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A Tutorial of Recent Developments in the Seeding of Local Alignment

Daniel G. Brown and Ming Li and Bin Ma

We review recent results on local alignment. We begin with a review of classical
methods and early heuristic methods, and then focus on more recent work on the seeding
of local alignment. We show that these techniques give a vast improvement in both
sensitivity and specificity over previous methods, and can achieve sensitivity at the level
of classical algorithms while requiring orders of magnitude less runtime.
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1. Introduction

Two sequences are homologous if they share a common evolutionary ancestry. Un-
fortunately, this is a hypothesis that usually cannot be verified simply from sequence
data alone. Local alignment is a way of identifying regions of sequences that may
be homologous. If the similarity of two sequences is very high, it is unlikely to
have originated by chance. As such, the hypothesis that they are homologous is
supported.

Local alignment methods are important as their product, high scoring align-
ments, are used in a range of areas, from estimating evolutionary histories, to
predicting functions of genes and proteins, to identifying possible drug targets.
Contemporary molecular biologists use them routinely, and this results in substan-
tial load on even supercomputers. The NCBI BLAST server for homology search is
queried over 100,000 times a day and this rate is growing by 10-15% per month.

The basic homology search problem is so easy that is usually the first topic in
a bioinformatics course. However, the problem is also very hard, as queries and
databases grow in size, and the emphasis is on very efficient algorithms with high
quality. More programs have been developed for homology search than for any other
problem in bioinformatics, yet after 30 years of intensive research, key problems in
this area are still wide open.

As is true of many topics in early bioinformatics, the first two important se-
quence alignment algorithms, the Needleman-Wunsch algorithm for global align-
ment and the Smith-Waterman algorithm for local alignment, were both identified
by a variety of different groups of authors, working in different disciplines, during
the 1970s and early 1980s. However, these algorithms ran in time that was too slow
as databases of DNA and protein sequences grew during the 1980s. Since the mid
1980’s and 1990’s, heuristic algorithms like FASTA 1 and BLAST 2, that sacrificed
sensitivity for speed became popular; these algorithms offer far faster performance,
while missing some fraction of good sequence homologies. The development of good
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homology search software took another advance recently, as researchers focused on
the cores of alignments that are identified by heuristic search programs. This has
been seen in local alignment programs such as PatternHunter 3 and BLAT 4, which
both allow substantial improvement in sensitivity at minimal cost. The spaced seeds
of PatternHunter, in particular, can be optimized to be highly sensitive for align-
ments matching a particular model of alignments 5,6,7,8,9, which allows substantial
improvement in the sensitivity. In fact, one can use these spaced models to approach
Smith-Waterman sensitivity at BLAST speed 6.

Our focus in this survey is on these recent advances in seeding of alignments.
We briefly review basic dynamic programming algorithms for sequence alignment,
and then discuss how an awareness of the structure of hits has given rise to new
models and mathematics for representing alignments.

2. Sequence alignment: Scoring and simple dynamic programming
algorithms

Here, we begin our review of sequence alignment by discussing the classical mea-
sures and algorithms used for this problem. These basic algorithms are still used in
practice; the goal of heuristic sequence aligners is primarily to call them on as few
subregions of the two sequences being aligned as possible, while still keeping high
sensitivity to high-scoring alignments.

2.1. Notation: alignments

Let s = s1s2 . . . sm and t = t1t2 . . . tn be two sequences over a finite alphabet Σ.
We augment the alphabet Σ with a “space” symbol, denoted by ‘−’, that is not in
Σ, yielding the alignment alphabet, Σ′. Any equal-length sequences S and T over
alphabet Σ ∪ {−} that result from inserting space characters between letters of s
and t are called an alignment of s and t.

Usually, the objective of the sequence alignment of s and t is to maximize the
similarity of S and T , by having characters in the same position in both sequences
be closely related or identical. A simple measure of the similarity between two
sequences s and t is their edit distance. This is the minimum number of steps to
transform s to t by single letter substitutions, insertions or deletions. This measure
can also be used in computing the score of a sequence alignment. If the cost of
an alignment is the number of columns of the alignment that differ in the two
sequences, then computing the optimal alignment is easily shown to be the same as
computing the edit distance between s and t.

We will mostly focus on the local alignment problem, which consists of finding
alignments of substrings of s and t whose similarity is high. However, we will begin
by focusing on the global alignment problem, which aligns full sequences.
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2.2. Scoring of alignments

It is possible to perform biologically meaningful sequence alignments using only the
edit distance. However, typical homology search programs optimize somewhat more
complicated functions of the alignments. There is a rich probabilistic basis to these
scoring methods, but here we do not review this; see 10,11,12 for details.

2.2.1. Score matrices

The edit distance measure causes the same cost to be incurred for every substitu-
tion. Yet, especially for protein sequences, some mutations would be less expected to
be found in homologous sequences. A score matrix is used to discriminate different
types of matches and mismatches. The score M(a, b) is the contribution to the align-
ment score of aligning a and b, for any a, b ∈ Σ′. Given two sequences s and t, and
their alignment (S, T ), the score of the alignment, is defined by

∑k
i=1 M(S[i], T [i]).

When a score matrix is used, we usually let M(a, b) > 0 if a and b are closely
related. Therefore, the goal is to find the alignment that maximizes the alignment
score

∑k
i=1 M(S[i], T [i]).

2.2.2. Gap penalties

Another addition concerns the lengths of regions of entirely space characters in
an alignment. In homologous sequences, such “gaps” correspond to a single block
deletion or insertion. If we use a typical scoring matrix where we score a negative
constant M(a,−) for aligning any letter a to a gap, the cost of the gap will be
proportional to its length. In both theory and practice, this is undesirable. One
typically penalizes gaps through a length-dependent gap penalty, rather than only
through the scoring matrix. The most common gap penalty is affine: the score of a
gap of length i is o + ie. In this scheme, o, the gap “opening” penalty, is typically
much more negative than e, the “extension” penalty paid per gap position.

