
NaLIR: An Interactive Natural Language Interface for

Querying Relational Databases

⇤

Fei Li
Univ. of Michigan, Ann Arbor

lifei@umich.edu

H. V. Jagadish
Univ. of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT
In this demo, we present NaLIR, a generic interactive nat-
ural language interface for querying relational databases.
NaLIR can accept a logically complex English language sen-
tence as query input. This query is first translated into
a SQL query, which may include aggregation, nesting, and
various types of joins, among other things, and then eval-
uated against an RDBMS. In this demonstration, we show
that NaLIR, while far from being able to pass the Turing
test, is perfectly usable in practice, and able to handle even
quite complex queries in a variety of application domains.
In addition, we also demonstrate how carefully designed in-
teractive communication can avoid misinterpretation with
minimum user burden.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Natural Language; H.1.2 [Information Systems]:
User/Machine Systems—Human factors

Keywords
Relational Database; Usability; Natural Language Interface;

1. INTRODUCTION
Traditionally, research work in querying data from rela-

tional databases often follows one of two paths: the struc-
tured query approach and the keyword-based approach. Both
approaches have their advantages and disadvantages. The
structured query approach, while expressive and powerful,
is not easy for naive users. The keyword-based approach is
very friendly to use, but cannot express complex query intent
accurately. In contrast, natural language has both advan-
tages to a large extent: even naive users are able to express
complex query intent in natural language. Thus supporting

⇤Supported in part by NSF grants IIS 1250880 and IIS
1017296

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2594519.

natural language queries is often regarded as the ultimate
goal for a database query interface.

However, progress has been slow, even as general Natural
Language Processing systems have improved over the years.
We believe this is primarily due to the di�culty of trans-
lating user-specified query structure to the actual schema
structure in the database. By addressing this challenge, we
believe we have removed the greatest barrier in natural lan-
guage querying of databases.

In this demo, we describe NaLIR, a generic interactive
natural language interface for querying relational databases.
In NaLIR, an arbitrary English language sentence, which
can be quite complex in logic, is taken as query input. This
query is first translated into a SQL query, which may contain
aggregation, nesting, and various types of joins, among other
things. Then, an RDBMS is used to evaluate the translated
SQL query and return the results to the user. For exam-
ple, the user can write “return the author in database area,
whose papers have the most total citations”, without worry-
ing about the structure of the elements in the database.

We believe that an ideal natural language interface should
work like a database programmer (DBA): when the user tells
the DBA what she wants to query in natural language, the
DBA will first try to fully understand the natural language
query from both a linguistic and a database point of view.
Then, the DBA conveys his understanding, first for some
ambiguous words/phrases and then for the structure of the
sentence, back to the user to avoid misunderstanding. Af-
ter the user agrees on or corrects the DBA’s understanding,
the DBA will compose the SQL query statement, evaluate
it and finally return the results back to the user. Our sys-
tem is designed in this way. In the first step, we use an
o↵-the-shelf natural language parser to obtain the linguis-
tic understanding (represented by a parse tree) of the input
sentence. In the second step, we transform the linguistic un-
derstanding to a database’s understanding by mapping prox-
imity of the patterns in the parse tree to proximity of corre-
sponding database concept. In order to make sure that the
sentence is correctly understood, we explain the database’s
understanding (the linguistic understanding is included in
the database’s understanding) back to the user in natural
language. Finally, the understanding is translated to a SQL
query statement and evaluated by an RDBMS.

In our system, we focus on the second step: given a parse
tree, how to correctly understand it from the database point
of view. This step is challenging for many reasons. First,
some words/phrases may fail in mapping to database ele-
ments due to the vocabulary restriction of the system. Also,

