
World Journal of Computer Application and Technology 1(2): 19-28, 2013 http://www.hrpub.org
DOI: 10.13189/wjcat.2013.010201

IMATT: An Integrated Multi-Agent Testing Tool for the
Security of Agent-Based Web Applications

Fathy E.Eassa, M. Zaki, Ahmed M. Eassa*, Tahani Aljehani

Software Engineering and Distributed Systems Research Group members, King Abdul-Aziz University, KSA
*Corresponding Author: em_eassa@hotmail.com

Copyright © 2013 Horizon Research Publishing All rights reserved.

Abstract In this paper, an integrated multiagent testing
tool, is presented. Such tool comprises static analyzer,
dynamic tester and an integrator of the two components for
detecting security vulnerabilities and errors in agent based
web applications written in Java. The static analysis
component analyzes the source code of the web application
to identify the locations of security vulnerabilities and
displays them to the programmer. Consequently, dynamic
testing of the web application is carried out. Here, a
temporal-based assertion language is introduced to help in
detecting security violations (errors) in the underlying
application. The proposed language has operators for
detecting SQL injection and cross-site scripting, XSS,
security errors. The dynamic tester consists of two
components: instrumentor (preprocessor) and
run-time-agent. The instrumentor has many modules that
have been implemented as software agents using Java
language under the control of a multi agent framework. The
agents of the instrumentor are: static analyzer agent, parser
agent, and code converter agent. Moreover, an integrator for
integrating both static and dynamic analyses is employed.
Eventually the implementation details of IMATT are
reported.

Keywords Web Applications Security Testing, Static
Testing, Dynamic Testing, Temporal Logic, Assertion
Languages

1. Introduction
In fact web applications represent a considerable share of

software products. Such applications are continuously
promoted using various software technologies. The
promotion, as such, has led to web applications that are
based on multiagent systems to provide: 1) user friendliness,
2) intelligent search and 3) better communications.
Unfortunately, those web applications are subject to
different attacks. This paper presents an integrated
MultiAgent Testing Tool, IMATT, to facilitate static and
dynamic testing procedures for finding out the security

flaws, if any. In fact, the majority of the software testing
tools are generic [2,23,25] in the sense that they are
working independent of the style of the program under test.
However, recently Centonze et al [2] have presented a tool
named AEC for testing component based programs where
the peculiarities of the program components are considered.
Here we went a step further in this direction, where IMATT
extends AEC and introduces, an agent based tool for testing
large agent based Web applications (which are beyond
component based programs) against security flaws.
IMATT could be used with the following pragmatic
advantages:

1. IMATT is homogeneous in the sense that both static
and dynamic components are model based where the static
analysis model is based on a set of grammar rules while the
dynamic analysis model is based on temporal logic
assertions in addition to a set of behavioral dynamic
responses.

2. Integration of static and dynamic analysis, via path
concatenation, enables the discovery of both intra and inter
vulnerabilities.

3. Web applications allow intervention; consequently
different scenarios for the same application can be
generated. It is essential to check out the liveness of each
scenario in order to guarantee the application ability to
reach its goal. This is carried out by making use of temporal
logic formalism.

Agent based web applications, (Figure 1), can be attacked
(consequently protected at various levels). To be specific
and to clarify the scope of IMATT, the MultiAgent, MAS,
web application levels are pointed out as follows.

Web Application
GADE-Based Agent(s)

Network Node
Figure 1. Agent-based web application

1. Network node (site) level: where both attacks and
protection mechanisms are network oriented and they are
out of scope of this paper.

2. MAS environment (GADE) level: where malicious
agent(s) could be introduced to attack the web application.
At that level, the agent security is the responsibility of

20 IMATT: An Integrated Multi-Agent Testing Tool for the Security of Agent-Based Web Applications

GADE-S that can allow authentication, authorization and
integrity. Accordingly, IMATT is not involved.