2.3. Simple dynamic programming algorithms

The optimal alignment of two sequences s, of length m and t, of length n, assuming
gap costs proportional to their length, can be computed in time proportional to the
product of their lengths using dynamic programming 13,14. The key observation is
that the subalignment preceding any column of the optimal alignment must itself
be optimal; this optimal substructure allows one to use dynamic programming.

The straightforward algorithm also requires O(mn) space to store the entire
dynamic programming matrix, but this can be reduced to O(min(m, n)) space by
using a trick due to Hirschberg15. Here, we keep track of two rows (or columns) of the
dynamic programming matrix, and after we have computed row m/2 of the matrix,
we also remember which cell in the m/2 row the alignment path that is optimal in
the current cell passed through last. When we compute this for the [m, n] entry of
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the DP matrix, this allows us to divide the problem in half and recurse on smaller
problems, which preserves both the O(mn) runtime and the O(n) space.

To compute the optimal local alignment of two sequences, we can also use a
classic dynamic programming algorithm 16. One way to consider local alignment is
to think that eliminating prefixes and suffixes of the two sequences is free. There-
fore, if a global alignment has negative scores at either end, we can eliminate that
end to get a better local alignment. This simple idea gives rise to the standard dy-
namic programming technique, which has similar runtime to the global alignment
algorithm.

Both of these algorithms can be extended to the case of affine gap costs as well.
We keep track of multiple dynamic programming matrices, to ensure that we only
pay for the cost of opening a gap once. The overall runtime triples in a simple
implementation, but can easily be made only twice the runtime of the algorithm for
simpler gap costs.

3. Second Generation Homology Search: Heuristics

Filling in an entire dynamic programming matrix when aligning long sequences is
quite time consuming. As a result, in the late 1980s and early 1990s, heuristic meth-
ods were proposed. These methods share a common theme: they sacrifice sensitivity
for speed. That is, they run much faster than full dynamic programming, but they
may miss some good local alignments. The two most popular heuristics are found
in FASTA 1 and BLAST 2.

3.1. FASTA and BLASTN

One of the earliest of these heuristics is FASTA. FASTA uses a hashing approach
to find all matching k-tuples (between 4 and 6 for DNA), between the query and
database. Then nearby k-tuples, separated by a constant distance in both sequences
are joined into a short local alignment. With these short local alignments as seeds,
Smith-Waterman dynamic programming is applied to larger gaps between two high
scoring pairs still separated by short distances, with the restriction that only the
part of the dynamic programming matrix nearest the diagonal is filled in. FASTA
outputs only one alignment per query sequence, after the dynamic programming
phase, and estimates the probability of the alignment occurring by chance.

More popular has been the BLASTN heuristic aligner. BLASTN works similarly
at its beginning, identifying seed matches of length k (9-11 bases long). Each seed
match is extended to both sides until a drop-off score is reached. Along the way,
seed matches that are being extended in ways that are not typical of truly homolo-
gous sequences are also thrown out. BLAST can be set so that two nonoverlapping
seed matches may be required before alignments are extended. Newer versions of
BLASTN 17 allow gapped alignments to be built. BLASTN outputs all alignments
found, and estimates for each the expected number of alignments whose score would
be as large, if the alignments were of unrelated sequences.
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3.2. BLASTP

The program BLASTP, which is probably more often used than BLASTN, also
performs heuristic alignments, but of protein sequences instead. BLASTP works by
beginning with much shorter seeds, of three or four letters in length; for three-letter
seeds, the requirement is that the two subsequences being aligned have total pairwise
score at least +13; since the scoring matrices used in BLASTP are measured in half-
bits, this corresponds to 6.5 bits of information. Subsequent to finding a hit, the hit
is extended in its local region, filtered to verify that the region is worth extending,
and then extended, in a similar way as for BLASTN.

A big difference between these two programs comes in their density of false-
positive hits. If a BLASTN seed is an 11-base exact match, then two random 11-
letter sequences will match with probability approximately one in four million. By
contrast, two random amino acid sequences, with letter frequencies derived from the
BLOSUM62 scoring matrices, will form a BLASTP hit with probability approxi-
mately 1/3600. This is done because molecular biologists have been unwilling to
suffer low sensitivity in protein alignments: they want to find a much larger fraction
of the true alignments. However, as protein databases are typically much smaller
than nucleotide sequences, this increase in false positives hits is still relatively tol-
erable.

4. Next-generation homology search software

In the post-genome era, supercomputers and specialized hardware implementing
sequence alignment methods in digital logic are employed to meet the ever expand-
ing needs of researchers. Pharmaceutical corporations and large scientific funding
agencies proudly spend much money to support such supercomputing centers. Un-
fortunately, the reliability of these solutions must be considered in light of the
consistent doubling of sequence databases, as GenBank doubles in size every two
years 18.

In the late 1990s, however, several methods were developed that improve the
sensitivity of homology search software to a level comparable to that of full-scale
dynamic programming, while avoiding the very large runtimes. These have largely
focused on characterizing the central seeds from which heuristic alignment programs
build their local alignments.

4.1. New idea: optimal alignment seeds

BLAST-like heuristics first find short seed matches which are then extended. This
technique faces one key problem: as seeds grow, fewer truly homologous sequences
will have the conserved core regions. However, shorter seeds yield more random hits,
which significantly slow down the computation.

To resolve this problem, a novel seeding scheme was introduced in Pattern-
Hunter 3. BLAST looks for matches of k consecutive letters as seeds; the default
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tactgcctg
|||| ||||
tactacctg

1: 1110101
2: 1110101
3: 1110101

Fig. 1. There are many positions that a homology may contain a hit. In this figure, the seed model
1110101 hits the region at the second position.

value of k is 11 in BLASTN and 28 in MegaBlast. Instead, PatternHunter uses k
non-consecutive letters as seeds. The relative positions of the k letters is called a
spaced seed model (or simply, a spaced seed), and k is its weight. For convenience,
we denote a seed model by a 0-1 string, where ones represent required matches and
zeros represent “don’t care” positions. For example, if we use the weight 6 model
1110111, then the alignment actgcct versus acttcct matches the seed, as does
actgcct versus actgcct. In this framework, BLAST can be thought of as using
models of the form 111 . . .1.