User%Interface%

Parse%Tree%
Tokenizer%

Tokenized%
Parse%Tree%

Parse%Tree%
Translator%

SQL%

RDBMS%

NLQ%

Dependency%
Parser%

Data%index%&%
schema%graph%

Parse%Tree%
Structure%Adjustor%

Parse%Tree%
Combiner%

Validated%
Parse%Tree%

Results%

Parse%Tree%

Feedback%
Generator%

Choice%

Validated%NLQ%
&%Parsed%Tree%

History%
Manager%

Clustered%
NLQ%History%

Validated%
Parse%Tree%

MulLple%choice%

NLQ%History%

User%Interface%

Parse%Tree%
Tokenizer%

Tokenized%
Parse%Tree%

Parse%Tree%
Translator%

SQL%

RDBMS%

NLQ%
Dependency%

Parser%

Data%index%&%
schema%graph%

Parse%Tree%
Structure%Adjustor%

Parse%Tree%
Combiner%

Validated%
Parse%Tree%

Results%

Parse%Tree%

Feedback%
Generator%

Choice%

Validated%NLQ%
&%Parsed%Tree%

History%
Manager%

Clustered%
NLQ%History%

Validated%
Parse%Tree%

MulLple%choice%

NLQ%History%

NLQ%

Mapping%&%
Parse%Tree%

Parse%Tree%
Structure%Adjustor%

Parse%Tree%
Translator%

NLQ%
Dependency%

Parser%

NLQ%

Parse%Tree%

User%Interface%

Data%index%&%
schema%graph%

Parse%Tree%%
Node%Mapper%

Choice%

Mapping%&%
Validated%Parse%Tree%

RDBMS%

Query%
History%

Validated%%
NLQ%

SQL%
Results%

Choice%Candidate%
Parse%Trees%

Candidate%
Mappings%

InteracLve%Communicator%

Choice% NLQ%History%

History%
Manager%

ExplanaLons%

Figure 1: System Architecture.

some ambiguous words/phrases may map to multiple database
elements, of which only some of them are correct. In the
no match case, the only thing we can do is to point out
which word/phrase is not recognized and ask the user to
rephrase. In the multiple match case, we return all the pos-
sible choices to the user after ranking. Second, the parse tree
generated from an o↵-the-shelf parser may not be correct.
The natural language sentences describing complex database
queries often have complex structures with modifier attach-
ments, aggregations, comparisons, quantifiers, and conjunc-
tions, among many others. As a result, the performance of
an o↵-the-shelf parser is often unsatisfactory for sentences
describing complex database queries. Third, the structure of
the sentence may be out of the semantic coverage of our sys-
tem. Fourth, due to the ambiguity of natural language, the
fact that the sentence structure is in the semantic coverage
does not necessarily mean that it is correctly understood.

For the second and third di�culties, we attempt to rephrase
the user’s input automatically by adjusting the structure of
the parse tree to make it fall in our semantic coverage. Of-
ten, we may have multiple candidate adjustments. When
that is the case, we show multiple options for the user to
choose from. To make our adjustments understandable to
the user, we translate each adjusted parse tree back in natu-
ral language. The fourth di�culty is dealt with in the same
way. Even if the user’s input is in our semantic coverage,
if ambiguities are detected, we generate possible interpreta-
tions for users to choose from.

The paper is organized as follows: in Section 2, the archi-
tecture of NaLIR is introduced. We discuss related works in
Section 3 and set up the demonstration in Section 4.

2. SYSTEM ARCHITECTURE
Figure 1 depicts the architecture of NaLIR. The entire

system mainly consists of two parts: the query translation
part and interactive communicator. The query translation
part, which includes parse tree node mapper, structure ad-
justor and translator, is responsible for making full use of
the existing information provided by the user and generate
the correct SQL query statement. The interactive communi-
cator is responsible for obtaining more information from the
user and making sure that the system correctly understands
her query intent.

2.1 Query Translation
The first obstacle in translating a natural language query

into a SQL query is to understand the natural language
query. In NaLIR, we use an o↵-the-shelf natural language

author

return

VLDB after

 2005

paper

Jag

more

number of number of

ROOT

(d)

author

return

Jag

more

ROOT

(c)

VLDB after

2005

paper

VLDB after

2005

paper

author

return (SELECT)
author (relation: author)
more (operator: >)
paper (relation: publication)
H. V. Jagadish (value: author.name)
VLDB (value: conference.name)
after (operator: >)
2005 (value: publication.year)

(b)

return

after

2005

author

VLDB

ROOT

more
(a)

paper Jag

Figure 2: (a) Simplified parse tree from o↵-the-

shelf parser. (b) Mapping results for the nodes in

the parse tree. (c) Parse tree after reformulation.

(d) Parse tree after inserting implicit nodes.

parser to generate a parse tree from the natural language
query1. The parse tree of query “return all the authors who
have more papers than H. V. Jagadish in VLDB after 2005”
is shown in Figure 2 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the parse tree that can be mapped
to SQL components and tokenizes them into di↵erent tokens.
Due to the limited vocabulary of the system, some nodes
cannot be recognized by the system. Also, some nodes may
have multiple matches (e.g. the node VLDB matches VLDB
under conference.name, PVLDB and VLDB Journal under
journal.name). These warnings are reported to the interac-
tive communicator and will be explained to the user. The
mapping results of the nodes in the sample query is shown
in Figure 2 (b).