3. Web application level: where IMATT is utilized to
check out the underlying application.

Thus IMATT is a special purpose security testing tool that
satisfies:
• The close fitting testing approach [1].
• Soundness (from static analysis), precision (from

dynamic analysis) and flexibility by making use of a group
of GADE agents for building up the instrumentor.
• IMATT can be easily involved in a continuous testing

integration process [2, 3, 4, 5, 6], where iterating first one
analysis, then the other is more powerful than performing
either one in isolation [7].

There is a common agreement that attacks aimed at web
applications represent most of today attacks [8], therefore
the major types of such attacks are considered here. Namely,
SQL injection [9, 10, 11] and cross site scripting, XSS [12,
13, 14], are adopted for their popularity, however, many
other attacks could be illustrated in the same manner.

The rest of the paper is organized as follows. Section two
is concerned with the related work while section three is
concerned with the proposed architecture of IMATT. The
implementation and testing of the tool are discussed in
section four. Section five is concerned with the conclusion.

2. Related Work
Currently, there are several generic tools such as NuSVM,

FDR2, ITS4, CHESS and NESSUS that could be exploited
for program (code) analysis. Although they are widely used,
such tools will not be considered here because they lack
integration and their application domain is different. To be
specific, IMATT will be only related to the class of tools
that:
• Combines both static and dynamic code analyzes.
• Can be applied for Web application written in Java or

an equivalent language.
• Can be devoted basically for detecting security

vulnerabilities.
• Performs either model checking or any other sound

approach to get decision.
The work of Centonze et al [2] has presented a proposal

for combing static and dynamic analysis for automatic
determination of database access control polices. Their tool
could be applied on programs that are executed on
stake-based access control systems such as Java. In their
proposal the static analysis models the execution of the
program taken into account native methods, reflection and
multi-threading. In addition, the dynamic analysis can
refine the potentially conservative results of the static
analysis. The authors have implemented their analysis
framework in a tool called Access Content Explorer, ACE.
Such tool allows for automatic and precise identification of
access-right requirements and library code location that
should be made privilege-asserting to prevent any client
code from requiring extra-access-rights.

An extension to the well-known tainted-mode model has
been presented to afford inter-module vulnerabilities
detection by Petukhov et al [8]. The authors have applied
their proposal on web applications using dynamic analysis
with penetration testing. Their automatic analyzer avoids
the drawbacks of the manual-based code review
recommended by OWASP (Open Web Application Security
Project).The main contributions of that analyzer are:
• Improvement of classical tainted mode model so that

inter-module data flows could be checked.
• Automatic penetration testing by leveraging it with

information from dynamic testing output.
Livshits et al [15] have exploited a Program Query

Language to build up a static analyzer for finding out
security flaws in Java application. Moreover the authors
have extended their work to include both static and dynamic
techniques to check out the underlying queries. The static
analyzer, given by livshits et al[15] finds the potential
matches conservatively using a context-sensitive,
flow-insensitive, inclusion-based pointer alias analysis. In
addition their dynamic analyzer instruments the sources
program to catch the security violations when the program
runs to perform user specified actions. By making use of
these techniques, an analyzer has been designed and
implemented to detect security flaws, resource leaks and
violations of the predefined rules.
 In their recent work Keromytis et al[6] have presented
MINESTRONE as an architecture that integrates static
analysis, dynamic confinement and code diversification
techniques to enable the identification of vulnerabilities in a
third party software. In its present from MINESTRONE in
written in C/C++ and it seeks to:
• Enable the immediate deployment of new software,

and,
• Enable the protection of legacy software.
The authors approach is to insert extensive security

instrumentation, while leverage program analysis that is
aided by runtime data. Diversification techniques are used
as confinement mechanisms that may achieve software fault
isolation.

The fundamental problem being addressed by
MINESTRONE is finding vulnerabilities in the underlying
software. Its key idea to realize this goal is to make use of
the static analysis to allow reliable instrumentation, while
runtime data provides a focus on portions of the code that
are heavily exercised or otherwise considered security
critical.

The tool Apollo has been discussed by Artzi et al in [16].
It aims at finding bugs in Web applications using dynamic
testing and explicit state model checking. The proposed
technique generates tests automatically, runs the tests
capturing logical constraints on input and reduces the
condition on the inputs to failing tests [16]. Thus Apollo
provides test inputs for underlying application and validates
that the output conforms to the predefined specification.

