 

summary, it remained unclear whether the N450 was related to stimulus or response 

conflict. However, as a working hypothesis we assume that its source is indeed the ACC. 

Difficulty main effects appeared in ERP amplitude between 360-420 ms, exactly 

at the peak of the P300. The P300 is known to be sensitive to task-difficulty effects 

(Donchin 1981), and therefore difficulty effects may reflect the modulation of the P300. 

The timing of the difficulty effect is in-line with the typical timing of the N400 

component in digit-matching tasks (Szűcs, Soltész, Czigler and Csépe, 2007). Another 

possibility is that the difficulty effect may be a genuine N400. This explanation would 

require that the task context led subjects to interpret physical magnitude semantically, in 

a general sense of magnitude. However, the lack of a numerical distance effect in this 

time range goes against the N400 explanation. Hence, difficulty main effects were 

probably due to task-difficulty effects on the P300. Importantly, it is unlikely that 

increased difficulty in the incongruent, relative to the neutral, condition could also 

explain the congruency effects (N450) between 330-400 ms. Firstly, the difficulty main 

effect peaked at 400 ms, right at the offset of the congruency effect. Secondly, the 

difficulty effect was driven not only by the incongruent but also by the congruent 
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condition. Thirdly, there was no Congruency × Difficulty interaction during the 

congruency main effect. An interaction should have appeared if congruency effects 

would have been due to task difficulty alone (The incongruent condition was more 

difficult than the congruent condition, and this should have interacted with the main 

effect of task difficulty). The above suggest that the main effect of task difficulty was 

markedly different from the main effect of congruency.  

Difficulty × Congruency interactions appeared right after the P300 peak (410-440 

ms). Most probably, these effects were not directly related to response conflict as the 

ERP amplitude followed a different pattern than the Difficulty × Congruency interaction 

revealed by EMG. Rather, the interaction may be due to varying subjective difficulty in 

different congruency conditions. For example, this may be a consequence of the lack of 

parallel differential stimulus processing in the neutral condition relative to the congruent 

and incongruent conditions, as well as the contrasting, overall difficulty level of the 

congruent and incongruent conditions. Finally, it is noteworthy that several previous 

studies used only incongruent vs. congruent contrasts when examining the topography of 

congruency effects (Liotti et al. 2000; West 2003). Our data suggests that this may not be 

optimal; for example, the congruent vs. incongruent differences between 270-300 and 

330-400 ms are qualitatively different from each other (P300 latency difference vs. 

genuine amplitude difference) while being relatively similar in topography. 

Consequently, omitting the use of a neutral condition may result in confusing 

qualitatively different ERP effects.  

Methodologically, our data illustrates both the potential and the limitations of the 

LRP. The LRP does not provide hand-specific measures of response activation as it is 
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computed from volume-conducted ERPs, which are inevitably influenced by voltages 

emanating from both the left and right motor cortices. Consequently, when incorrect and 

correct response activation signals (voltages) from motor cortices ipsilateral/contralateral 

to the response hand are of similar size, signals cancel each other out. Then, if the correct 

response activation signal is of much larger amplitude than a temporally coincident 

incorrect response activation signal, the LRP will show correct response activation even 

if incorrect response activation genuinely occurred. The above can explain why the 

stimulus-locked LRP showed brief (20 ms duration), incorrect response activation only in 

slow difficult incongruent trials: the temporal difference between the activation of correct 

and incorrect response hands was the largest in these trials. Hence, the incorrect response 

activation in the LRP was not cancelled out by concurrent correct response activation. In 

contrast, in fast trials correct and incorrect response hand activation temporally coincided 

and the LRP effects cancelled out. It is well demonstrated in Fig. 6A., that unlike correct 

response hand activation, incorrect response hand activation did not tightly follow RT, 

but rather the incorrect response hand was activated during a relatively constant time-

frame between 200-400 ms. This meant that response-locked LRPs had a smaller chance 

of detecting incorrect response activation in slow trials because the incorrect response 

activation was not time-locked to the RT. 

In our data the weak LRP effects are in sharp contrast with the robust incorrect 

response hand activation detected by EMG. This exemplifies that the LRP does not have 

the sensitivity to detect incorrect response activation, nor to detect the true duration of 

incorrect response activation under certain circumstances because it is not a hand-specific 

measure of response activation (Gratton et al. 1988). Certain techniques, e.g. time-
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locking LRP to the onset of EMG activity could enhance the sensitivity of the LRP 

(Masaki et al. 2000), however, analyzing single-trial EMG may provide a more robust 

method for identifying incorrect response activation than the LRP. Our data provides 

empirical support for our previous argument (Szűcs and Soltész, 2008), that it is invalid 

to draw conclusions from the lack (null finding) of LRP incorrect response activation 

about the non-existence of incorrect response activation. It also follows that incorrect 

response activation can happen even when the LRP shows a negative deflection (Szűcs 

and Soltész, 2008). However in such cases LRP data cannot provide clear evidence for 

incorrect response activation. 

