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Abstract. This paper describes our participation to the Persian ad hoc
search during the CLEF 2009 evaluation campaign. In this task, we
suggest using a light suffix-stripping algorithm for the Farsi (or Per-
sian) language. The evaluations based on different probabilistic mod-
els demonstrated that our stemming approach performs better than a
stemmer removing only the plural suffixes, or statistically better than
an approach ignoring the stemming stage (around +4.5%) or a n-gram
approach (around +4.7%). The use of a blind query expansion may sig-
nificantly improve the retrieval effectiveness (between +7% to +11%).
Combining different indexing and search strategies may further enhance
the MAP (around +4.4%).

1 Introduction

Our participation to the CLEF 2009 evaluation campaign was motivated by our
objective to design and evaluate indexing and search strategies for other lan-
guages than English studied since 1960. In fact, other natural languages may
reveal different linguistic constructions having an impact on the retrieval effec-
tiveness. For some languages (e.g., Chinese, Japanese [1]), word segmentation
is not an easy task, while for others (e.g., German), the use of different com-
pound constructions to express the same concept or idea may hurt the retrieval
quality [2]. The presence of numerous inflectional suffixes (e.g., Hungarian [3],
Finnish), even for names (e.g., Czech [4], Russian [5]) as well as numerous deriva-
tional suffixes must be taken into account for an effective retrieval.

In this context, the Persian language is member of the Indo-European family
written using Arabic letters. The underlying morphology [6] is slightly more
complex than the English one but we cannot qualify it as hard compared to
some languages such as Turkish or Finnish.

The rest of this paper is organized as follows. The next section describes
the main characteristics of the Persian morphology and presents an overview
of the test-collection. Section 3 exposes briefly the various IR models used in
our evaluation. The evaluation of the different indexing and search models are
described and analyzed in Section 4 follows by the description of our official
results. Our main findings are regrouped in the last section.
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2 Farsi (Persian) Language and Test-Collection

The Persian language, belonging to the Indo-Aryan language family is written
using 28 Arabic letters, with additional 4 letters (� �� �� �� ) being added to
express sounds not present in classical Arabic. The morphology of this language
is based on various suffixes used to indicate the plural, the accusative or genitive
cases as well as other suffixes (or prefixes) are employed to derive new words.
The plurals in the Persian are formed by means of two suffixes, namely ��	
 for
animate (����, father, ��	����, fathers) and 
� for inanimate (��, flower, 
���, flowers)
nouns, while the plural of Arabic nouns in this language is formed according
to Arabic grammar rules (e.g., ��	
or ����
for “sound” plurals). Moreover, even
though this language does not have the definite article in the strict sense, it can
be said that the relative suffix � ( �� ��� 


���, the book which) and suffix � ( ��� !�, the
son, informal writing) perform this function.

The suggested “light” stemmer1 removes the above mentioned suffixes with
addition of certain number of possessive and comparative suffixes. It is clearly
less aggressive than, for example, the Porter’s stemmer [7] used in the English
language. The second stemmer we proposed, denoted “plural”, detects and re-
moves only the plural suffixes from Persian nouns together with any suffix that
might follow them. This stemmer is similar to the English S-stemmer [8]. As a
stemming strategy we may also consider using a morphological analysis [9]. Re-
cent research demonstrates however that using a morphological analysis, a light
or a more aggressive stemming approaches tend to produce statistically similar
performance, at least for the English language [10].

To evaluate these various stemming approaches we will use the Persian test-
collection composed of newspaper articles extracted from Hamshahri (covering
years 1996 to 2002). This corpus is the same one made available during the
CLEF 2008 campaign containing 166,477 documents. In mean, we can find 202
terms per document (after stopword removal). The available documents do not
have any logical structure and are composed of a few paragraphs. During the
indexing process, we have found 324,028 distinct terms.

The collection contains 50 new topics (numbered from Topic #600 to Topic
#650) having total of 4,464 relevant items, with mean of 89.28 relevant items
per query (median 81.5, standard deviation 55.63). The Topic #610 (“Benefits
of Copyright Laws”) has the smallest number of relevant items (e.g., 8) while
the largest number of relevant items (e.g., 266) was found for the Topic #649
(“Khatami Government Oil Crisis”).