In all of the above mentioned tools no agents are
considered or involved in either the Web application or the

 World Journal of Computer Application and Technology 1(2): 19-28, 2013 21

error-checker. In addition the integration process is always
implicit.

3. Proposed Architecture of IMATT
This tool aims at finding both static and dynamic

vulnerabilities in Web applications. Static vulnerabilities [9,
12] include SQL injection, cross-site scripting, XSS, while
dynamic vulnerabilities are checked via the code coverage
analysis using various metrics. The two approaches are
similar in that they are model-based i.e. in both of them,
vulnerability conditions are formally specified by the static
tool. The dynamic tool takes the locations of the
vulnerabilities and monitors if there are security violation
during the web execution, (Figure 2).

Figure 2. IMATT architecture

3.1. Static Vulnerabilities

Once malicious data has entered a Web application an
attacker can use one of the following techniques (among
others) to accomplish the expected breach.

3.1.1. SQL Injection
It is one of the well-known security Vulnerabilities found

in Web application. It is caused by unchecked user input
being passed to a back-end database. The hacker may
embed SQL commands into his data sent to the application.

Many SQL injections can be practically avoided with the

use of better API’s. Also, J2EE provides the prepare
statement class, that allows specifying an SQL statements
template capable for indicating statement parameters.

3.1.2. Cross-Site Scripting, XSS
It occurs when dynamically generated Web pages display

input that has not been properly validated [12]. An attacker
may hide a malicious JavaScript code into such pages.
When executed on the user machine, these scripts can
breach the user account credentials. At the application level,
echoing the application input back to the browser enables
cross-site scripting.

3.2. Static Analysis

In its general form the static analysis problem should
include object propagation problem [18,19,20,21] with
three types of description source descriptors, destination
descriptors and derivation descriptors.

Source descriptors of the form <m,n,p> to specify ways
in which user data can enter the program, where , m is a
source method , n is parameter number and p is an access
path to be applied to argument n to obtain the user-provided
input. Destination descriptors have the same from with, m is
a destination method, n is argument number and p is an
access path to be applied to that argument.

Derivation descriptors have the form <m,ns,ps,nd,pd> to
specify how data probates between the program objects. In
this case, m represents a derivation method; a source object
is given by argument number ns and access path ps. A
destination object is given by argument number nd and
access path pd. Such descriptor specifies that at a call to
method m, the object obtained by applying ps to argument
nd is derived from the object obtained by applying ps to
argument ns. Actually, in the absence of derived objects, to
detect potential vulnerabilities, it is needed only to known if
a source object is used at the destination.

In fact, derivation descriptors are used to handle the
semantics of Java strings. Because Strings are immutable
Java objects, string manipulation routines (concatenation in
the underlying case) create new string objects, where
contents are based on the original string objects. Actually,
most Java programs use built-in string libraries and
consequently share the same set of derivation descriptors
[18].

The needed generalization may be achieved by making
use of a simple syntax analyzer (parser) for data log queries
to allow users to express vulnerability patterns in a friendly
manner. Therefore, that approach will be relied upon in
IMATT as it is explained in the following.

It should be noticed that the proposed approach does not
replace the possibility of using the available Java security,
API's and J2EE, instead it provides an affective extension
for them to handle uncovered cases.

3.3. Dynamic Analysis

In order to detect the security violations during Web

22 IMATT: An Integrated Multi-Agent Testing Tool for the Security of Agent-Based Web Applications

applications execution, an assertion language has been
proposed. It is based on temporal logic to help in detecting
security errors in a scope of the Web application. In
addition, we have built a dynamic testing tool to instrument
assert statements and detect security violations. In what
follows the temporal assertion language is discussed.

3.3.1. Temporal Assertion Language
In order to detect the run time security vulnerabilities and

error that occurs in Web applications, we introduce special
language based on the temporal logic. We describe this
language using Backus Naur Form (BNF). In this
language we use the temporal logic operators (Always ,
Next , Eventually , Until). Also, the language has another
two operators for detecting the security vulnerabilities
(SQL , XSS) .

