
Parallel Processing and Non-Uniform Grids in Global Air
Quality Modelling1

P.J.F. Berkvens2 and M.A. Botchev3

Abstract

A large-scale global air quality model, running efficiently on a single vec-
tor processor, is enhanced to make more realistic and more long-term simu-
lations feasible. Two strategies are combined: non-uniform grids and parallel
processing. The communication through the hierarchy of non-uniform grids
interferes with the inter-processor communication. We discuss load balance in
the decomposition of the domain, I/O, and inter-processor communication. A
model shows that the communication overhead for both techniques is very low,
whence non-uniform grids allow for large speed-ups and high speed-up can be
expected from parallelization. The implementation is in progress, and results
of experiments will be reported elsewhere.

1 Introduction
We consider computational aspects of global air quality models (AQMs). We de-
scribe two methods for enhancing the efficiency of AQMs, namely two-way nesting
(TWN) and domain decomposition with parallelization (DDP). We model the com-
puter time and the wall clock time used by the computations and the communica-
tions. We estimate the speed-ups that can be achieved by using TWN and DDP.

Numerical methods for AQMs are typically based on a grid-like discretization of
the atmosphere, but Lagrange-type methods exist. The species concentrations evo-
lution on the grid is computed by a time-steppingmethod. In off-line models, which
we consider here, the data for the meteorological and other mechanisms that influ-
ence the concentrations are obtained during execution of the model program from
stored data sets or from a concurrently running dynamical meteorological model.
Results like time series of concentrations, averages, and budgets (contribution to
evolution per mechanism) are stored while the program is running.

The costs of simulations with a comprehensive AQM on a fine grid are high
compared to the hardware available today. The number of grid cells is then at least

based on cells of (longitude latitude) and layers. The number
of timesteps is based on a -year run with -hour timesteps. The number
of species is . The I/O is byte per real time second.

These high costs call for very efficient computations. Apart from optimization of
the numerical methods and the code, there are two additional techniques to enhance

1This work has been done within the NWO project no. 613-302-040
2CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, e-mail: berkvens@cwi.nl
3FOM-Institute for Plasma Physics, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands, e-mail:

botchev@rijnh.nl

Berkvens, P.J.F. and Botchev, M.A. (2002) Parallel Processing and Non-Uniform
Grids in Global Air Quality Modeling. In: Proceedings of the Second Conference on
Air Pollution Modelling and Simulation, APMS'01, April 9-12, 2001, Champs-sur-
Marne, France. pp. 215-224. Springer Verlag. ISBN 3-540-42515-2

the efficiency of a method: two-way nesting (TWN) is meant to assign the available
computer time more efficiently, domain decomposition with parallelization (DDP)
is meant to assign the available wall clock time more efficiently.

A TWN technique has been implemented and tested [2], and combined with the
upgrade TM5 of a particular AQM called TM3 [5, 9]. It has been applied to a case
study [8]. The authors are currently implementing and testing DDP with TM3 and
TM5. We present a model for the computer and wall-clock times for the calculations
and communications when running an AQM code equipped with TWN and DDP.
Performance measurements are not available yet.

The contents are as follows. Sect. 2 describes computational aspects of the nu-
merical methods in an AQM, biased towards TM5. Sect. 3 discusses computational
aspects of our TWNmethod. Sect. 4 does the same for DDP. In Sect. 5 the computer
and wall clock time speed-ups of a method are defined, and their enhancement by
TWN and DDP is demonstrated theoretically. In Sect. 6 we give our conclusions.

2 Numerical Methods for AQM
Three-dimensional AQMs covering the whole atmosphere typically contain the fol-
lowing mechanisms (with unit amounts of work):

advection ()

turbulent mixing, cumulus convection ()

dry deposition, wet deposition ()

volume and surface emission ()

kinetic chemistry, photochemistry ()

For the unit amounts of work we refer to Table 1. We restrict ourselves to gas phase
chemistry, but the computational aspects of aqeous and solid phase chemistry can
be modelled in a similar vein.

Parameters quantifying these mechanisms have to be provided. They include
(proportionality with numbers of grid cells) [number of inputs per month real time]:

wind velocity (), surface pressure (), large scale precipitation rates
(), humidity (), temperature () [];

turbulent diffusivity (), up/downdraft en/detrainment rates (),
bottom/top of convection layer (), convective precipitation rates (),
cloud cover, cloud bottom/top () [];

dry deposition rates (), emission rates (), land use () [].