Let L be the length of a homologous region with no gaps, and M be the length
of a seed model. Then there are L−M + 1 positions that the region may contain a
hit (Figure 1). If we use a typical heuristic search scheme, as in BLASTN, as long
as there is one hit in such a region, the region can be detected. Therefore, although
the hit probability at a specific position is usually low, the probability that a long
region contains a hit can be reasonably high.

Ma, Tromp and Li 3 noticed that different seed models with identical weight can
have very different probabilities to hit a random homology. For a seed with weight
W , the fewer zeros it has, the shorter the seed is, and the more positions it can
hit the region at. Therefore, intuitively, BLAST’s seed model with W consecutive
ones seems to have the highest hit probability among all the weight-W seed models.
Quite surprisingly, this is not true. The reason is that the hits at different positions
of a region are not independent. For example, using BLAST’s seed, if a hit at
position i is known, the chance to have a second hit at position i + 1 is then very
high because it requires only one extra base match. The high dependency between
the hits at different positions make the detection of homologs “less efficient”: many
regions will have more than one hit, which is unhelpful, while many other regions
will be missed entirely.

The same authors noticed that the dependency can be reduced by adding some
zeros into the seed model. For example, if the seed model 1110101 is used, and
there is a hit at position i, the hit at the position i + 1 requires three extra base
matches (compared to one extra base match of the BLAST’s seed). Thus, hits
at different positions are less dependent when spaced seed models are used. On
the other hand, spaced seed models are longer than the consecutive seed model
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with the same weight, and therefore have fewer positions to hit a region at. As a
result, the optimal seed must balance these two factors. In the same paper, the
authors developed a method to find the optimal seed model that maximizes the
hit probability in a simple model, and the optimal seeds were used to develop the
PatternHunter program, among other things.

Some other seeding or related strategies have also been developed before or after
PatternHunter’s spaced seed model. In his program WABA19, Kent proposed the
use of a simple pattern in identifying homologous coding sequences. Since these
sequences often vary in the third, “wobble” position of codons, WABA ignores
these positions when identifying positions that match a seed. In the spaced seed
framework of PatternHunter, this is equivalent to using spaced seeds of the form
110110 . . .

Kent’s approach takes advantage of the special properties of the coding region
homologies. Kent also introduced a different approach for detecting non-coding
region homologies in his program BLAT 4. BLAT uses consecutive seeds, but allows
one or two mismatches to occur in any positions of the seed. For example, a BLAT
hit might require at least ten matches in twelve consecutive positions. This scheme,
naturally, allows more false negatives, but the resultant collection of hits is more
enriched for true positives at a given level of false positives than for consecutive
seeds where all positions are required to match.

In his random hashing strategy, Buhler 20 used his experience with identify-
ing sequence motifs using random projection21 to speed up detection of homology
search. This idea had been previously identified by Indyk and Motwani 22. Basically,
this approach was to find all hits by random hashing over long sequence intervals. A
simple probability calculation allows the computation of how many projections are
required to guarantee a given probability that a homologous alignment will have
a hit to at least one of these random projections. For good choices of projection
weights, this will approach 100% sensitivity. Other than the fact that high weight
random projections are not suitable and not designed for BLAST-type searches, this
approach also ignores the possibility of optimizing the choice of those projections.

Of these first three approaches (specific spaced seeds, consecutive seeds allowing
a fixed number of mismatches, and random spaced seeds), the first, typified by
PatternHunter, allows for optimization. That is, one can use a seed specifically
tuned for the types of alignments one expects to see, with the highest sensitivity at
a particular false positive rate.

The optimal seed models in the PatternHunter paper 3 were optimized for non-
coding regions. Later, Brejová, Brown and Vinař5 developed an algorithm for opti-
mizing the seeds in more complicated models, specifically for coding regions, as did
Buhler, Keich and Sun 9.

In a later paper, Brejová, Brown and Vinař 7, proposed a unified framework
to represent all of the above mentioned seeding methods, which is described in
Section 4.4.3.

Several other papers consider ideas in this new area of spaced seeds. Here, we cite
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some which we do not discuss further in this tutorial 23,24,25,26,27. Also, the program
BLASTZ 28 has implemented a spaced seed-based DNA alignment program as well,
based on the ideas of the original PatternHunter implementation.

4.2. Optimized spaced seeds and why they are better

Optimized spaced seeds can have substantially greater sensitivity than the consec-
utive seed models of BLAST. Here we give one example. The simplest model of an
alignment is of a region of a fixed length where each position matches with some
probability p, independent of all other positions. Figure 2 compares the optimal
spaced seed model of weight 11 and length at most 18, 111010010100110111, with
BLAST’s consecutive models of weight 11 and 10, for alignments of this type, of
fixed length 64. For each similarity rate p shown on the x-axis, the fraction of re-
gions with at least 1 hit is plotted on the y-axis as the sensitivity for that similarity
rate. ¿From the figure, one observes that the seemingly trivial change in the seed
model significantly increases sensitivity. At 70% homology level, the spaced seed
has over 50% higher probability (at 0.47) to have a hit in the region than BLAST
weight 11 seed (at probability 0.3).
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Fig. 2. 1-hit performance of weight 11 spaced model versus weight 11 and 10 consecutive models,
coordinates in logarithmic scale.

However, the added sensitivity does not come at the cost of more false positive
hits or more hits inside true alignments 3:

Lemma 1. The expected number of hits of a weight W , length M model within a
length L region of similarity 0 ≤ p ≤ 1, is (L − M + 1)pW .