Conclusion 

In summary, we have shown that incorrect response hand activation happens in a 

numerical Stroop task. The effect was related to performance, highly specific to the 

incongruent condition, and appeared consistently across all trials. These findings provide 

direct evidence for motor response conflict in a Stroop task. Incorrect and correct 

response hand activation was concurrent in 50-80% of the incongruent difficult trials. In 

20-50% of trials correct hand activation followed incorrect hand activation by a lag of 60-

230 ms (EMG peak latency to peak latency difference). This suggests that there may be 

two scenarios of incorrect response activation, probably depending on the balance of 

activation/inhibition between correct and incorrect response hands. P300 results suggest 

that not only response, but also stimulus conflict played a role in our Stroop task. 

Differences in ERP amplitude between the congruent and neutral conditions can be 

explained by the earlier peak of the P300 in the congruent than in the neutral condition. 

In contrast, ERPs were genuinely more negative in the incongruent than in the neutral 
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condition between 330-400 ms (N450 effect). The N450 was probably a correlate of the 

activity of the ACC (Liotti et al. 2000; West 2003). Overall, the parallel timing of correct 

and incorrect EMG activity supports the continuous flow model of information 

processing. In fact, this model can explain both stimulus and response conflict effects; the 

partially processed task-irrelevant stimulus information not only resulted in stimulus 

conflict but also prepared incorrect motor activity. Methodologically, we provide 

evidence that the LRP is an imperfect measure of incorrect response hand activation and 

that null findings in LRP cannot be taken to indicate that no incorrect response hand 

activation happened. 
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TABLES AND CAPTIONS  

 

Table 1  

Means and standard errors for accuracy (Acc.: %) and reaction time (RT: milliseconds) 

by Congruency × Difficulty in all trials and in fast and slow trials. 

Congruency: 

 

Neutral 

 

Congruent 

 

Incongruent 

 

Task difficulty: Hard Easy Hard Easy Hard Easy 

A. All trials: Acc. 98 ± 1 99 ± 1 98 ± 1 99 ± 0 92 ± 3 98 ± 1 

B. All trials: RT 460 ± 28 435 ± 21 457 ± 27 430 ± 24 492 ± 27 455 ± 24 

C. Fast trials: RT 404 ± 13 402 ± 12 398 ± 13 396 ± 13 401 ± 13 401 ± 13 

D. Slow trials: RT 506 ± 24 492 ± 20 513 ± 24 493 ± 20 524 ± 22 501 ± 21 

 

Table 2  

Proportions of fast and slow trials (%). 

Congruency: 

 

Neutral 

 

Congruent 

 

Incongruent 

 

Task difficulty: Hard Easy Hard Easy Hard Easy 

A. Fast trials 43.4 61.0 54.1 67.2 30.3 49.0 

B. Slow trials 32.3 18.3 29.4 18.9 52.2 32.2 
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Table 3 

Time periods with significant EMG deviations in the correct response hand in 

milliseconds. 

Congruency: 

 

Neutral 

 

Congruent 

 

Incongruent 

 

Task difficulty: Hard Easy Hard Easy Hard Easy 

A. All trials 216:888 214:828 208:876 200:894 206:910 208:870 

B. Fast trials 216:646 212:734 204:653 200:668 218:662 204:650 

C. Slow trials 274:880 270:772 260:826 278:712 254:932 268:872 

 

 

 

 

FIGURES AND CAPTIONS 

 

Figure 1 

Example stimuli from the numerical Stroop task (Diff. = Difficult condition. Easy = Easy 

condition.). Participants have to press a button on the side where they see the physically 

larger number. 
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Figure 2 

Schematic representation of the 129-channel Hydro-cell Net used in the experiment. 

Electrode 129 is at the vertex. Electrodes 36 and 104 were used for LRP computation. 

Electrodes in the bordered area were used for determining P300 peak latency. Electrodes 

marked by open circles were used for determining P100 and N200 peak latency. 
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Figure 3 

Group-average electro-myography (EMG) signal in correct and incorrect response hands. 

(A) Time-course of EMG. Reaction time is marked for the congruent, neutral and 

incongruent conditions. The horizontal line marks the interval where the EMG 

significantly deviated from the baseline in the incorrect hand in the incongruent 
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condition. (B) Mean EMG amplitude between 222-322 ms. A 95% confidence interval is 

shown. 
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Figure 4 

Group-average electro-myography (EMG) signal with significant deviations from 

baseline; in correct and incorrect response hands, for fast and slow trials. The range of 

mean reaction times (RT) in the 3 congruency conditions is marked in the correct 

hand/incongruent condition panels. In the bottom two panels horizontal lines, above the 

graphs, mark intervals where the EMG significantly deviated from the baseline in the 

incorrect hand in the easy and difficult incongruent conditions. Lines below the graphs, 

marked A-D, refer to time intervals with significant congruency effects as shown in 

Figure 8. 