Results that are stored may include full running model status () (times
per month) for restarts, zonal () and time () averages of concentrations,

and budgets (), all times per month real time. The above properties of
AQMs are partly taken from [7] and the current TM3 and TM5 code [9].

Operator splitting makes the computations tractable by calculating the changes
due to the various mechanisms consecutively rather than simultaneously. Reduction
of the degree of operator splitting is studied [1, 4] and gives better accuracy at the
same computational costs. Explicit time-stepping is used for advection, deposition,
and emission, implicit time-stepping for the remaining mechanisms.

We consider the case of a constant number of cells per grid column and of a
constant number of split steps (for the mechanisms) per timestep. Then the com-
putational work load per grid column and per time-step is nearly constant. The
main differences are caused by the photochemistry which is active only in the sun-
lit part of the atmosphere, and by differences in the vertical extent of the cumulus
convection. We treat this amount of work related to the time-stepping of the
mechanisms per column as a constant. In the nesting algorithm, data needs to be
copied from parent to child and vice versa. The unit communication volume for a
column to be updated by copying tracer data from or to a parent region is . The
communication volume (i.e. amount of data in bytes) of the I/O per column of
the basic region is not constant per timestep but rather per real time second. Because
we need their values later on, we will give rough estimates:

flop, (1)
flop, (2)

byte. (3)

We have used the data from Table 1, where the symbols are explained and rough es-
timates for their values are given. The (insignificant) costs for coarsening input data
from fine regions to coarse regions (to have the data on overlapping regions corre-
spond) are not modelled explicitly. The cell numbers are for a regular grid without
nesting. The machine characteristics are estimated from specifications provided by
SARA, owner of the TERAS platform TM5 is implemented on. To simplify the cal-
culations model below, , , and are assigned the same values. This
does not affect the conclusions. For later use we define:

(4)

3 Two-Way Nesting
Starting from a regular three-dimensional grid with a basic resolution, TWN uses
predefined fixed block-shaped nesting regions within the basic grid. They may be

Table 1: Rough estimates for model quantities

quantity value meaning
360 cells in west-east direction
180 cells in south-north direction
60 cells in vertical direction
30 cells in troposphere part of column

64800 cells in the horizontal directions
3888000 total number of cells

50 transported species
20 dry-deposited species
20 wet-deposited species
10 volumewise emitted species (e.g. aircraft)
10 areawise emitted species (e.g. car traffic)
100 chemically active species
100 total number of species
15 average number of reactions+coreactants per species
8 number of mechanisms
5 land use characteristics

25 flop work for advection step
15 flop work for vertical mixing proportional to
5 flop work for vertical mixing proportional to
1 flop work for vertical mixing proportional to
5 flop work for dry or dry deposition
5 flop work for emission

100 flop work for (photo)chemistry
1 flop work for budgets and averages
8 byte number of bytes per real

120/month large-scale meteorological inputs per month
240/month subgrid scale meteorological inputs per month
1/month surface and emission inputs per month
1/month outputs per month

360/month time-steps in basic region per month
2592000 s seconds per 30-day month
250Mflop/s average calculation speed
250Mbyte/s communication speed among processors
250Mbyte/s I/O speed

15 s latency time in interprocessor communication

recursively nested. Each nesting child region is spatially and/or temporally refined
with respect to its parent region, which contains it. Because local refinement in the
vertical direction is less important, we only consider horizontal spatial refinement.
A parent and a child are coupled by advection through their interface. The concen-
trations in the child’s interior evolve autonomously. On the interfaces the advection
flux is determined from data on both sides, so there is a two-way coupling.

We give an example for a time refinement factor of to illustrate how the nesting
algorithm works, but it works for any refinement factor. Let , , , denote

-advection steps and a step of the remaining mechanisms in the parent region,
and similarly , , , in the child region. Then a symmetric algorithm reads:

(5)

corresponding to one time-step in the parent region and two in the child region.
Before each and step data is copied from the parent to the interface of its child.
After a time-step in the child has been finished, its data is copied back to its parent.
Our nesting algorithm conserves mass, positivity, and homogeneity (in terms of the
mixing ratio) of the solution if the underlying advection scheme does so [3, 2], while
allowing symmetric operator splitting in each region (except for the interface cells).
When and consist of substeps for various mechanisms, their order should be
reversed in their second occurrence in a timestep to maintain symmetric splitting.