Proof. The expected number of hits is the sum, over the (L − M + 1) possible
positions of fitting the model within the region, of the probability of W specific
matches, the latter being pW .
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Lemma 1 reveals that spaced seeds have fewer expected hits, but have higher
probability to hit a homologous region, as shown in Figure 2. This is a bit counter-
intuitive. The reason is that a consecutive seed often generates multiple hits in a
region, because a hit at position i will increase the hit probability at position i + 1
to p (only one extra base match is required). However, the optimized spaced seeds
are less likely to have multiple hits in a region (because the second hit requires more
base matches). Therefore, given many homologous regions, although the total num-
ber of hits generated by a spaced seed is comparable to the number for a consecutive
seed with the same weight, the the spaced seed hits can cover more regions.

To quantify this, assume that p = .7 and L = 64, as for the original Pattern-
Hunter model. Given that the BLASTN seed 11111111111 matches a region, the
expected number of hits in that region is 3.56, while the expected number of hits to
the spaced seed 101101100111001011, given that there is at least one, is just 2.05.

Thus, using an optimized spaced seed, a homology search program increases
sensitivity and not running time. Inverting the above reasoning, we can use an
optimal weight 12 spaced seed to achieve the BLAST weight 11 seed sensitivity,
but generating four times fewer noise hits. This will speed up the search process by
roughly a factor of four.

We have argued that for particular p, L, and seed models, spaced seeds are
better than the consecutive seed. Can we prove a general mathematical statement
about this? Mathematical analysis of the spaced seeds turns out to be challenging,
very interesting, and related to the classical renewal theory of Markov processes.
While the current research is too new to be presented systematically in this tutorial,
we sample one theorem, from 8, and refer the reader to 8,9,29,6. The next theorem
shows that in an infinite region, as the seeds scan the region, a spaced seed has a
higher probability to hit first than the consecutive seed.

Theorem 1. Let I be a uniform homologous region of homology level p. For any
sequence

0 ≤ i0 < i1 . . . < in−1 = |I|− |s|,

let Aj be the event a spaced seed s hits I at ij, Bj be event the consecutive seed hits
I at j. Then

P(∪j<nAj) ≥ P(∪j<nBj); (1)

When ij = j, the strict inequality holds in (1).

Proof. We prove the theorem by induction on n. For n = 1, P(A0) = pW = P(B0).
Assume that the theorem holds for n = N , we prove that it holds for N + 1. Let
Ek denote the event that, when putting the spaced seed s at position I[0], the first
k (0-th to k − 1-st) 1’s in the seed are all matched and the next 1 mismatches. Let
E′

k be the similar event for the consecutive seed. Clearly, Eks are a partition of the



May 1, 2006 9:36 WSPC/INSTRUCTION FILE main

10 Brown, Li and Ma

sample space for k = 0, .., W , and P(Ek) = pk(1−p). The same is true for E′
k. Thus

it is sufficient to show, for k = W :

P(∪j=0,...,NAj |Ek) ≥ P(∪j=0,...,NBj |E′
k) (2)

When k = W , both sides of (2) equal to 1. For k < W since (∪j≤kBj)∩E′
k = ∅

and {Bk+1, Bk+2, . . . , BN} are mutually independent of E′
k, we have

P(∪j=0,...,NBj |E′
k) = P(∪j=k+1,...,NBj) (3)

Now consider the first term in Inequality 2. For each k ∈ {0, . . . , W − 1}, at
most k + 1 of the events Aj satisfy Aj ∩ Ek = ∅. This is because Aj ∩ Ek = ∅ iff
when aligned at position ij the seed s has a 1 bit at the overlapping k-th bit when
the seed was at 0. There are at most k + 1 choices. Thus, there exist indices 0 <
mk+1 < mk+2 . . . < mN ≤ N such that Amj ∩Ek (= ∅. Since Ek means all previous
bits matched, it is clear that Ek is non-negatively correlated with ∪j=k+1,...,NAmj ,
thus

P(∪j=0,...,NAj |Ek) ≥ P(∪j=k+1,...,NAmj |Ek) ≥ P(∪j=k+1,...,NAmj ) (4)

The inductive hypothesis yields

P(∪j=k+1,...,NAmj ) ≥ P(∪j=k+1,...,NBj)

Combined with (3) and (4), this proves (2). Thus this proves the ≥ part of the
theorem.

We now prove, by induction on n, when ij = j,

P(∪j=0,...,n−1Aj) > P(∪j=0,...,n−1Bj). (5)

For n = 2, we have

P(∪j=0,1Aj) = 2pw − p2w−shift1 > 2pw − pw+1 = P(∪j=0,1Bj)

where shift1 is the number of overlapped bits of the spaced seed s with itself when
shifted to the right by 1 bit. For inductive step, note that the proof of (1) shows
that for all k = 0, 1, . . . , W ,

P(∪j=0,...,n−1Aj |Ek) ≥ P(∪j=0,...,n−1Bj |E′
k).

Thus to prove (5) we only need to prove that

P(∪j=0,...,n−1Aj |E0) > P(∪j=0,...,n−1Bj |E′
0).

The above follows from the inductive hypothesis as follows:

P(∪j=0,...,n−1Aj |E0) = P(∪j=1,...,n−1Aj) > P(∪j=1,...,n−1Bj) = P(∪j=0,...,n−1Bj |E′
0).

Corollary 1. Assume I is infinite. Let ps and pc be the first positions a spaced
seed and the consecutive seed hit I, respectively. Then E[ps] < E[pc].
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Proof.

E[ps] =
∑

k=0,...,∞
kP(ps = k)

=
∑

k=0,...,∞
k[P(ps > k − 1) − P(ps > k)]

=
∑

k=0,...,∞
P(ps > k)

=
∑

k=0,...,∞
(1 − P(∪j=0,...,kAj))

<
∑

k=0,...,∞
(1 − P(∪j=0,...,kBj))

= E[pc].