  



 53 

 

Figure 5 

Mean group-average electro-myography (EMG) signal between 254-294 ms. A 95% 

confidence interval is shown. 
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Figure 6 

Single trial EMG data in the incorrect (A) and correct (B) response hands for the difficult 

incongruent condition. Trials are pooled for all subjects and sorted by reaction time. 
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Trials were smoothed by a 30-trial-wide sliding window and data points were smoothed 

with a 50-ms-wide sliding window. The white curve depicts reaction time. The black 

curve traces the peak amplitude of the EMG signal. Continuous black vertical lines 

surround the interval where significant group-level EMG activity was detected in the 

difficult incongruent condition (214-334 ms). Dashed vertical lines mark the interval 

where significant correlations appeared between single-trial EMG amplitude and reaction 

time. Insert 1 shows the distribution of the temporal difference (correct minus incorrect) 

of EMG peak latency in correct and incorrect hands (M: median; x: mean; s1-3: standard 

deviations). Insert 2 shows the cumulative distribution of the above temporal difference. 

Insert 3 shows reaction times sorted according to response hand EMG peak latency 

difference (correct minus incorrect). The side panels to the left show the mean EMG 

amplitude between 214-352 ms, in each trial. 
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Figure 7 

The Global Field Power (GFP) summarizes the time-course of the ERPs. (A) ERPs on 

electrode 129. (B) GFP in congruency conditions and GFP computed from; Congruent – 

Neutral (Con-Neut), Incongruent – Neutral (Inc-Neut) and Incongruent – Congruent (Inc-

Con) difference potentials. Horizontal markers denote the time course of Congruency 

effects (see Fig. 8. for intervals A-D.). (C) GFP in fast vs. slow trials and in easy vs. 

difficult conditions. Horizontal markers denote Speed and Difficulty effects. (D) 

Congruency × Difficulty interactions. The horizontal marker denotes the interval with 

interactions. 
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Figure 8 

The main effect of congruency on the amplitude of ERPs. (A-D) Time intervals with 

significant congruency effects. Electrodes with significant effects (p<0.005) are 

represented by bold dots (N.B. Some dots have white contour lines merely for better 

visibility). The ‘Neutral’ column represents congruency effects from the main ANOVA 

with 3 levels of congruency. This column shows raw voltage in the Neutral condition (±5 

µV). Other columns to the right represent pair-wise comparisons from ANOVAs with 2 

levels of congruency (Co-Neu: Congruent vs. Neutral; Inc-Neu: Incongruent vs. Neutral; 

Inc-Co: Incongruent vs. Congruent). These columns show voltage from appropriate 

difference potentials (±1 µV). 
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Figure 9 

Source localization results for the incongruent condition. All trials: results for data 

containing all trials in the incongruent condition. Fast trials: results for data from fast 

trials only. Slow trials: results for data from slow trials only. The percentage at the right 

of brain images shows the residual variance. Below the images, the x, y and z values 

show MNI coordinates and scalp maps show the topography of data used for source 

localization. 
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SUPPLEMENTARY FIGURES AND CAPTIONS 

 

Supplementary Figure 1 

The locations of all electrodes. ERPs at electrode locations marked by bold dots are 

shown in Supplementary Figure 4. 
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Supplementary Figure 2 

The stimulus-locked Lateralized Readiness Potential in Easy (A) and Difficult (B) trials. 

The horizontal arrow points to the significant positive deflection of LRP, signalling 

incorrect response activation in the difficult incongruent condition (significant deviation 

during 228-248 ms). 
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Supplementary Figure 3 

The response-locked Lateralized Readiness Potential in Easy (A) and Difficult (B) trials. 

The horizontal arrow points to the significant positive deflection of LRP, signalling 

incorrect response activation in the easy incongruent condition (significant deviation 

during -298 to -284 ms and between -262 to -248 ms, relative to response). 
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Supplementary Figure 4 

ERPs at several electrode sites according to Speed × Congruency. For electrode positions 

see Supplementary Figure 1. 
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Supplementary Figure 5 

Speed effects on the amplitude of ERPs. Bold dots represent electrodes with significant 

effects (p<0.005). 
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Supplementary Figure 6 

Difficulty effects on the amplitude of ERPs. Bold dots represent electrodes with 

significant effects (p<0.005). 
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Supplementary Figure 7 

Congruency × Difficulty interactions between 410-440 ms. (A) Topography of mean 

voltage in congruency conditions. (B) Topography of difficulty effects (difficult – easy) 

in congruency conditions. (C) Mean voltage at electrodes with negative overall means 

(marked by black bold dots in topographic maps). (D) Mean voltage at electrodes with 

positive overall means (marked by white bold dots in topographic maps). 

 