We now model the computational work for the TWN method. Let
be the number of nesting regions (indicating the basic region). Let

, , , be the spatial dimensions and the time interval, per nesting
region, and define . (and are the same for each region.)
Let , , , be the spatial and temporal resolutions per nest, and define

. (is the same in each region.) We model as:

(6)

For the I/O volume we model:

(7)

Assuming region has the largest refinement, we model the computational work
with the original method without TWN, that is needed to get at least the same

resolution everywhere as with TWN, as:

(8)

4 Domain Decomposition with Parallelization
In DDP all (nesting) regions are divided into as many subdomains as available paral-
lel processors. The computational work is distributed over the processors as evenly

as possible. For the parallel processing we use an SPMD approach with MPI. Extra
overhead is caused by the communication among the processors, and by the fact that
in MPI only one processor is guaranteed to be available for I/O. For long enough
computations, we expect that I/O is the largest intrinsically serial part of the compu-
tations. Other serial parts include initializations (‘bookkeeping’ of data structures)
and ‘finalizations’.

If processors are assigned, the basic region and each of the zoom
regions are decomposed as evenly as possible into parts in the west-east direction
and into parts in the south-north direction, such that a Cartesian grid of rectangu-
lar subdomains results in each region. Assuming a corresponding virtual Cartesian
topology of processors, each processor is assigned the corresponding sub-
domain of each region. Since the amount of work per grid column and per time
step is fixed (Sect. 2) and because no self-adjusting time-steps are used, we have the
advantage that only this static load balancing is needed.

Parallel computations need extra computer time due to inter-processor commu-
nication. It consists of three parts, namely intra-region communication, inter-region
communication, and scatter and gather of I/O. Intra-region communication is asso-
ciated with the advection calculations in a single region, where each processor needs
data from neighbouring subdomains, residing on other processors, to determine the
fluxes on and near its boundaries. Inter-region communication is needed for advec-
tion calculations in multiple regions, where for a particular region a processor may
need data from its parent or child to compute fluxes at or near the interfaces. I/O-
related communication consists of the scattering of input data from processor to
the other processors and of the gathering of output data back to processor .

We approximate the communication volumes as follows. The intra-region com-
munication volume for exchanges between neighbouring subdomains, the inter-
region communication volume for updates, and the communication volume
for the scatter and gather of the I/O are modelled as:

(9)

(10)

(11)

where we have neglected the fact that on the boundaries of a (nesting) region, intra-
region communication may be absent. Such communication procedures have to be
set up , , and times respectively. Let the factor account for the fact
that for any region its overlap in the parent may be distributed over more than

processor. Each child has only one parent, which is larger than or at most equal in
size to the child, so each particular child subdomain has , , or ‘parent’ processors
to communicate with. We then have:

(12)

(13)

(14)

The total parallelization communication volume and the total number of
communication set-ups are:

(15)

5 Speed-Up
We determine the speed up due to nesting () and due to parallelization ().

5.1 Nesting
We define the speed-up of the nesting method as the ratio of computer time
consumed for a particular choice of nesting regions and the amount of computer
time needed when no nesting is used. Writing for the calculation speed (flop
rate) and for I/O speed (byte rate) of the actual computer, we express:

(16)

In actual computations there is overhead, which we have modelled with an overhead
factor depending on the coding, the compiler, and the computer.

Define and . Substituting equations (6) to
(8) and flop byte byte in equation (16) yields:

(17)

where . We use the estimates of , , and to conclude
and . If then:

(18)

5.2 Parallelization
We define the speed-up of the parallelized method as the ratio of wall clock times
spent when multiple processors (and subdomains) are used and when a single pro-
cessor is used. Let be the scalar fraction of the calculation work with
TWN on processor, see equation (16). Introducing for the communication
speed (byte rate) of the actual computer, we define as:

(19)

Here is the latency time for a communication set-up, and is an organi-
zational overhead factor related to the division of work into smaller amounts.