4.3. Computing the optimal spaced seeds

The probability of a seed generating a hit in a fixed length region of a given level
similarity can be computed by dynamic programming under various assumptions
3,8,5,7,9,29,6. To choose an optimal seed, we compute the hit probability for all seeds,
and pick the one with the highest probability.

Suppose we are given a seed s, of length M and weight W , and a homology region
R, of length L and homology level p, with all positions independent of each other.
In this model, we can compute the probability of s having a hit in R. We represent
R by a random string of zeros and ones, where each position has probability p of
being a one.

We will say that seed s has a seed match to R at location i if the L-length
substring of R starting at position i has a one in each position with a one in the
seed s. Let Ai be the event that seed s has a seed match at location i in R, for all
0 ≤ i ≤ L − M . Our goal is to find the probability that s hits R : Pr[∪L−M

i=0 Ai].
For any M ≤ i ≤ L and any binary string b such that |b| = M , we use f(i, b) to

denote the probability that s hits the length i prefix of R that ends with b:

f(i, b) = Pr[∪i−M
j=0 Aj |R[i − l, . . . , i − 1] = b].

In this framework, if s matches b,

f(i, b) = 1.

Otherwise, we have the recursive relationship:

f(i, b) = (1 − p)f(i − 1, 0b′) + pf(i − 1, 1b′), (6)

where b′ is b, after deleting its last bit.
Once we have used this dynamic programming algorithm to compute f(L−M, b)

for all strings b, we can compute the probability of s hitting the region; it is:
∑

|b|=M

Pr[R[i − 1, . . . , i − 1] = b] · f(L − M, b).
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This is the simplest algorithm to compute the hit probability of a seed. This
algorithm was used in the original PatternHunter paper 3 and published in an im-
proved form in 8. Other algorithms generalize this algorithm to more sophisticated
probabilistic assumptions of the region R and reducing time complexity 5,9,29,6.

4.4. Computing more realistic spaced seeds

The simple model of homologous regions described above is not very precise repre-
sentative of real alignments. Homologous regions are not all of length 64, and vary
internally in how conserved they are. (Of course, they also include gaps, but we are
still not going to consider this in producing seeds.)

For example, more than 50% of significant alignments in the human and mouse
genomes are between exonic regions, and these regions have substantially more
conservation in the first two positions of a codon than in the third, which has tradi-
tionally been called the “wobble” position 19. As such, a seed that takes advantage
of this three-periodicity by ignoring the third position in codons will be much more
likely to hit than a seed that does not. There is also substantial dependence within
a codon: if the second position is not matched, it is quite likely that neither are the
first or third.

Similarly, real alignments vary substantially internally in their alignment as well,
and this is particularly true for coding alignments. Such alignments tend to have
core regions with high fidelity, surrounded by less well-conserved regions.

Models that do not account for these variabilities can substantially underesti-
mate the hit probability of a seed.

4.4.1. Optimal seeds for coding regions

Two recent papers try to address this need to optimize better models in different
ways. Brejová, Brown and Vinař 5 use a Hidden Markov Model (HMM) to represent
the conservation pattern in a sequence. Their model accounts for both internal
dependencies within codons, and also for multiple levels of conservation throughout
a protein. They update the simple dynamic programming model above to this new
framework, and show that one can still relatively efficiently compute the probability
that a given seed matches a homologous region.

Meanwhile, Buhler, Keich and Sun 9 represent the sequences by Markov chains,
and present a different algorithm, based on finite automata to compute the proba-
bility of a seed hit in that model.

The difference in using seeds tuned to find hits in homologous coding regions
versus seeds for general models is quite large. In particular, the optimal seed
(111001001001010111) of weight 10 and length at most 18 for the noncoding re-
gions is ranked 10,350 among the 24,310 possible seeds in its theoretical sensi-
tivity in the HMM trained by Brejová and co-authors, and ranked 11,258 among
these seeds in actual sensitivity on a test set of coding region alignments, match-
ing only 58.5% of them. By contrast, the three optimal coding region seeds (which
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are also optimal for the theoretical hidden Markov model) match between 84.3%
and 85.5% of alignments. These seeds, 11011011000011011, 11011000011011011,
and 11000011011011011, all ignore the third positions of codons, and also skip en-
tire codons. As such, they model the conservation pattern of real coding sequences
substantially better than the non-periodic seeds optimized for noncoding regions.

Much of the advantage does, of course, come from the modeling. A previous
program, WABA 19, uses three-periodic seeds of the form 110110110... with no
formal justification; in practice, this seed has sensitivity close to the optimum,
81.4%. Still, the optimal seeds give a good improvement over this seed, and also
allow the optimization of multiple seeds for still greater sensitivity.

For the homology search in coding regions, an alternative approach would be
the use of a translated homology search program, e.g., TBLASTX. Such a program
first translates the DNA sequences to protein sequences, from which the homologies
are then found. The translated homology search is supposed to be more sensitive
than a DNA-based program for coding regions, however, is substantially slower.

Kisman, Ma and Li 30 recently extended the spaced seed idea to translated
homology search and developed tPatternHunter, which is both faster and more
sensitive than tblastx.

4.4.2. Optimal seeds for variable-length regions

As to the length of regions, it is quite simple for all of these algorithms to in-
corporate distributions on the length of homologous regions into the model. For a
given generative model, we simply compute the probability σ(") of a hit in a re-
gion of length ", and the probability distribution π(") of lengths of the region; the
probability of a hit in a random region is then just

∑
! σ(")π(").

4.4.3. Vector seeds: unifying the different models of seeds

In another paper 7, Brejová, Brown and Vinař combined and generalized the ideas
of both BLAT and PatternHunter to a broader representation language for the
seeding of alignments.