As shown in the following (Figure 3), our assertion
language has six temporal assert statements [Always,
Eventually, Next, Until, XSS, SQL]. All of these assert
statements (except next) are coupled with end-assert
statements, thus enabling the tester to control the scope of
the assert statement. Fig.3 shows the Java-based temporal
assert statements.

Figure 3. Java Temporal Assertion Language

The semantic of the temporal assertion language is
determined according to choosing one of the temporal
operators (Always, Next, Eventually, Until, SQL or XSS).
Choosing those operators depends on the type of error that
we want to detect. Suppose it is required to ensure that some
variables never equal zero along the scope of certain code,
then we use always operator, but if we want to check whether

the input field contains SQL injection or not so we will use
SQL operator. Such operators semantics are pointed out in
the following.

1) Always (safety) properties: A temporal expression of
this form // 1.1.A Assert [] (W) , specifies that W is always
true, during the scope of the always assert statement. Note
that the assert statement starts with double slash followed by
label followed by Assert keyword and finally the condition
(W).

2) Eventually (liveness) properties: The eventually
operator (~) of this form // 1.1.A Assert ~ (W) is used to test
that a specific condition (W) is satisfied at least once during
the scope of the eventually assert statement.

3) Precedence properties: The until (U) temporal
operators of this form // 1.1.A Assert T1 U T2. Can be used
to assert that Task T1 will start when Task (T2) finishes. We
can use this property to check race condition .

4) SQL properties: The SQL temporal operator of this
form // 1.2.A Assert SQL (variables). We use this property
to insure that the variables in the form are not injected with
SQL attack .

5) XSS properties: The XSS temporal operator of this
form // 1.2.A Assert XSS (variables). We use this property
to insure that the variables in the form are not injected with
XSS attack.

3.3.2. The Architecture of the dynamic testing tool
This section introduces the architecture of the dynamic

tool. The programmer adds temporal assert statements to the
source code of the agent-based web application in the
position that he expects errors. The agent based instrumntor
consists of set of agents. Agents detect the assert statements
in the web application under testing and convert each one to
the corresponding Java statements. The basic components in
our dynamic testing tool are presented in (Figure 4).

Figure 4. Agent Based Dynamic Testing Tool Architecture

3.3.2.1. Agent Based Lexical Analyzer

The agent-based lexical analyzer reads the (java source
file which has the temporal assert statements within the
source code). Then this agent tokenizes the file to set of

 World Journal of Computer Application and Technology 1(2): 19-28, 2013 23

tokens which will be sent to the agent-based parser. The
pseudo code of the lexical analyzer agent is shown in (Figure
5).

Figure 5. The pseudo code of the lexical analyzer agent

3.3.2.2. Agent Based Parser

The parser reads the tokens and then decides whether the
tokens are Java statements or assert statements. If they are
Java statements, it will write it to the destination file which
contains only the Java source code without the temporal
assertion, otherwise if the statements start with double slash
followed by the assert keywords and one of the temporal
logic operators, then source code will be generated based on
the kind of the temporal operators. The pseudo code of the
parser agent is shown in (Figure 6).

Figure 6. The pseudo code of the parser agent.

3.3.2.3. Agent Based Code Generator

Depending on the temporal logic operators, this agent will
generate the code for each temporal assert statement. The
pseudo code of the code generation agent is shown in (Figure
7).

Figure 7. Code generation agent pseudo code.

3.4. Integration of Static and Dynamic Analyzers

Given a large program, it may be impractical to identify,
manually, security failures. However, by integrating static
and dynamic analyses [25], IMATT can soundly model the
program behavior to identify the security vulnerabilities.
Consequently, using the dynamic analysis would handle
second order (indirect) run-time attacks.

While theoretically sound, in practice the static analysis
may be unsound for the following reasons:

1) Multi-language code: A Java program may trigger the
execution of methods written in C and executed directly on
the operating system. A static analyzer for Java will not be
able to model C functions. As a result the analysis will fail.