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communication with the user),
we assume that each node is understood by our system. The
next step is to correctly understand the tree structure from
the database’s perspective. However, this is not easy since
the parse tree might be incorrect, out of the semantic cov-
erage of our system or ambiguous from the database’s per-
spective. In those cases, we adjust the structure of the parse
tree and generate possible interpretations for it. In partic-

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [5] as the dependency
natural language parser.

ular, we adjust the parse tree in two steps. In the first
step, we reformulate the nodes in the parse tree to make it
understandable by our system. A parse tree after reformu-
lation is considered as an approximate interpretation for the
query. If there are multiple approximate interpretations for
the query, we will rank them and return top ones back for
the user to choose from. Figure 2 (c) shows a parse tree
reformulated from the parse tree in Figure 2 (a). In the sec-
ond step, implicit nodes are inserted to the parse tree under
the supervision of the user. After inserting implicit nodes,
we get the exact interpretation for the query, which will be
translated to a SQL statement with little ambiguity if at all.
The parse tree in Figure 2 (c) is transformed into the parse
tree in Figure 2 (d) after inserting implicit nodes.

Parse Tree Translator. Given the correct parse tree
validated by the user, the translator utilizes its structure to
generate appropriate structure in the SQL expression. In
the case when all the join paths are explicit in the parse
tree and the target SQL query does not have aggregation
or subquery, the translation is quite straightforward. For
other cases, we use three concepts, related group, core node,
and block to complement the implicit join paths, clarify the
scope of aggregation functions, and address nesting queries,
respectively. Here, we take block as an example. In SQL,
a block corresponds to a subquery in nesting, while in the
parse tree, a block is a subtree rooted at an aggregation
function node or a quantifier node. The parse tree shown in
Figure 2 (d) has three blocks, rooting at ROOT and the two
“number of”nodes, respectively. The left block will be trans-
lated to a subquery which returns the number of papers by
each author in VLDB after 2005, while the right block will be
translated to a subquery which returns the number of papers
by H. V. Jagadish in VLDB after 2005. Finally, the upper
block will be translated to the main query, shown as “SE-
LECT author.name FROM author, left, right WHERE au-
thor.aid = left.aid AND left.count > right.count” for short.
Based on these three concepts, our system, as it stands,
supports comparisons, quantifications, aggregations, sorting
and various kinds of joins.

2.2 Interactive Communicator
We design the interactive communicator for two goals.

First, it explains to the user how her query is processed.
That helps the user in realizing the possible misunderstand-
ings between the user and the system. Second, it shows
multiple understandings for the user to choose from, which
facilitates the user in eliminating misunderstandings.

As pointed out in [8], people are unwilling to trade reliable
and predictable user interfaces for intelligent but unreliable
ones. So instead of leaving the users in the dark, our sys-
tem explains how we deal with the query in every possible
step from how we interpret an ambiguous word to the in-
terpretation of the whole sentence. Especially, we translate
the understanding of the whole query back to the user in
English. For example, the parse tree shown in Figure 2 (d)
will be translated back as “return all the authors, where the
number of papers of the author in VLDB after 2005 is more
than the number of papers of H. V. Jagadish in VLDB after
2005”. In such a way, the user can easily examine whether
our system correctly understands her query intent.

When misunderstandings exist, the system should help
the user to eliminate these misunderstandings. Many previ-
ous systems put this burden to the user and ask the user to

rephrase her input. From our real world experience, rephras-
ing is often an annoying task since the original input is often
the most comfortable way for a user to express specific query
intent. The situation is exacerbated by the unsatisfactory
accuracy of the o↵-the-shelf parser for logically complex sen-
tences. We believe that when a user fails in her first input, it
is much easier for her to recognize her query intent from sev-
eral interpretations than rephrase her intent. In our system,
we generate multiple possible interpretations for a natural
language query and translate all of them in natural language
for the user to choose from. To facilitate the user in find-
ing her query intent from possibly many interpretations, we
show the interpretations hierarchically, in which each cluster
is an approximate interpretation.

In addition to the whole sentence interpretation, our sys-
tem also explain its understanding for each ambiguous node
in the parse tree, making it possible for the user to find where
the system misunderstands her. For example, if a node in
the parse tree matches multiple elements in the database,
the system will rank them and show the top ones for the
user to choose from. The only case our system asks a user
to rephrase is when a word/phrase is beyond the vocabu-
lary coverage of our system. For example, a user queries the
age of an author while there is no age information in the
database. In this case, we have no option but to ask the
user to rephrase. Indeed, this kind of rephrase is often at
word level, which could be a much easier task for the user
than rephrase at sentence level.

3. RELATED WORK
Keyword search interfaces are widely used by non-experts

to specify ad-hoc queries over databases [12]. Recently, there
is a stream of such research on keyword search [10, 9, 11,
3, 2], in which, given a set of keywords, instead of finding
the data relevant to these keywords, they try to interpret
the query intent behind the keywords in the view of a for-
mal query language. In particular, some of them extend
keywords by supporting aggregation functions [10], Boolean
operators [9], query language fragments [3], and so forth.
These works can be considered as a first step toward ad-
dressing the challenge of natural language querying. Our
work builds upon this stream of research. However, our
system supports a richer query mechanism that allows us
to convey much more complex semantic meaning than flat
structured (or a little more than flat structured) keywords.