Their approach is to view the position-by-position scores of an ungapped align-
ment as a sequence of numbers, which they call an alignment sequence. For the
simplest model of nucleotide alignment, the alignment sequence is just a sequence
of +1 and −1 values, corresponding to positions that match or do not match. How-
ever, for protein sequences, this sequence consists of the values from the scoring
matrix, M , that correspond to the residues aligned; in the case of the BLOSUM62
matrix, these range from −5 to +12. For a given alignment, let this alignment
sequence be A = a1, . . . , an.

Then, given an alignment sequence, these authors model a seed as a vector v
and a threshold T , and identify a hit at position i if v · (ai, . . . , ai+|v|−1) ≥ T . This
framework encodes the seeding strategies described before. For consecutive seeds in
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nucleotide alignments, the vector is of all ones, and the threshold T is the same as
the length of the vector. For spaced seeds, the seed vector is the same as before,
and the threshold is the weight of the seed. For BLAT-style consecutive seeds with
a fixed number of mismatches, the vector is again of all ones, but the threshold is
equal to the length minus two times the number of allowed mismatches (since the
score of a mismatch is two less than for a match). This framework also encodes the
seeding strategy for BLASTP, which requires three consecutive positions with total
score greater than 13 (corresponding to the vector seed ((1, 1, 1), 13).

Other strategies can also be expressed in this formalism. When using the simple
nucleotide scoring strategy, these can all also be expressed as a collection of many
spaced seeds; for example, the vector seed ((1, 1, 0, 1), 2) corresponds to the three
spaced seeds 1100, 1001 and 0101. However, in the case where positional scores may
be from a richer system, vector seeds can encapsulate more complicated relation-
ships.

In their original paper, Brejová and her co-authors do not show much value
to using vector seeds where the vector v includes values that are not zero or one;
this may be because this would over-emphasize specific positions of the alignment.
However, some other seeding approaches that filter initial hits for being in a region
of high overall sensitivity can be expressed in this more complicated vector seed
framework. For example, a requirement that the first, third, and sixth positions of
the seed must match, as well as at least two of the second, fourth and fifth positions,
can be encoded with the vector seed ((10, 1, 10, 1, 1, 10), 32).

4.4.4. Variable length seeds: handling bias in character distribution

In the previous sections, a homolog is modeled by a 0-1 string, where 0 means
mismatch and 1 means match. The optimization of the seeds are all based on the
distributions of 1 (match) and 0 (mismatch) in the string. As a result, the actual
DNA or protein sequence information in each homolog is disgarded and only the
matches and mismatches are counted. For example, if one of the following two
alignments is hit by a seed, the other one will be hit by the same seed also.

AAAAAAAAAA GGGGGGGGGG
|||| ||||| |||| |||||
AAAACAAAAA GGGGCGGGGG

However, the distribution of the characters (nucleotides for DNA and amino
acids for protein sequences) in genomic seqences is often biased. For example, the
mouse genome has a 42% (G+C) content and 58% of (A+T). Therefore, even the
database is fixed, the same seed will generate different number of false positive hits
for different query words.

Naturally, Csürös 31 suggested to use shorter seeds for the query words that are
rarer. As a result, higher sensitivity can be achieved with a little extra false positive
hits. Csürös 31 implemented this variable length seed idea using a pruned seed tree.
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In the following the pruned seed tree is described using consecutive seeds first. The
case of spaced seeds is discussed at the end of this section.

Using a database sequence, a seed tree is first obtained by placing the k-mers of
the database sequence to a trie data structure. So, the trie has k levels. Each leaf
at level k corresponds to a k-mer. Each internal node at level t corresponds to a
t-mer, which is a common prefix of the (t + 1)-mers of the child nodes.

In a real genetic sequence, different t-mers occur with different frequencies. For
any t-mer v, let Occ(v) be the set of occurrences of t-mer v in the sequence. Then
Occ(v) =

⋃
u being a child of v Occ(u) if we ignore the small error caused at the end

of the database sequence.
Then the seed tree is pruned. Each step of the pruning removes a group of leaves

that are siblings. As a result, the parent node of the siblings becomes a new leaf
which occurs more frequently than the siblings. After the pruning is done, for each
k-mer u of the query sequence, hits will be generated by finding u’s longest prefix
v as a leaf in the pruned tree.

It is easy to see that each pruning may decrease the length of the prefix for the hit
generation. As a result, the sensitivity of the homology search is increased. On the
other hand, the searching speed will be decreased because more hits are generated.
Csürös 31 used a greedy heuristic to prune the tree for gaining sensitivity with losing
the least speed. That is, the hit number increment caused by the next pruning step
should be the least possible.

For a query sequence with length M , if we ignore the errors at the end of the
sequence, the expected number of hits a node v ∈ Σt generates is

hits(v) = M × |Occ(v)| × Πt
j=1q(v[j]),

where q(a) is the expected frequency of character a in the query sequence. The hit
number increment of each possible pruning step can then be easily calculated as
hits+(v) = hits(v)−

∑
u being a child of v hits(u). Csürös 31 also proved that hits+(·)

is in general larger at a parent node than at the children (unless the query sequence
consists mostly the same character). Therefore, by putting hits+(v) in a sorted data
structure, the pruning can be carried out efficiently in a sequential way. Whenever
a node is considered for pruning, all of its descendants are pruned already. The
pruning stops when the total hit increment reaches a threshold.

The pruned tree approach works for spaced seeds as well because the k-mers
mentioned above can be k characters at the ‘1’-positions defined by a weight-k
spaced seed. Also, it is advantageous to use a permutation π to permute the k-
mer to maximize the sensitivity. That is, each k-mer (s1, s2, . . . , sk) is changed to
(sπ(1), sπ(2), . . . , sπ(k)) during the building of the pruned tree and hit generation.
Csürös 31 also suggested a simple algorithm to select the optimal permutation for
any given spaced seed.
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4.5. Approaching the Smith-Waterman sensitivity using multiple
seed models

Another idea that comes directly from the idea of optimal spaced seeds is the one
of using multiple seed models, which together optimize the sensitivity. In such an
approach, a set of several seed models are selected first. Then all the hits generated
by all the seed models are examined to produce local alignments. This obviously
increases the sensitivity because more hits than using one seed model are examined.
But now, the several seed models need to be optimized together to maximize the
sensitivity.