2) Reflection: which is a mechanism that enables code to
dynamically manipulates fields and methods of loaded
classes. Modeling reflection through static analysis is
unsound since the type of object obtained through reflection
is only available at runtime.

In fact neither static nor dynamic analysis can
independently guarantee the identification of all security
vulnerabilities. Actually, dynamic analysis suffers from the
fact that:
• It needs a set of functional or security rules that may be

practically unavailable [22].
• It needs a set of attacks like those used in the real world.

In addition it needs a collection of temporal information.
• It is destructive since it may perform attack execution
IMATT integration, Fig.8, consists of two analyzing

modules: static and dynamic, where each analyzer is
designed as a multi-agent subsystem. The static analyzer
agents read the Java-based web application, and analyze it to
identify a list of security vulnerabilities. Based on the list of
identified vulnerabilities, the user (programmer) inserts
some assert statements in the web application and creates
new web application file that contains java statements and
assert statements. The dynamic testing agent reads the new
file and instrument it, so that it can cover all security
violation at various levels. Eventually it displays the
violations,if any of them is reveald during Web application
execution.

24 IMATT: An Integrated Multi-Agent Testing Tool for the Security of Agent-Based Web Applications

In IMATT, the need to integrating static and dynamic
analyses is a must. This is because the fact that agents,
specially mobile ones use extensively ‘reflection’ in their
programing pardigm. Actually, modelling reflection by
making use of static analysis is unsound since the type of
underlying objects that are obtained through the reflection is
identified only at run time.However, the dynamic analyzer
uses reflection to load classes , create objects and invoke the
required methods. Accordingly, the process of creating a
testcase is automated (but not eliminated).

On the other hand , relying on pure dynamic analysis is not
sufficient because of its dependency on the test cases. In
practice it is usual that some execution paths, along with the
previledged rights to execute those paths may remain
undiscovered until the code deployment phase. This yields
an incomplete cover for the program under test,
consequently unsoundness is arised due to the absence of a
formal cover that should be generated by the selected test
cases.

Figure 8. The Integration of static and dynamic tools.

IMATT integrator, Fig.8, has several essential features
that can be pointed out in the following:
• It tackles the refelction problem(s) by conservatively

locating the suspected agent using the static analyzer, then
the dynamic analyzer is employed to refine the obtained
conservative results, i.e. to extract the runtime rule(s)
violation.
• A Java temporal assertion language is implemented

with well defined semantics. Such language combines on a
formal basis, temporal logic and application oriented
operators.

• One of the roles of the proposed integrator is to
eliminate false alarams, i.e when the static analyzer might
report a false alarm(due to security senstive action) the
dynamic analyzer that utilizes the coverage of the underlying
program methods can eliminate the statically detected false
alarms.

For IMATT each solution is executed in three steps.
1. The static analyzer discovers the call that may cause

security vulnerability and determines its location (agent)
2. At run-time the dynamic analyzer checks out the

vulnerability locations of the underlying agent to discover
the method that can yield a breach. In addition it logs the
underlying operation in a special file that might be parsed for
security holes.

3. From steps 1 and 2 the integrator, Fig.8, exploitsa
continuous integration agent which is coupled with both
static and dynamic analyzers in order to find out the
corrupted class which is responsible for the security violation
problem.

Also, the security side effects can be discovered and
detected. For convenience such details are moved to Sec.4 ,
where illustration of IMATT implementation, using several
experimenal examples, is given.

4. Tool Implementation and Testing
All agents of the testing tools are written in Java

programming language. In addition JADE [24] as a
middleware that facilitates the development of multi-agent
systems is used to manage and run the agents of IMATT.