3 IR Models

In order to analyze the retrieval effectiveness under different conditions, we
adopted various retrieval models for weighting the terms included in queries
and documents. To be able to compare the different models and analyze their

1 Freely available at http://www.unine.ch/info/clef/
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relative merit, we first used a classical tf idf model. We would thus take into
account the occurrence frequency of the term tj in the document Di (or tfij)
as well as its inverse document frequency (idfj = ln( n

dfj
) with n the number of

documents in the corpus, and dfj the number of documents in which tj occurs).
Furthermore we normalized each indexing weight using the cosine normalization.

To define the similarity between a document surrogate and the query, we
compute the inner product as given by Equation 1.

score(Di, Q) =
∑

tj∈Q

wij · wQj (1)

where wij represents the weight assigned to the term tj in the document Di and
wQj the weight assigned to tj in the query Q.

As other IR model, we implemented several probabilistic approaches. As a first
probabilistic approach, we implemented the Okapi model (BM25) [11] evaluating
the document score by applying following formula:

score(Di, Q) =
∑

tj∈Q

qtfj · log
[
n − dfj

dfj

]
· (k1 + 1) · tfij

K + tfij
(2)

with K = k1 · ((1 − b) + b · li
avdl ) where qtfj denotes the frequency of term tj

in the query Q, and li the length of the document Di. The average document
length is given by avdl while b (=0.75) and k1 (=1.2) are constants.

As second probabilistic approach, we implemented several models issued from
the Divergence from Randomness (DFR) paradigm [12]. In this framework, two
information measures are combined to compute the weight wij attached to the
term tj in the document Di as shown in Equation 3.

wij = Inf1
ij · Inf2

ij = − log2(Prob1
ij(tfij)) · (1 − Prob2

ij(tfij)) (3)

As a first model, we implemented the DFR-PL2 scheme, defined by Equation 4
and 5.

Prob1
ij =

e−λj · λtfnij

j

tfnij !
(4)

Prob2
ij =

tfnij

tfnij + 1
(5)

with λj = tcj

n and tfnij = tfij · log2(1 + c·mean dl
li

) where tcj represents the
number of occurrences of term tj in the collection. The constants c and mean dl
(average document length) are fixed according to the underlying collection.

As second DFR model, we implemented the DFR-IneC2 model defined by
following equations, with ne = n · (1 − (n−1

n )tcj ).

Inf1
ij = tfnij · log2

[
n + 1

ne + 0.5

]
(6)

Prob2
ij = 1 − tcj + 1

dfj · (tfnij + 1)
(7)
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Finally we also used a non-parametric probabilistic model based on a statistical
language model. In this study we adopted a model proposed by Hiemstra [13]
combining an estimate based on document (P (tj |Di)) and on corpus (P (tj |C))
and defined by following equation:

P (Di|Q) = P (Di) ·
∏

tj∈Q

[λj · P (tj |Di) + (1 − λj) · P (tj |C)] (8)

with P (tj |Di) = tfij

li
and P (tj |C) = dfj

lc with lc =
∑

k dfk where λj is a smooth-
ing factor, and lc an estimate of the size of the corpus C. In our experiments λj

is constant (fixed at 0.35) for all indexing terms tj .

4 Evaluation

To measure retrieval performance we used the mean average precision (MAP)
obtained from 50 queries. The best performance obtained under a given condition
is shown in bold type in the following tables. In order to statistically determine
whether or not a given search strategy would be better than another, we applied
the bootstrap methodology [14] based on two-sided non-parametric test (α =
5%). In all experiments presented in this paper our stoplist2 for the Persian
language containing 884 terms has been used.

Table 1. MAP of Various Indexing Strategies and IR models (T query)

Query T Mean Average Precision (MAP)

Stemmer none plural light perstem 5-gram trunc-4

Okapi 0.3687† 0.3746† 0.3894† 0.3788† 0.3712† 0.3954†
DFR-PL2 0.3765 0.3838 0.3983 0.3879 0.3682† 0.4054
DFR-IneC2 0.3762 0.3830 0.3952 0.3886 0.3842 0.4016
LM 0.3403† 0.3464† 0.3559† 0.3471† 0.3404† 0.3546†
tf idf 0.2521† 0.2632† 0.2521† 0.2575† 0.2441† 0.2555†

Mean 0.3428 0.3502 0.3582 0.3520 0.3416 0.3625
% over “none” +2.17% +4.50% +2.69% -0.33% +5.76%