This idea appeared in the PatternHunter paper 3 and is further explored in
several recent papers 6,7,9. Brejová and her coauthors 7 used a heuristic method to
design a good pair of seeds; Buhler and co-authors 9 used hill-climbing to locally
improve good sets of seeds and a pair of seeds were designed by their method; Li
and co-authors 6 extended the dynamic programming algorithm in Section 4.3 to
compute a suboptimal set of seeds greedily.

Li his co-authors 6 showed that, practically, doubling the number of seeds would
achieve better sensitivity than reducing the weight of the single seed by one. How-
ever, for DNA homology search, the former only approximately doubles the number
of hits, whereas the latter will increase the number of hits by a factor of four (the
size of DNA alphabet). Thus, multiple seeds are a better choice.

It is noteworthy that the multiple seed approach is only possible when
spaced seeds are used – there is only one BLAST-type of consecutive seed
with a given weight. The newest version of PatternHunter implements the mul-
tiple seed scheme 6, having greedily chosen a set of sixteen seeds of weight
11 and length at most 21 in 12 CPU days on a Pentium IV 3GHz PC.
When the random region has length 64 and similarity 70%, the first four
seeds are: 111010010100110111, 111100110010100001011, 110100001100010101111,
1110111010001111. Multiple seeds for coding regions are also computed and imple-
mented. The experimental results that will be shown in Section 5 demonstrate that
using carefully selected multiple seeds can approach Smith-Waterman sensitivity at
BLAST’s speed.

4.5.1. Multiple vector seeds for protein alignment

As noted above, vector seeds can encapsulate similar ideas to those of spaced seeds
for more complex scoring schemes. Indeed, their original development was aimed
at the alignment of proteins. However, the original paper by Brejová and her co-
authors 7 did not show much success in this direction; while vector seeds had slightly
better sensitivity than consecutive seeds at the same false positive hit rate, the
advantage was slight.

An alternative approach, however, was inspired by the multiple seed approach
described in this subsection for nucleotide seeds. Based on a reference set of training
alignments, Brown 32 gave an optimization framework for computing a good set of
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vector seeds. His framework is also through linear programming, as for the paper of
Xu and co-authors 33 described below. However, the difference is that the objective
is to minimize the rate of false positive hits, while still achieving the very high
sensitivity that BLASTP has, while the linear program of Xu and co-authors seeks
highest possible sensitivity for a given false positive rate.

Through using multiple vector seeds, with support 3, 4 and 5, Brown finds a
seeding strategy that will have approximately the same sensitivity as BLASTP,
while keeping five times fewer false positives. He also points out that since filtering
hits in their local region takes a constant amount of time, this step may be used in a
two-pass strategy to find good hits that should actually be extended to alignments.

4.6. The complexity of computing optimal spaced seeds

Many authors 3,5,7,8,9,29 have proposed heuristic or exponential time algorithms for
the general seed selection problem: find one or several optimal spaced seeds so that
a maximum number of target regions are each hit by at least one seed. A seemingly
simpler problem is to compute the hit probability of k given seeds. Unfortunately,
these are all NP -hard problems 6. Thus the greedy algorithm and the exponential
time dynamic programming are the best we can do. While this tutorial will not
provide the proofs, we wish to list some of the recent results for these problems.
Letting f(n) be the maximum number of 0’s in each seed, where n is the seed length,
the following are true 6.

(1) If f(n) = O(log n), then there is a dynamic programming algorithm computes
the hit probability of k seeds in polynomial time; otherwise the problem is
NP -hard.

(2) If f(n) = O(1), one or a constant number of optimal seeds can be computed
in polynomial time by enumerating all seed combinations and computing their
probabilities; otherwise, even selecting one optimal seed is NP -hard.

(3) If f(n) = O(1), then the greedy algorithm of picking k seeds by enumeration,
then adding the seed that most improves the first seed, and so on, approximates
the optimal solution within ratio 1 − 1

e in polynomial time, due to the bound
for the greedy algorithm for the maximum coverage problem34; otherwise the
problem cannot be approximated within ratio 1 − 1

e + ε for any ε > 0, unless
NP = P .

4.7. Computing a good seed set

Despite of the complexity of computing optimal spaced seeds, approximation algo-
rithms have been developed. Li and co-authors 6 suggested to use a greedy heuristic
to select the multiple seeds one by one, each most improves the hit probability of
the existing seeds. The hit probability of the hit set found by this simple greedy
algorithm is at least 1 − 1

e times the hit probability of the optimal seed set. When
the number of ‘0’ positions in the seeds is bounded by a constant, there will be only
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polynomial number of seeds and the above algorithm runs in polynomial time.
Xu and his co-authors 33 studied another approximation algorithm which for-

mulates the multiple seed selection problem as an integer linear program, solves the
corresponding linear programming relaxation, and rounds the results to be integeral.

In Xu and co-authors’ paper 33, both the possible seeds and the homology re-
gions are regarded as input of the problem. Let S1, S2, . . . , Sm be the seeds and
R1, R2, . . . , RN be the regions. The objective of the problem is to select a subset
of seeds that hit the most regions. The integer program is straightforward: binary
decision variable xi indicates whether Si is selected, and yj indicates whether Rj is
hit. Then the problem is formulated as

max
1
N

N∑

j=1

yj

subject to

yj ≤
∑

Si hits Rj

xi for j = 1, . . . , N. (7)

m∑

i=1

xi = k (8)

xi ∈ {0, 1}
yj ∈ {0, 1}.