4.1. Code Generation for SQL Injection and XSS

SQL Code Generation Agent: When the agent receives the
source file , destination file , and the pointer to both files with
the condition and label , it starts to extract the variables
from the conditions and then starts reading the source file
from the pointer until it finds the label followed by word
"END". When the agent reads the source file each line has
any one of those variables, the agent will insert run time
method called hasSQL() in the destination file after the java
statement which has one of those variables the method
which will take variables as the arguments analyzes the
variables to ensure no SQL injections , otherwise the agent
will write the java statement in the destination file .After
reaching the end of the assert statement, the control flow will
return back to the lexical analyzer which will continue
reading the source file from where the code generation
ended reading and the procedure will be repeated again when
the lexical analyzer agent catches any temporal assert
statements . We use the SQL temporal operator when we
want to detect SQL attack.

A similar XSS code generation agent can be obtained by
replacing SQL by XSS.

4.2. Testing of Web Applications

 World Journal of Computer Application and Technology 1(2): 19-28, 2013 25

For testing Web applications, the Web application under
testing is inserted by temporal assert statements. After that
the instrumentor part of IMATT instruments the Web
application, where translates each temporal assert statement
based on the semantic of the temporal operator to Java
statments. The instrumented Web application is compiled
and executed for detecting any security attack. To clarify the
nature of IMATT more examples that are concerened with
the implementation details are given in what follows.
Example 1: Detection of SQL Injection using the SQL
Operator
•The problem

Suppose we have Web application of a company, where
there is a service that allows us to retrieve information of an
employee from the database by giving his first name.
Suppose "John" is entered and "submit" button is pressed,
information of the employee "John" is retrieved and
displayed as shown in (Figure 9).

Assume an attacker would like to get information of all
employees in the company, he will insert John ' OR '1'='1 in
the field of employee's name, so the query will be select *
from employees where firstname='" + John ' OR '1'='1 + "'";
due to this SQL injection and because the 'OR' expression is
always true, information of all employees are retrieved and
displayed as shown in (Figure 10). This allows an attacker to
take information of all employees. Using the same technique
attackers can inject other SQL commands which could
extract, modify or delete data within the database.

 Figure 9. The record of John

• Solution of the problem
In order to detect the SQL injection, a temporal assert

statement is inserted in the agent-based Web application to
check the fields of the form. In the code of (Figure 11), the
inserted temporal assert statement is // 1.2.A Assert SQL
(user), where the (user) in this statement will be the data
entered by the client or attacker.

The code of (Figure 11) is instrumented by agents of the
dynamic analyzer to generate a pure Java code as shown in
(Figure 12). The generated Java code contains a method
called hasSQL() that takes the fields of the form as an
argument and checks if the field has SQL attack characters or
not.

Figure 10. Information of all employees due to SQL Injection

Figure 11. Shows SQL injection and inserted assert statement in Web
Application

Figure 12. Output of Temporal Assert Statements Instrumentation.

26 IMATT: An Integrated Multi-Agent Testing Tool for the Security of Agent-Based Web Applications

• Executing the Web Application after
instrumentation

After executing the program in (Figure 12), and entering
(John ' OR '1'='1) in the field of employee, we see in
(Figure 13), the assertion exception arises after the
detection of SQL injections.

Figure 13. SQL Injection violation that is detected by the dynamic
analyzer

Example 2: Detecting XSS Attack by using XSS
operator:
• The problem

Suppose Myspace Web site of a Web application has
been signed up by a malicious user and in his profile page
the following script has been added. So, every time a visitor
visits the profile the script is gotten and annoyed.

Now suppose that the problem get bigger where a code
has been added in the comments of the site as shown in the
following statement.

So, every time the users click on this link they will visit
web site about cats, but they will be logged out of the web
site and that's so annoying.

The problem will be worst if the attacker has injected
script which steals user cookies. So, every one visit the
guess book, he will be redirected to a page at attacker’s site.
The cookies from MySpace's browser session have been
transmitted to attacker's web server as part of the URL. This
will allow the attacker to steal the pass word and the
username of the administrator of the web site, and the
attacker gives himself administrator access, or start deleting
content.

And now come to the most dangerous problem if the
attacker could have used a JavaScript link to trick users into
sending sensitive information to his server

If users clicked that link, as they probably do often, their

session ID would be transmitted to attacker’s server.
(Figure 14) and explains the problem.

