
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

8

A Review on Various Techniques for Regression Testing

and Test Case Prioritization

Jaspreet Singh Rajal
Assistant Professor

Department Of Computer Science & Engineering
Chandigarh University, Gharuan, Punjab, India

Shivani Sharma
Research Scholar, Master of Engineering

Department of Computer Science & Engineering
Chandigarh University, Gharuan, Punjab, India

ABSTRACT

In the field of software engineering, different applications

have been developed. An application requires changes due to

changes in the customer requirements. Regression testing has

to be performed for the validation of data modification.

Various test cases have to be developed to perform the

regression testing. In this paper, various test case prioritization

techniques have been discussed for the generation of priority

of test suites and regression testing approaches provide

information about which strategies have to be followed or not.

Keywords
Test Case, Prioritization, FEP, Test Suite, Regression Testing.

1. INTRODUCTION

1.1 Software Engineering
Software is instructions (computer programs) that when

executed provide desired functionality and performance[1]. A

good software must provide the required functionality,

performance to the user and should be maintainable, reliable

and usable. Software may be developed for a particular

customer or may be developed for a general market.

Computer science focuses on theory and fundamentals but

software engineering is concerned with the practicalities of

developing and delivering useful software. Software

Engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and

maintenance of software;[1]. While all softwares have to be

professionally managed and developed, different techniques

are appropriate for different types of system. For example,

games should always be developed using a series of

prototypes whereas safety critical control systems require a

complete and analyzable specification to be developed.
Software testing is a comprehensive set of activities

conducted with the intent of finding errors in the software.

The changed programming must be tried completely with the

purpose so that the changed bit of code does not influence

different parts of the code. Regression testing involves

running test sets that have successfully executed after changes

have been made to the system. The regression test checks that

these changes have not introduced new bugs into the system

and that the new code interacts as expected with the existing

code.[2]. Common methods of regression testing include

rerunning previously completed tests and checking whether

program behavior has changed and whether previously fixed

faults have re-emerged. Regression testing can be performed

to test a system efficiently by systematically selecting the

appropriate minimum set of tests needed to adequately cover a

particular change.

Regression testing is important because changes and error

corrections tend to be much more error prone than the original

program code (in much the same way that most typographical

errors in newspapers are the result of last-minute editorial

changes, rather than changes in the original copy).It is a

critical and exceptionally testing assignment for the product

analyzers to test the whole programming inside the restricted

time and assets. Every business in the United States now

depends on software for the development, production,

distribution and after sales support of products and

services[3].A study conducted by NIST in 2002 reports that

software bugs cost U.S. economy $59.5(Approx) billion

annually[3].More than a third of this cost could be avoided if

better software testing was performed [3].In case of complex

software development, running the entire test cases require

many weeks. Test engineers may want to prioritize and

schedule those test cases in the order that those test cases with

higher priority are executed first.

Test case prioritization methods and process are required,

because[4]:

(a) the regression testing phase consumes a lot of time and

cost to run

(b) there is not enough time or resources to run the entire test

suite

(c) there is a need to decide which test cases to run first.

When the time required to execute all test cases in a test suite

is short, test case prioritization may not be cost effective - it

may be most expedient simply to schedule test cases in any

order [4].When the time required to run all test cases in the

test suite is sufficiently long, the benefits offered by test case

prioritization methods become more significant.

Fig 1: Software Engineering

1.2 Regression Testing
Regression testing is frequently applied but it is expensive

maintenance process that aims to (re)verify modified

software. It is full or partial selection of already executed test

cases which are re-executed to ensure existing functionalities

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

9

work fine. Regression testing does not belong to either unit

test, integration test or system testing. Instead, it is a separate

dimension to these three forms of testing[5]. If regression

testing exposes problems, then test engineers check whether

there are problems in the previous increment that the new

increment has exposed or whether these are due to the added

increment of functionality.