Table 1 shows the MAP achieved by five IR models as well as different index-
ing strategies with the short query formulation. The second column in Table 1
(marked “none”) depicts the performance obtained by the word-based indexing
strategy without stemming, followed by the MAP achieved by our two stem-
mers, namely “plural” and “light”. In the column marked “perstem” the results
obtained using publicly available stemmer and morphological analyzer for the
Persian language3 are given. This stemmer is based on numerous regular ex-
pressions to remove the corresponding suffixes. Finally the last two columns
2 Freely available at http://www.unine.ch/info/clef/
3 http://sourceforge.net/projects/perstem/
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depict the performance of two language independent indexing strategies, namely
5-gram and trunc-4 [15]. With the n-gram approach, each word is represented
with overlapping sequences of n characters (e.g., from “computer”, we obtain
“compu”, “omput”, “mpute”, and “puter”). With trunc-4, we retain only the
first n letter and, for example, the word “computer” will produce “comp”. The
values of 5 and 4 are selected to obtain the best possible performance.

It can be seen from this table that the best performing models for all index-
ing strategies are the models derived from the DFR paradigm (marked bold in
the table). To verify whether this retrieval performance is significantly better
than the other IR models, we have applied our statistical test. In Table 1, we
have added the symbol “†” after MAP values showing a statistically significant
differences with the best performance. Clearly the best IR model is always sig-
nificantly better than the classical tf idf vector-space model or than the LM
approach. If the Okapi model performs always at a lower performance level, the
differences are usually not statistically significant.

When analyzing the various stemming approaches, the best performing in-
dexing strategy seems to be the “light” stemming approach. An an exception
we can mention the tf idf IR model for which the best performance was ob-
tained by “plural” indexing approach (0.2632). From data shown in Table 1,
even if the “light” stemmer is the best approach, the performance differences are
usually significant only when compared to an approach ignoring the stemming
stage. Finally, the performance differences between both language-independent
approaches (n-gram and trunc-n) and our “light” stemming are never statisti-
cally significant.

We performed a query-by-query comparison to understand the effect of stem-
ming concentrating on DFR-PL2, the best performing IR model. Analyzing
Topic #630 (“Iranian Traditional Celebrations”) we come across almost full
range of reasons for better performance of the light stemming resulting in MAP
0.3808 compared to 0.1458 achieved by “none” or 0.2042 by trunc-4. While the
topic title contains the adjectives ���	��� 	
 (Iranian) and � �"��# (traditional), the rel-
evant documents contain also ��	��� 	
 (Iran), �$�%# (tradition), �
& �'��# (traditions)
being conflated into the same respective indexing term by our “light” stemmer,
but not when ignoring the stemming stage. Topic contains also the plural form
of the noun �
& �' �()� (the celebrations) while �� �()� (celebration) and 
& �' �()� (cele-
brations) are also found in the relevant documents. With the trunc-4 scheme,
the resulting indexing term is composed of three letters (the stem “celebration”)
and one letter of the suffix. Thus it is not possible to conflate the two forms
“celebration” (3 letters) and “celebrations” (5 letters) under the same entry.

Table 2 shows the MAP obtained using two different indexing strategies,
namely “none” and “light” over five IR models with three query formulations
(short or T, medium or TD and the longest form or TDN). It can be seen that
augmenting the query size improves the MAP over T query formulation by +8%
in average for TD queries and +15% for TDN queries. Moreover, the perfor-
mance difference that are statistically significant over the T query formulation
are shown with the symbol “‡”.
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Table 2. MAP of Various IR Models and Query Formulations

Mean Average Precision

Query T TD TDN T TD TDN
Stemmer none none none light light light

Okapi 0.3687 0.3960‡ 0.4233‡ 0.3894 0.4169‡ 0.4395‡
DFR-PL2 0.3765 0.4057‡ 0.4326‡ 0.3983 0.4247‡ 0.4521‡
DFR-IneC2 0.3762 0.4051‡ 0.4284‡ 0.4226 0.4226 0.4417‡
LM 0.3403 0.3727‡ 0.4078‡ 0.3559 0.3867‡ 0.4268‡
tf idf 0.2521 0.2721 0.2990 0.2521 0.2687 0.2928‡
mean 0.3428 0.3703 0.3982 0.3582 0.3839 0.4106
% over T +8.0% +16.2% +7.2% +14.6%

Upon inspection of obtained results, we have found that the pseudo-relevance
feedback can be useful to enhance retrieval effectiveness. Table 3 depicts MAP
obtained by using Rocchio’s approach (denoted “Roc”) [16] whereby the system
was allowed to add m terms (m varies from 20 to 150) extracted from the k best
ranked documents (for k = 5 to 10) from the original query results. The MAP
enhancement spans from +2.4% (light, Okapi, 0.4169 vs. 0.4267) to +11.1%
(light, DFR-PL2, 0.4247 vs. 0.4718). We have also applied another idf -based
query expansion model [17] in our official runs (see Table 4).