Figure 14. The script to steal user session has been added
• Solution of the problem:

In order to detect the XSS attack, a temporal assert
statement // 1.2.R Assert SQL (name, email, comm) has
been inserted to check the fields of that form as shown in
(Figure 15); the name , email and comm are the form
fields.

Figure 15. Inserting temporal assert statement in the Web application.
The above code is instrumented by the agents of the

dynamic analyzer to generate a pure Java code that contains
a method called has XSS() as shown in (Figure 16). The
data of the fields of the form are received and checked by
the has XSS() method during the Web application
execution.
• Testing the Web Application after instrumentation
The code in (Figure 16) has been compiled and executed.
The input that contains XSS attack has been entered. The
XSS attack has been detected by the tool (Figure 17).
In order to emphasize the relative merits of IMATT, its
performance upon compacting versus should be compared
practically with similar analyzers.
However, such task could not be accomplished due to Lack

 World Journal of Computer Application and Technology 1(2): 19-28, 2013 27

of published quantitative information of the performance of
such similar products.

Figure 16. The generated code after the instrumentation.

Figure 17. Assertion Exception after detecting the XSS attack

3. Conclusion
This paper presents IMATT as a special purpose

integrated multiagent tester that integrates both static and
dynamic testing components to check out the security of
agent based Web applications. IMATT has been built up
using software agents.

The static component consists of a rule-base and a code
checker while the dynamic component consists of
instrumentor and a run-time analyzer. In order that such

analyzer can handle different scenarios of the Web
application it makes use of temporal logic to examine the
application under test. The integrator integrates the results
of both components to get a decision for either intra or inter
attacks. In the present state, the temporal assert statements
are inserted manually in the Web application, however, in
future, it is planned to assign an intelligent agent that can be
able to insert such statements automatically.

REFERENCES
[1] Baca D, Peterson K, Carlsson B and Lundberg L, Static Code

Analysis to Detect Software Security Vulnerabilities-Does
Experience Matter?, Availability, Reliability and Security
International Conference, Blekinge, March 2009.

[2] Centonze P, Flynn R. Pistoia M, Combining Static and
Dynamic Analysis for Automatic Identification of Precise
Access-Control Policies, Proceedings of the 23rd Annual
Computer Security Applications Conference, 2007.

[3] Tzermias Z, Sykiotakis G, Polychronakis M and Markatos E,
Combining Static and Dynamic Analysis for the Detection of
Malicious Documents, , available at

[4] http://dcs.ics.forth.gr/activites/papers/mdscan.eurosec

[5] Lam M S, Martin M, Livshits VB and Whaley J. Securing
Web Applications with Static and Dynamic Information Flaw
Tracking, Available at
http://suif.stanford.edu/papers/pepm08.pdf.

[6] Blazarot D, Marco C, Felmetsger V, Javanovic N, Kird E,
Kruegel C and Vigna G, Saner: Composing Static and
Dynamic Analysis to Validate Sanitization in Web
Applications, SP '08 Proceedings of the 2008 IEEE
Symposium on Security and Privacy, 2008,pp 387-401.

[7] Keromytis A, Stolfo S, Yang J, Stavrou A, Ghosh A, Angler
D, Dacier M, Elder M and Kienzle D, The MINESTRONE
Architecture: Combining Static and Dynamic Analysis
Techniques for Software Security, Available at
http://www.cs.columbia.edu/~angelos/Papers/2011/minestro
ne-syssec.pdf

[8] Johnson M, Ho C-W, Maximilen M and Willlams L,
Incorporating Performance Testing in Test Driven
Development ,IEEE Software, May/June 2007,pp 67-73.

[9] Petukhov A and Kozlov D, Detecting Security Vulnerabilities
in Web Applications Using Dynamic Analysis with
Penetration Testing, Application Security Conference,
Ghent-Belgium, May 2008, pp 1-16.

[10] Khochare N, Chalurkar S, Kakade S and Meshramm B,
Servey on SQL Injection Attacks and their Countermeasures,
International Journal of Computational Engineering and
Management, October 2011, pp 111-114.