For example, there are three modules in the project named

Admin Module, Personal Information and Employment

Module and suppose bug occurs in the Admin Module like on

Admin Module existing user is not able to login with valid

login credentials so this is the bug. Now Testing team sends

the above - mentioned bug to the development team to fix it

and when development team fixes the bug and hand over to

testing team. Testing team checks that fixed bug does not

affect the remaining functionality of the other modules

(Admin, PI, Employment) and also the functionality of the

same module (Admin) so this is known as the process of

regression testing done by software testers. Thus, regression

testing assures programs not adversely affected by unintended

modifications by running them over existing regression test

suites. The information collected in the previous executions of

the test cases (e.g., the fault history, the change history, and

execution profiles) on the previous versions can be used to

optimize the current round of regression testing. Basic

techniques for regression testing incorporate rerunning

already finished tests and checking whether program conduct

has changed and whether beforehand altered shortcomings

have re-developed. Regression testing can be performed to

test a framework productively by deliberately selecting the

fitting least set of tests expected to sufficiently cover a

specific change.

1.2.1 Need Of Regression
Regression Testing is required when there is a

 Change in requirements and code is modified according

to the requirement

 New feature is added to the software

 Defect fixing

 Performance issue fixing

1.2.2 Types Of Regression
Regression Testing can be classified as [6].

 Local - Changes introduce new bugs.

 Unmasked - Changes unmask previously existing bugs.

 Remote - Changing one part breaks another part of the

program. For example, Module A writes to a database.

Module B reads from the database. If changes to what

Module A writes to the database break Module B, it is

remote regression.

 Corrective

It is applied when specifications are unmodified and test

cases can be reused. It is triggered by corrections made to

the previous version.

 Progressive

It is applied when specifications are modified and new

test cases must be designed. It is triggered by new

features added to the previous version.

2. LITERATURE REVIEW
N.Prakash[7] "Modular Based Multiple Test Case

Prioritization " concluded that cost and time effective reliable

test case prioritization technique is the need for present

software industries. Test case prioritization for the entire

program consumes more time and the selection of test case for

entire software is also affecting the test performance. In order

to resolve it, author proposed modular based test case

prioritization for regression testing. In this method the

program is divided into multiple modules. The test cases

corresponding to each module is prioritized first. In the

second stage, the individual modular based prioritized test

suites are combined together and further prioritized for the

whole program. This method is verified for fault coverage and

compared with overall program test case prioritization

method. The proposed method is assessed using three

standard applications namely University Students Monitoring

System, Hospital Management System, and Industrial Process

Operation System. The empirical studies conducted by the

author showed that the proposed algorithm performed

significantly well.

S.Raju,G.V.Uma[8]"Factors Oriented TestCase Prioritization

Technique in Regression Testing using Genetic Algorithm",

In this paper the regression testing based test suite

prioritization technique is illustrated. A new prioritization

technique is proposed for the requirement based system level

test cases to improve the rate of fault detection of severe

faults.

Chen L., Wang Z. et. al[9] "Test Case Prioritization for Web

Service Regression Testing" proposed a dependence analysis

based test case prioritization technique for Web Service

regression testing. First, they analyzed the dependence

relationship using control and data flow information in an

orchestration language: WS-BPEL. Then they construct a

weighted graph. After that, they prioritize test cases according

to covering more modification-affected elements with the

highest weight. Finally authors conduct a case study to

illustrate the applicability of method.

Gaurav Duggal, Bharti Suri[10] "Understanding Regression

Testing Techniques" described regression testing is done in

the maintenance phase of the software development life cycle

to retest the software for the modifications it has undergone.

Approximately 50% of the software cost is involved in the

maintenance phase. Thus, researchers are working hard to

come up with best results by developing new regression

testing techniques so that the expenditure made in this phase

can be reduced to some extent. This paper discussed

techniques of regression testing ,test case prioritization,

importance of regression testing and its scope.

Shweta A. Joshi et al[11] "Literature Review of Model Based

Test case Prioritization" described algorithms for prioritizing

test cases for testing the component-based software systems.

The studies show that testing of component-based software

systems is expensive. The importance is given to component

interactions because maximum defect occur when components

are going to interact with each other. This approach is

applicable to test the component composition in case of

component based software maintenance.

S.Roongruangsuwan et.al[12] "Test-Case Prioritization

techniques" researchers propose many methods to prioritize

and reduce the effort, time and cost in the software testing

phase, such as test case prioritization methods, regression

selection techniques and test case reduction approaches. This

paper concentrates on test case prioritization techniques

researched between 1998 and 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

10

This paper reveals that there are many research challenges and

gaps in the test case prioritization area.