Constraint (7) says that yj is 1 if at least one of the seed that hits Rj is selected.
Constraint (8) limits the total number of seeds being selected.

By removing the integrality requirement, one can solve the resultant linear pro-
gram efficiently to get the optimal relaxed solution (x∗, y∗). The maximum value
of the objective function for this LP relaxation provides an upper bound on the
performance of k seeds.

Next, random variables X , which have value i with probability x∗
i

k are employed
to do the randomized rounding. We make k independent observations of X and the
observed values are the indices of the selected seeds. If a seed is selected more than
once in this procedure, only one instance of the seed is kept and the resulted seed
set will have size smaller than k. Xu and his co-authors prove 33 that, with high
probability, this rounding procedure gives a seed set that hits at least (1− 1

e )×OPT
regions, where OPT is the maximum number of regions an optimal set of k seeds
can hit.

Therefore, this linear programming relaxation and random rounding algorithm
give an polynomial time approximation algorithm with the same approximation
ratio as the greedy algorithm. However, if the lower and upper bounds on the
number of regions hit by every possible seed are known, in some cases the linear
programming-based approximation has a better provable approximation ratio 33.
Nevertheless, the two approximation algorithms have similar performance in prac-
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tice.
When the homology regions are not given individualy as inputs, they are usually

given by a probabilistic model. Then we can randomly sample enough number of
homology regions and apply the above mentioned linear programming and rounding
algorithm. Xu and co-authors use a Chernoff-style bound to prove that the seed set
computed based on the sampled homology regions performs almost equally well on
all homology regions under the probabilistic model.

5. Experiments

Here, we present some experimental comparisons between heuristic search tech-
niques and full Smith-Waterman dynamic programming. As expected, Smith-
Waterman dynamic programming is too slow for practical use when the database
is large. What is striking is that a good choice of multiple optimal spaced seeds can
allow near-total success in detecting alignments, with vastly better runtime.

The results that we show in this section were originally reported by Li and
co-authors 6. In the paper, several software packages, SSearch 35, BLAST, and
PatternHunter, were used to find homologies between 29715 mouse EST sequences
and 4407 human EST sequences. Those sequences are the new or newly revised
mouse and human EST sequences in NCBI’s GenBank database within a month
before April 14, 2003. After downloading the EST sequences, a simple “repeat
masking” was conducted to replace all the sequences of ten or more identical letters
to letter Ns, because they are low complexity regions and their existence will only
generate so many trivial sequence matches that overwhelm the real homologies.

SSearch is a subprogram in the FASTA package and implments the Smith-
Waterman algorithm. Therefore, SSearch’s sensitivity is regarded to be 100% in the
comparison. The performance of BLAST version 2.2.6, and PatternHunter version
2.0 were compared against SSearch. Each program uses a score scheme equivalent
to: match: 1, mismatch: −1, gap open penalty: −5, gap extension penalty: −1. All
pairs of ESTs with a local alignment of score at least 16 found by SSearch were
recorded, and if a pair of ESTs has more than two local alignments, only the one
with the highest score was considered. All of these alignments were kept as being
the correct set of homologies, noting that, of course, some of these alignments may
between sequences that are not evolutionally related.

As expected, SSearch took approximately 20 CPU days, while BLASTN took
575 CPU seconds, both on a 3GHz Pentium IV. SSearch found 3346700 pairs of
EST sequences that have local alignment score at least 16, with maximum local
alignment score 694.

It is difficult to compare SSearch’s sensitivity with BLASTN and PatternHunter,
as BLASTN and PatternHunter are heuristic algorithms, and need not compute
optimal alignments. Thus Li and his co-authors decided, a bit arbitrarily, that if
SSearch finds a local alignment with score x for a pair of ESTs, and BLAST (or
PatternHunter) finds an alignment with score ≥ x

2 for the same pair of ESTs, then
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BLAST (or PatternHunter) “detects” the homology. The successful detection rate
is then regarded the sensitivity of BLAST (or PatternHunter) at score x. Pattern-
Hunter was run several times with different number of spaced seeds. Two sets of
seeds, coding-region seeds and general-purpose seeds, are used, respectively. The
results are in Figure 3.

0.9

0.92

0.94

0.96

0.98

1

sensitivity

20 25 30 35 40 45 50
alignment  score

Fig. 3. The thick dashed curve is the sensitivity of Blastn, seed weight 11. From low to high, the
solid curves are the sensitivity of PatternHunter using 1, 2, 4, and 8 weight 11 coding region seeds,
respectively. From low to high, the dashed curves are the sensitivity of PatternHunter using 1,2,4,
and 8 weight 11 general purpose seeds, respectively.

The following table lists the running time of different programs, with weight 11
seeds for Blastn and PatternHunter, on a Pentium IV 3GHz Linux PC:

SSearch Blastn PatternHunter
seeds 1 2 4 8

20 days 575 s general 242 s 381 s 647 s 1027 s
coding 214s 357s 575s 996s

This benchmark demonstrates that PatternHunter achieves much higher sen-
sitivity than Blastn at faster speed. Furthermore, PatternHunter with 4 coding
region seeds runs at the same speed as Blastn and 2880 times faster than the
Smith-Waterman SSearch, but with a sensitivity approaching the latter.

The above table also demonstrates that the coding region seeds not only run
faster, because there are less irrelevant hits, but are also more sensitive than the
general purpose seeds. This is not a surprise because the EST sequences are coding
regions.
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6. Conclusion

Our brief tour through the world of homology search methods is coming to an end.
Early landmarks included the classic global and local alignment algorithms that
use full dynamic programming, while later highlights have been heuristic search
algorithms, including increasingly sophisticated ones based on optimizing seeds for
a particular type of alignment. At the end of it all, we have an algorithm that is
almost as sensitive as Smith-Waterman, but requiring 3 orders of magnitude less
time. We cannot believe, however, that the tour is entirely over, and encourage our
readers to enjoy some time sightseeing on their own.
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