Natural language interfaces to databases (NLIDB) have
been studied for several decades [1]. Early NLIDBs de-
pend on hand crafted semantic grammars tailored to each
individual database, which are hard to transport to other
databases. A few recent works present generic NLIDBs.
PRECISE [8] defines a subset of NL queries as semantically
tractable NL and precisely translate these queries into corre-
sponding SQL queries. While PRECISE sacrifices recall for
precision, our system focuses on both recall (using parse tree
structure adjustor) and precision (using interactive commu-
nicator). NaLIX [7] achieves recall and precision by asking
the user to rephrase their query until the query falls in its
semantic coverage. Our system takes a step further, rephras-
ing the query automatically for the user. Also, the fact that
a query falls in the semantic coverage does not necessarily
mean that it is interpreted correctly. Our system provides
di↵erent interpretations for a query (if ambiguity exists), so
the user can choose.

Figure 3: Query Interface of NaLIR

An important task in our interactive communicator is to
convey each interpretation of the query intent back to the
user. Previous systems explain SQL queries to naive users
using natural language [6] and visualization tools [4, 2]. In
our system, an interpretation is represented by a tokenized
parse tree, which is an intermediate between SQL and a
natural language query. So we translate each interpretation
into natural language by reformulating the sentence given
by the user according to each tokenized parse tree.

4. DEMONSTRATION
In our demonstration, we present the Javascript based in-

terface of NaLIR, which communicates with the main Java
based server. We intend to show the use of NaLIR against
a number of real application scenarios including Microsoft
Academic Search (http://academic.research.microsoft.com/),
Yahoo! Movies (movies.yahoo.com), and DBLP collection
(dblp.uni-trier.de).

The demonstration will consist of two phases. In the first
phase, the user will run the queries in the query log, which
contains a set of successfully processed NL queries. The
chosen NL query can also serve as a query template for the
user to make small modifications. In the second phase, the
user will be free to run their own queries. We will demon-
strate that quite complex query intents, which are typically
expressed by complex SQL statements containing aggrega-
tions, comparisons, various types of joins and nestings, can
be handled by our system.

Figure 3 shows a screenshot of NaLIR. When a new query
is submitted from the client, the server processes it and
returns the results. If NaLIR is uncertain in understand-
ing some words/phrases, it adopts the best mapping as de-
fault and lists the others for the user to choose form. Also,
when NaliR is uncertain in understanding the query in-
tent behind the whole sentence, it lists multiple interpre-
tations. To facilitate the user in recognizing her query in-
tent, NaLIR shows interpretations hierarchically, in which
each cluster/interpretation is an approximate/accurate nat-

ural language description. Each time when a user makes a
choice, NaLIR immediately updates its interpretations, eval-
uates the best interpretation and updates the results.

5. REFERENCES
[1] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.

Natural language interfaces to databases - an introduction.
Natural Language Engineering, 1(1):29–81, 1995.

[2] S. Bergamaschi, F. Guerra, M. Interlandi, R. T. Lado, and
Y. Velegrakis. Quest: A keyword search system for
relational data based on semantic and machine learning
techniques. PVLDB, 6(12):1222–1225, 2013.

[3] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and
K. Stockinger. Soda: Generating sql for business users.
PVLDB, 5(10):932–943, 2012.

[4] J. Danaparamita and W. Gatterbauer. Queryviz: helping
users understand sql queries and their patterns. In EDBT,
pages 558–561, 2011.

[5] M.-C. de Marne↵e, B. MacCartney, and C. D. Manning.
Generating typed dependency parses from phrase structure
parses. In LREC, pages 449–454, 2006.

[6] A. Kokkalis, P. Vagenas, A. Zervakis, A. Simitsis,
G. Koutrika, and Y. E. Ioannidis. Logos: a system for
translating queries into narratives. In SIGMOD
Conference, pages 673–676, 2012.

[7] Y. Li, H. Yang, and H. V. Jagadish. Nalix: an interactive
natural language interface for querying xml. In SIGMOD
Conference, pages 900–902, 2005.

[8] A.-M. Popescu, O. Etzioni, and H. A. Kautz. Towards a
theory of natural language interfaces to databases. In IUI,
pages 149–157, 2003.

[9] A. Simitsis, G. Koutrika, and Y. E. Ioannidis. Précis: from
unstructured keywords as queries to structured databases
as answers. VLDB J., 17(1):117–149, 2008.

[10] S. Tata and G. M. Lohman. Sqak: doing more with
keywords. In SIGMOD Conference, pages 889–902, 2008.

[11] D. Xin, Y. He, and V. Ganti. Keyword++: A framework to
improve keyword search over entity databases. PVLDB,
3(1):711–722, 2010.

[12] J. X. Yu, L. Qin, and L. Chang. Keyword Search in
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2010.