Table 3. MAP using Rocchio’s Blind-Query Expansion

Mean Average Precision

Query TD TD TD TD
Index light light 5-gram 5-gram

IR Model/MAP Okapi 0.4169 DFR-PL2 0.4247 Okapi 0.3968 DFR-PL2 0.3961

PRF Rocchio 5/20 0.4306 5/20 0.4621 5/50 0.4164 5/50 0.4164
k doc./m terms 5/70 0.4480 5/70 0.4620 5/150 0.4238 5/150 0.4238

10/20 0.4267 10/20 0.4718 10/50 0.4173 10/50 0.4173
10/70 0.4441 10/70 0.4700 10/150 0.4273 10/150 0.4169

5 Official Results

Table 4 gives description and results of the four official runs submitted to the
CLEF 2009 Persian ad hoc track. Each run is based on a data fusion scheme com-
bining several single runs using different IR models (DFR, Okapi, and language
model (LM)), indexing strategies (word with and without stemming or 5-gram),
query expansion strategies (Rocchio, idf -based or none) and query formulation
(T, TD, and TDN). The fusion was performed for all four runs using our Z-score
operator [18]. In all cases we can see that combining different models, indexing
and search strategies using Z-score approach improves clearly the retrieval ef-
fectiveness. For example, using the short query formulation (T), the best single
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IR model achieved a MAP value of 0.4197, while after applying our data fusion
operator, we obtained a MAP value of 0.4380, a relative improvement of +4.3%.
In these different combinations, we however did not use our “light” stemmer
showing a relatively hight retrieval effectiveness as depicted in Table 1.

Table 4. Description and MAP of Official Persian Runs

Run name Query Index Model Query exp. MAP Comb.MAP

T word PL2 none 0.3765
UniNEpe1 T 5-gram LM idf 10 docs/50 terms 0.3726 0.4380

T plural Okapi Roc 10 docs/70 terms 0.4197

TD 5-gram IneC2 none 0.4113
UniNEpe2 TD word PL2 none 0.4057 0.4593

TD plural Okapi Roc 5 docs/70 terms 0.4311
TD word PL2 idf 10 docs/50 terms 0.4466

TD word Okapi Roc 5 docs/50 terms 0.4228
UniNEpe3 TD plural Okapi Roc 5 docs/70 terms 0.4311 0.4663

TD perstem PB2 idf 10 docs/50 terms 0.4462

TDN word LM Roc 10 docs/50 terms 0.4709
UniNEpe4 TDN plural Okapi Roc 5 docs/70 terms 0.4432 0.4937

TDN perstem PL2 Roc 10 docs/20 terms 0.4769

6 Conclusion

From our past experiences in various evaluation campaigns, the results achieved
in this track confirm the retrieval effectiveness of the Divergence from Random-
ness probabilistic model family. In particular the DFR-PL2 or the DFR-IneC2
implementation tends to produce high MAP when facing different test-collections
written in different languages. We can also confirm that using our Z-score op-
erator to combine different indexing and search strategies tends to improve the
resulting retrieval effectiveness.

In this Persian ad hoc task, we notice three main differences between results
achieved last year and those obtained this year. First, using short (title-only or
T) query formulation, we achieved the best results in 2008. This is the contrary
this year with results based on TDN topic formulation depicting the best MAP
(see Table 2). Second, unlike last year, the use of our stemmers was effective this
year, and particularly the “light” stemming approach (see Table 1). As language-
independent approach, we can mention that the trunc-n indexing scheme is also
effective for the Persian language. Third, applying a pseudo-relevance feedback
enhance the retrieval effectiveness of the proposed ranked list (see Table 3). For
the moment, we do not have found a pertinent explanation to such difference
between the two years. However, during both evaluation campaigns we found
that a word-based indexing scheme using our “light” stemmer tends to perform
better than the n-gram scheme.
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