Substituting from the equations in Sects. 3 and 4, and dividing the numerator
and the denominator by , we find for :

(20)

where use was made of flop byte byte and where

(21)

(22)

(23)

(24)

(25)

(26)

Since and (a region is not divided into nearly as
many subdomains as cells), we have . The terms in equation (20) which
‘threaten’ the scalability most, are and

, apart from the factor . ,
being the numbers of cells in the horizontal directions in region , we have:

(27)

The first quotient in the above equation is no larger than , so (e.g.)
is certainly guaranteed if:

(28)

For realistic values (e.g. , , and) this inequality holds
for realistic numbers of processors in region . The second ‘threatening’ term can
only become near or larger than (and therefore dangerous) if not
, which only happens for unrealistically coarse resolutions in the basic region.
Using the smallness of many terms we approximate equation (20) as follows:

(29)

Defining as the scalar part of the computer time spent on actual computations
by processors [6], then , and

(30)

We expect to increase with the number of processors , but we assume
for large enough problems. Then the speed-up is almost proportional

to , depending on the smallness of .

5.3 Example
We give a realistic example of computations with an AQM and the expected speed-
ups from TWN and DDP. First consider TWN with three regions: region contains
region , which in turn fully contains region . For the dimensions of the regions
we specify , , and , whereas

, , and .
With these numbers, we find , which is a considerable speed-up factor.

Next we consider DDP with , , and . Since the above
resolutions and nesting are nowhere near the danger zone for (almost) perfect speed-
up, we find which clearly favours DDP.

6 Conclusion
We propose two techniques which make atmospheric chemistry simulations far
cheaper. The computer time can be strongly reduced by Two-Way Nesting. The

wall clock time is expected to be reduced according to almost ideal speed-up for
large problems with Domain Decomposition with Parallelization. This brings more
realistic simulations within reach. Developments towards this goal are underway.

References
[1] P. J. F. Berkvens, M. A. Botchev, M. C. Krol, W. Peters, and J. G. Verwer. Solv-

ing vertical transport and chemistry in air pollution models. Technical Report
MAS-R0023, CWI (Centre for Mathematics and Computer Science), Amster-
dam, The Netherlands, Aug 2000.

[2] P. J. F. Berkvens, M. A. Botchev, W. M. Lioen, and J. G. Verwer. A zoom-
ing technique for wind transport of air pollution. In R. Vilsmeier, D. Hänel,
and F. Benkhaldoun, editors, Finite Volumes for Complex Applications. Hermes
Science Publications, 1999. (Abridged from [3]).

[3] P. J. F. Berkvens, M. A. Botchev, W. M. Lioen, and J. G. Verwer. A zoom-
ing technique for wind transport of air pollution. Technical Report MAS-
R9921, CWI (Centre for Mathematics and Computer Science), Amsterdam, The
Netherlands, Aug 1999.

[4] P. J. F. Berkvens, M. A. Botchev, and J. G. Verwer. On the efficient treatment
of vertical mixing and chemistry in air pollution modelling. In M. Deville and
R. Owens, editors, CD-ROM Proceedings of the 16th IMACS World Congress
On Scientific Computation, Applied Mathematics and Simulation, 2000. Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, Aug 21-25, 2000.

[5] F. J. Dentener, J. Feichter, and A. Jeuken. Simulation of transport of Rn
using on-line and off-line global models at different horizontal resolutions: A
detailed comparison with measurements. Tel. Ser. B, 51:573–602, 1999.

[6] D. R. Emerson. Introduction to parallel computers: architecture and algorithms.
In P. Wesseling, editor, High Performance Computing in Fluid Dynamics, vol-
ume 3 of ERCOFTAC Series, chapter 1, pages 1–42. Kluwer Academic Pub-
lishers, Dordrecht, Boston, London, 1996.

[7] M. Heimann. The global atmospheric tracer model TM2. Technical report,
DKRZ (Deutsches Klimarechenzentrum), Hamburg, Germany, 1995.

[8] M. C. Krol, W. Peters, M. A. Botchev, and P. J. F. Berkvens. A new algorithm for
two-way nesting in nlobal models: principles and applications. In B. Sportisse,
editor, Proceedings of the Second Conference on Air Pollution Modelling and
Simulation 2001, Champs-sur-Marne, France. Springer Verlag, to appear in
2001. submitted.

[9] Url http://www.phys.uu.nl/ peters/TM3/TM3S.html.