Animesh Caturvedi et al [13] “A Tool Supported Approach

to Perform Efficient Regression Testing of Web Services”

authors presented a tool for perform regression testing of web

services. In this paper, functional and non-functional testing is

performed by using WSDL and Regression testing is

performed by identifying the changes made. Authors identify,

categorize and capture the web service regression testing

needs into three different categories, namely, changes in

WSDL, changes in code and selective re-testing of web

service operations. This paper proposed tool that can used to

find out the exactly which operations are changed and how to

use only those changed operations to minimize regression

testing.

Lijun Mei,Zhenyu Zhang et al[14] "Test Case Prioritization

for Regression Testing of Service-Oriented Business

Applications", researchers have examined the important

impact of heterogeneous artifacts on test case prioritization in

the regression testing of service-oriented business applications

and demonstrated the shortcomings of traditional test case

prioritization techniques in this aspect. The proposed test case

prioritization techniques take into account the coverage data

of test cases at three levels i.e. workflow, XPath, and WSDL.

Sebastian Elbaum, Alexey G. Malishevsky[15] "Prioritizing

Test Cases for Regression Testing", empirically examined the

abilities of several test case prioritization techniques to

improve the rate of fault detection of test suites. It focus on

version-specific test case prioritization, in which test cases are

prioritized and rate of fault detection is measured, relative to

specific modified versions of a program.

Chu-Ti Lin et al [16] "History-Based Test Case Prioritization

with Software Version Awareness" described that numerous

existing prioritization techniques are code-based, in which

the testing of every product form is considered as an

autonomous procedure. The test after effects of the former

programming renditions may be valuable for booking the

experiments of the later programming forms. The paper

described history-based ways to address this issue. History

based prioritization is assigned to test case based upon the

software versions and experimentation results of similar type

of test cases.

Md. Hossain et al[17] "Regression Testing for Web

Applications Using Reusable Constraint Values" described

that companies often encounter various security attacks and

frequent feature update demands from users so they need to

perform frequent regression testing. Web applications require

regression testing processes that require minimal test effort

because they have already been deployed and used in the

field. In this paper, researchers presented a technique that

identifies reusable constraint values for regression test cases

by analyzing definitions and uses of the variables for two

consecutive versions. A large number of constraint input

values may be reused from the previous version’s test cases.

The constraints and actual values for variables may be

reusable across several versions as long as the definition and

use relationships of the variables hold across versions. This

will create greater savings as the applications evolve over

time. It may also reduce testing effort as well as improve

testing effectiveness when the major releases are tested

because new test cases and other associated artifacts

accumulate over time. The proposed approach is evaluated

using widely used open source web applications with three

versions.

3. REGRESSION TESTING

 TECHNQUIES
Software maintenance is an activity which includes

enhancements, error corrections, optimization and deletion of

existing features. These modifications may cause the system

to work incorrectly. Therefore, Regression Testing becomes

necessary.

Fig 2: Regression Testing Techniques [18]

Regression Testing can be carried out using following

techniques [18].

Retest All

This is one of the methods for regression testing in which all

the tests in the existing test bucket or suite should be

reexecuted.

 This is very expensive as it requires huge time and

resources due to execution of unnecessary tests.

 When the change to a system is minor, this strategy

would be rather wasteful.

Regression Test Selection

 Instead of re-executing the entire test suite, it is better to

select a part of test suite to be run.

 Test cases selected can be categorized as

a) Reusable Test Cases b) Obsolete Test Cases.

a) Re-usable Test cases can be used in succeeding

regression cycles.

b) Obsolete Test Cases cannot be used in succeeding

cycles.

Prioritization of Test Cases

 Prioritize the test cases depending on business impact,

critical & frequently used functionalities.

 Selection of test cases based on priority will greatly

reduce the regression test suite.