[11] Muthuprasanna M, Wiek and Kothari S, Eliminating SQL
Injection Attacks - A Transparent Defense Mechanism,
available athttp://home.engineering.iastate.edu/~muthu/pape
rs/cnf08.pdf

[12] Balasundaram I and Ramaraj E, An Approval to Detect and

28 IMATT: An Integrated Multi-Agent Testing Tool for the Security of Agent-Based Web Applications

Prevent sql Injection Attacks in Database Using Web Service,
International Journal of Computer and Network Security, Vol.
11,No. 1, January 2011,pp 197-205.

[13] Bisht P and VenkatataKrishnan, XSS-GUARD: Precise
Dynamic Prevention of Cross Site Scripting Attacks,
Available at http://www.cs.uic.edu/~Pbisht/XSSGuard_DIM
VA2008_bisht-pdf.

[14] Di_Lucca G. A., Fasalino A. R., Mastoinni M. and
Tramontana P., Identifying Cross Site Scripting
Vulnerabilities in Web Applications, Proceedings of 6th
IEEE International Workshop on Web Site Evolution,
September 2004, pp 71-80.

[15] Shanmugam J, Ponnavaikko M, Cross Site Scripting: Latest
Developments and Solution, International Journal of Open
Problems in Computer and Mathematics, Vol.1 , No.2 ,
Sepetmper 2008, pp 101-121.

[16] Livshits VB and Lam MS, Finding Security Vulnerabilities in
Java Applications with Static Analysis, Available at
http://Usenix.Com/events/sec05/tech/full_papers/Livshits.

[17] Artzi S,Kiezun A,Dolby J, Tip F, Dig D, Paradkar A and
Ernst M, Finding Bugs in Web Applications Using Dynamic
Test Generation and Explicit State Model Checking, IEEE
Transaction on Software Engineering, Vol. 36, No. 4,
July/Aug 2010,pp 474-494.

[18] Huang Y, Yu F, Hang C, Tsai C, Lee D and Kuo S, Securing
Web Application Code by Static Analysis and Runtime
Protection, Proceedings of the 13th International Conference
on World Wide Web, ACM, New York, 2004 pp 40-52.

[19] Jovanovic N, Kruegel C, Kirda E, Static analysis for detecting

taint-style vulnerabilities in web applications, Journal of
Computer Security, Vol 18,2010,pp 861-907.

[20] Guizani W, Marion J and Reynaud-Plantey D, Server-Side
Dynamic Code Analysis, 4th International Conference on
Malicious and Unwanted Software (MALWARE), October
2009, pp 55 - 62.

[21] M 86th Security Paper, Real-time Code Analysis: Proactive
Protection Against New and Dynamic Malware Threats,
available at
http://www.m86security.com/documents/pdfs/white_paper

[22] Fu X, Lu X, Peltsverger B, Chen S, Qian K, Tao L,A static
analysis framework for detecting injection vulnerabilities,
Proceedings of the 31st Annual International Computer
Software and Applications Beijing, July 2007, pp 87–96.

[23] Bessey A, Block K, Chelf B, Chou A, Fulton B, Hallem S,
Henri-Gros C, Kamsky A, Mcpeak S and Egler D, A Few
Billion Lines of Code Later : Using Static Analysis to Find
Bugs in The Real World, CACM,Vol.53,No.2,2010,pp 66-75.

[24] Halfond, W and Orso A, WASP: Protecting Web
Applications Using Positive Tainting and Syntax-Aware
Evaluation, IEEE Transaction on Software Engineering, Vol.
34, No. 1, January/ February 2010,pp 65 - 81.

[25] Giovanni C, JADE Tutorial , Available at
http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutori
al-for-beginners.pdf

[26] Ernst M, Static and Dynamic Analysis : Synergy and Duality,
Available athttp://www.cs.nmsu.edu/~jcook/woda2003/pape
rs/Ernst.pdf.

	1. Introduction
	2. Related Work
	3. Proposed Architecture of IMATT
	4. Tool Implementation and Testing
	3. Conclusion
	REFERENCES