4. TEST CASE
Test case is the triplet [I,S,O], where I is the data input to the

system, S is the state of the system at which the data is input,

and O is the expected output of the system. Test suite is the

set of all test cases with which a given software product is to

be tested[5]. Test Cases represent a set of conditions or

variables in which a tester will determine whether a system

under test satisfies requirements or works correctly. Test

cases should be written by a team member who understands

the function or technology being tested and each test case

should be submitted for peer review. Test cases act like a

starting point of the test execution. Test case can be designed

using only the functional specification of the software or

thorough knowledge about the internal structure of software.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

11

4.1 Types of Test Cases
There are two types of test case:

A. Formal test cases

Formal test case is designed by a known input and expected

output. The known input should test a precondition and the

expected output should test a post condition. If the output is as

expected then the code is working correctly otherwise it needs

modification. In order to fully test that all the requirements of

an application are met, there must be at least two test cases for

each requirement: one positive test and one negative test. The

link between the requirement and the test is frequently done

using a traceability matrix. Positive test will represent those

conditions in which the software is working properly &

negative test will specify those conditions in which the

software is not working as expected or fails.

B. Informal test cases

Test cases are not written in the formal way but the activities

and results are reported after the tests have been run.

Generally, hypothetical stories are used to help the tester think

through a complex problem or system. These scenarios are

usually not written down in any detail. They can be as simple

as a diagram for a testing environment or a description written

in prose. Informal test case can be used for applications or

systems when there is no formal requirements, test cases can

be written based on the accepted normal operation of

programs of a similar class.

5. TEST CASE PRIORITIZATION

 TECHNIQUES
Test case prioritization techniques provide a way to schedule

and run test cases which have the highest priority in order to

provide earlier detection of faults. Each test case is assigned a

priority. Priority is set according to some criterion and test

cases with highest priority are scheduled first.

For example criterion may be that the test case which has

faster code coverage gets the highest priority. There are

various prioritization techniques.

Some common test-case prioritization Techniques are:

a) Fault Severity

Test case prioritization depends upon the severity of faults.

The order of execution of test case depends on the size of the

test suite and how long each test case takes time to run. Thus,

through the use of an effective prioritization technique, testers

can re-order the test cases to obtain an increased rate of fault

detection.

The rate of fault detection is good if

 It reveal faults earlier that have high risk

 It reveal faults related to critical code sections earlier

 Provides confidence in the system’s reliability earlier

b) Code Coverage Technique

Test coverage analysis is a measure used in software testing

known as code coverage analysis for practitioners. It describes

the quantity of source code of a program that has been

exercised during testing[19]. The following lists a process of

coverage-based techniques:

 Finding areas of a program not exercised by a set of test

cases

 Creating additional test cases to increase coverage

 Determining a quantitative measure of code coverage,

which is an indirect measure of quality

 Identifying redundant test cases that do not increase

coverage.

c) Mutation Faults

Test cases are prioritized by FEP (Fault-Exposing-Potential)

Technique. This technique is achieved by the ability to expose

faults and mutation analysis is used to determine this value.

Each application of a mutation operator will create a mutant

of the source code, which makes a single valid syntactic

change. The mutation score represents the ratio of mutants

that a test-suite can distinguish from the source code. The

mutation score can be calculated for each test case

separately[15].

FEP is calculated as

Given program P and test suite T, for each test case ,

for each statement s in P, determine the mutation score of t on

s i.e. the ratio of mutants of s exposed by t to total mutants of

s. A mutant is killed by a test case if the original and the

mutated program give different outputs when the test case is

executed.

d) Customer Requirement-Based Prioritization
Customer requirement-based techniques are the methods to

prioritize test cases based on the requirement documents.

Many weight factors have been used in these techniques,

including custom-priority, requirement complexity and

requirement volatility[20]. Prioritization techniques use

several factors to weight (or rank) the test cases. Those factors

may be customer-assigned priority (CP), requirements

complexity (RC) and requirements volatility (RV). The

scaling factor can be assigned value (1 to 10) for each factor

for the measurement. Highest factor values indicate a need for

prioritization of test case related to that requirement. If

requirements have high complexity then it leads to maximum

number of faults.

Fig 3: Test Case Prioritization Techniques

e) History based Technique

History-based techniques are the methods to prioritize test

cases based on test execution history. It can enhance the

effectiveness of regression testing. For a test case, using

historical information of each prioritization, increase or

decrease its likelihood in the current test session. A

probability value is given to the history and the value of the

current session is calculated based on the number of the fault

detection (or coverage).

|)(mutants|

|by killed)(mutants|
),(

j

ij

ji

s

ts
stFEP

 j jii
stFEPtFEP),()(

Tt

Test Case

Prioritization

Techniques

Customer Requirement

Fault Severity

Code Coverage

Mutation Faults

History

Cost Effective

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

12

Finally, the calculated value of a test case is equal to the sum

of the current number multiplied by a probability and the

historical value multiplied by another probability[21].

f) Cost Effective-based Technique

Cost effective-based techniques are methods to prioritize test

cases based on costs, such as cost of analysis and cost of

prioritization[22]. The cost of a test case is related to the

resources required to execute and validate it. Cost-cognizant

prioritization requires an estimate of the severity of each fault

that can be revealed by a test case. To minimize the costs

associated with testing and with software failures, a goal of

testing must be to uncover as many defects as possible with as

little testing as possible i.e. write test cases that have a high

likelihood of uncovering the faults that are the most likely to

be observed as a failure in normal use. The cost–benefits

should be considered first before they are applied to large

programs.

Table 1. Cost Factors

Factor Description

Execution cost Total cost of running a set of test

cases.

Cost of

analysis

It includes the cost of source code

analysis, analysis of changes

between old and new versions and

collection of execution traces.

Cost of data

preparation

A total cost of preparing all input

values for test cases.

Cost of

validation

A total cost for validating the

expected result and actual result.

6. SELECTING TEST CASES FOR

 REGRESSION TESTING
It was found from the industry data that good number of the

defects reported by customers were due to last minute bug

fixes creating side effects and hence selecting the test case for

regression testing is an art and not that easy. It requires

knowledge on the bug fixes and how it affect the system.

Effective Regression Tests can be done by selecting following

test cases

 Test cases which have frequent defects

 Functionalities which are more visible to the users

 Test cases which verify core features of the product

which are mandatory requirements of the customer

 Test cases of functionalities which has undergone more

and recent changes

 All Integration Test Cases

 All Complex Test Cases

 Boundary value test cases

 Sample of Successful test cases

 Sample of Failure test cases

Selection of test cases for regression testing depends more on

the criticality of bug fixes than the criticality of the defect

itself. A minor defect can result in major side effect and a bug

fix for an extreme defect can have no or a just a minor side

effect. So the test engineer needs to balance these aspects for

selecting the test cases for regression testing.

7. REGRESSION TESTING TOOLS
When a software undergoes frequent changes, regression

testing costs will escalate. In such cases, manual execution of

test cases increases test execution time as well as costs.

Automation of regression test cases is required in such cases.

Extent of automation depends on the number of test cases that

remain re-usable for successive regression cycles.

Following are most important tools used for both functional

and regression testing[18]:

Quick Test Professional (QTP):HP Quick Test Professional is

automated software designed to automate functional and

regression test cases. It uses VbScript language for

automation. It is a Data driven , Keyword based tool.

Rational Functional Tester (RFT):IBM's rational functional

tester is a java tool used to automate the test cases of software

applications. This is primarily used for automating regression

test cases and it also integrates with Rational Test Manager.

Selenium: This is an open source tool used for automating

web applications. Selenium can be used for browser based

regression testing.

8. CONCLUSION
In this paper, regression testing and test case prioritization

methodologies are presented. There are various factors on the

basis of which test case prioritize can be decided. It includes

customer requirements, history based, cost analysis, fault

exposing, code coverage etc. Test prioritization can strengthen

regression testing for finding more severe fault in earlier

stages. Test case prioritization varies from project to project.

With earlier prioritization of test cases we can reduce cost,

time, effort and maximize customer satisfaction. A system can

be developed using MATLAB to analyze the test case

prioritization after performing regression testing on the

developed software. In future, if we have a large test suite

then we can implement the clustering to categorize the faults

and then perform the cluster based prioritization approach.

Moreover for these techniques, soft computing approaches

like Genetic Algorithms, Fuzzy Logic, Artificial Neural

Network etc. may be used for experimentation and validation

purpose.

9. REFERENCES
[1] Pressman, Roger S., "Software engineering: A

practitioner's approach", McGraw-Hill Companies, 5th

edition, 2005.

[2] Sommerville, Ian. "Software Engineering", Addison

Wesley, 9th edition ,2011.

[3] Hema Srikanth, Laurie Williams and Jason Osborne,

“System Test Case Prioritization of New and Regression

Test Cases”, Proceedings of the 4th International

Symposium on Empirical Software Engineering (ISESE),

pp.62–71, IEEE Computer Society, 2005.

[4] Dennis Jeffrey and Neelam Gupta, “Test Case

Prioritization Using Relevant Slices”, Proceedings of the

30th Annual International Computer Software and

Applications Conference, Volume 01, 2006, pp.411-420,

2006.

[5] Mall, Rajib, "Fundamentals of Software engineering",

PHI Learning Pvt. Ltd., 2014.

[6] http://www.onestoptesting.com/regression-

testing/types.asp

[7] Prakash, N., & Rangaswamy, T. R., "Modular based

multiple test case prioritization", Computational

Intelligence & Computing Research (ICCIC), IEEE

International Conference (pp. 1-7),2012

[8] Raju, S., and G. V. Uma. "Factors oriented test case

prioritization technique in regression testing using

genetic algorithm." European Journal of Scientific

Research ,pp. 389-402,2012.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

13

[9] Chen, L., Wang, Z., Xu, L., Lu, H., & Xu, B. "Test case

prioritization for web service regression testing",Service

Oriented System Engineering (SOSE), Fifth IEEE

International Symposium (pp. 173-178). 2010.

[10] Duggal, Gaurav, and Bharati Suri. "Understanding

regression testing techniques." Proceedings of the 2nd

National Conference on Challenges and Opportunities,

Mandi Gobindgarh, India, March. Vol. 29. 2008.

[11] Joshi, Shweta A., and B. S. Tiple. "Literature Review of

Model Based Test case Prioritization." International

Journal of Computer Science & Information

Technologies,Volume 5, no. 5 ,2014.

[12] Roongruangsuwan, Siripong. Jirapun Daengdej,"Test

Case prioritization techniques." Journal of theoretical and

applied informational technology,2005.

[13] Chaturvedi, Animesh, and Atul Gupta. "A tool supported

approach to perform efficient regression testing of web

services." Maintenance and Evolution of Service-

Oriented and Cloud-Based Systems (MESOCA), IEEE

7th International Symposium, pp. 50-55, 2013.

[14] Mei, L., Zhang, Z., Chan, W. K., & Tse, T. H. ,"Test case

prioritization for regression testing of service-oriented

business applications", Proceedings of the 18th

international conference on World wide web, pp. 901-

910. ACM,2009.

[15] Elbaum, S., Malishevsky, A. G., & Rothermel,

G.,"Prioritizing test cases for regression

testing",ACM,Vol. 25, No. 5, pp. 102-112,2000

[16] Lin, C. T., Chen, C. D., Tsai, C. S., & Kapfhammer, G.

M.,"History-based test case prioritization with software

version awareness", 18th International Conference on

Engineering of Complex Computer Systems (ICECCS),

pp. 171-172, 2013.

[17] Md. Hossain, Hyunsook Do, Ravi Eda," Regression

Testing for Web Applications Using Reusable Constraint

Values", IEEE International Conference on Software

Testing, Verification, and Validation Workshops,pp-312-

321 ,DOI 10.1109/ICSTW.2014.35,2014

[18] http://www.guru99.com/regression-testing.html

[19] Hyunsook Do and Gregg Rothermel, “A Controlled

Experiment Assessing Test Case Prioritization

Techniques via Mutation Faults”, Proceedings of the

IEEE International Conference on Software

Maintenance, pages 411-420, 2005.

[20] G. Rothermel, R. Untch, C. Chu, and M. Harrold,“Test

Case Prioritization”, IEEE Transactions on Software

Engineering, vol. 27, pp. 929-948, 2001.

[21] Jung-Min Kim and A. Porter.,"A history-based test

prioritization technique for regression testing in resource

constrained environments", ICSE ’02: Proceedings of the

24th International Conference on Software Engineering,

pages 119–129, New York, NY, USA, 2002. ACM Press.

[22] Alexey G. Malishevsky, Gregg Rothermel and Sebastian

Elbaum, “Modeling the Cost-Benefits Tradeoffs for

Regression Testing Techniques", Proceedings of the

International Conference on Software Maintenance

(ICSM’02), 2002.

IJCATM : www.ijcaonline.org

