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Figure 1: Colorization using a variety of multilevel techniques: (a) input gray image with color strokes overlaid; (b) “gold” (final) solution;
(c) after one iteration of adaptive basis preconditioners (ABF) with partial sparsification; (d) after one iteration of regular coarsening
algebraic multigrid (AMG) with Jacobi smoothing and (e) with four-color smoothing. The computational cost for the ABF approach is less
than half of the AMG variants and the error with respect to the gold solution is lower (zoom in to see the differences). Four-color smoothing
provides faster convergence (lower error) than Jacobi.

Abstract
This paper unifies multigrid and multilevel (hierarchical) precon-
ditioners, two widely-used approaches for solving computational
photography and other computer graphics simulation problems. It
provides detailed experimental comparisons of these techniques
and their variants, including an analysis of relative computational
costs and how these impact practical algorithm performance. We
derive both theoretical convergence rates based on the condition
numbers of the systems and their preconditioners, and empirical
convergence rates drawn from real-world problems. We also de-
velop new techniques for sparsifying higher connectivity problems,
and compare our techniques to existing and newly developed vari-
ants such as algebraic and combinatorial multigrid. Our experimen-
tal results demonstrate that, except for highly irregular problems,
adaptive hierarchical basis function preconditioners generally out-
perform alternative multigrid techniques, especially when compu-
tational complexity is taken into account.

Keywords: Computational photography, Poisson blending, col-
orization, multilevel techniques, fast PDE solution, parallel algo-
rithms Links: DL PDF

1 Introduction
Multigrid and multilevel preconditioning techniques have long been
widely used in computer graphics and computational photography

∗dilip@cs.nyu.edu
†szeliski@microsoft.com

as a means of accelerating the solution of large gridded optimization
problems such as geometric modeling [Gortler and Cohen 1995],
high-dynamic range tone mapping [Fattal et al. 2002], Poisson and
gradient-domain blending [Pérez et al. 2003; Levin et al. 2004b;
Agarwala et al. 2004], colorization [Levin et al. 2004a] (Fig. 1), and
natural image matting [Levin et al. 2008]. They have also found
widespread application in the solution of computer vision prob-
lems such as surface interpolation, stereo matching, optical flow,
and shape from shading [Terzopoulos 1986; Szeliski 1990; Pent-
land 1994], as well as large-scale finite element and finite difference
modeling [Briggs et al. 2000; Trottenberg et al. 2000].

While the locally adaptive hierarchical basis function technique de-
veloped by Szeliski [Szeliski 2006] showed impressive speedups
over earlier non-adaptive basis functions [Szeliski 1990], it was
never adequately compared to state-of-the art multigrid techniques
such as algebraic multigrid [Briggs et al. 2000; Trottenberg et al.
2000] or to newer techniques such as combinatorial multigrid
[Koutis et al. 2009]. Furthermore, the original technique was re-
stricted to problems defined on four neighbor (N4) grids.

In this paper, we generalize the sparsification method introduced in
[Szeliski 2006] to handle a larger class of grid topologies, and show
how multi-level preconditioners can be enhanced with smoothing to
create hybrid algorithms that accrue the advantages of both adap-
tive basis preconditioning and multigrid relaxation. We also pro-
vide a detailed study of the convergence properties of all of these
algorithms using both condition number analysis and empirical ob-
servations of convergence rates on real-world problems in computer
graphics and computational photography.

Our experimental results demonstrate that locally adaptive hierar-
chical basis functions (ABF) [Szeliski 2006] combined with the ex-
tensions proposed in this paper generally outperform algebraic and
combinatorial multigrid techniques, especially once computational
complexity is taken into account. However, for highly irregular and
inhomogeneous problems, techniques that use adaptive coarsening
strategies (Section 3), which our approach does not currently use,
may perform better.

In this paper, we consider general spatially varying quadratic cost
functions. This allows the algorithms presented here to be applied
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to a variety of problems. In the existing literature, a number of opti-
mized schemes have been developed focusing on specific problems.
We give a brief survey of such schemes here.

[Agarwala 2007] considers the problem of Poisson blending when
applied to the seamless stitching of very large images. The opti-
mization proceeds by defining a variable-sized grid (large spacing
in smooth regions and small spacing in non-smooth regions), result-
ing in a much smaller linear system. [McCann and Pollard 2008]
use a standard V-cycle geometric multigrid method on a GPU, to
achieve near real-time gradient field integration. [Farbman et al.
2009] solve the image cloning problem by replacing the linear sys-
tem solver with an adaptive interpolation and mesh refinement strat-
egy. This is similar in spirit to the work of [Agarwala 2007]. How-
ever, this approach cannot work for problems such as HDR image
compression or Poisson blending with mixed gradients.

The algorithm in [Roberts 2001] is similar to that of [Szeliski 1990]
but with some important differences in the preconditioner con-
struction (there is no diagonal preconditioning of fine-level vari-
ables and Jacobi smoothing is used). This preconditioner-based
solver shows better performance than geometric multigrid and ex-
tensions to 3D problems are given. However, since the interpolants
aren’t adapted to the problem, for inhomogeneous problems, both
[Roberts 2001] and [Szeliski 1990] will underperform the adaptive
basis functions presented in [Szeliski 2006] and this paper. [Wang
et al. 2004] use the solver of [Roberts 2001] to solve a 3D ver-
sion of the Poisson blending problem for video. [Jeschke et al.
2009] present a GPU solver for the integration of a homogeneous
Poisson equation; this method uses Jacobi iterations with modified
stencil sizes. [McAdams et al. 2010] present a parallelized Poisson
solver for fluid simulation problems. This solver is based on ge-
ometric multigrid. The algorithms in [Wang et al. 2004; Jeschke
et al. 2009; McAdams et al. 2010] are all restricted to homo-
geneous Poisson problems and their extension to inhomogeneous
problems does not seem straightforward. [Kazhdan et al. 2010]
develop a high-performance solver where their key technical con-
tribution is to parallelize the raster-order Gauss-Seidel smoothing.
Our ABF preconditioner and four-color Gauss-Seidel smoothers do
not require such streaming implementations, as simpler overlapped
(multi-resolution) tiles can be used to perform out-of-core compu-
tations.

The remainder of this paper is structured as follows. Section 2
presents the general class of regular gridded problems that we study,
along with the associated quadratic energy we minimize and the
linear systems of equations we aim to solve. In Section 3, we
describe the various solvers we evaluate and qualitatively com-
pare their characteristics. Section 4 describes how the the eigen-
values of the iterative solvers and condition numbers of the pre-
conditioned solvers can be used to predict the convergence rates
of various algorithms. In Section 5, we show how to extend the
sparsification step introduced in [Szeliski 2006] to a wider range
of problems. In Section 6, we give descriptions of the sample
problems that we study. Section 7 summarizes our experimental
analysis of both the theoretical (condition number) and empirical
convergence rates of the various algorithms and variants we con-
sider. Section 8 contains conclusions and recommendations. To
allow the community to better understand and use these solvers,
we provide a MATLAB implementation of these algorithms at
www.cs.nyu.edu/˜dilip/research/abf

2 Problem formulation
Following [Szeliski 2006], we consider two-dimensional varia-
tional problems discretized on a regular grid. We seek to reconstruct
a function f on a discrete domain Ω given data d and, optionally,
gradient terms gx and gy . Let (i, j) ∈ Ω represent a point in this

domain. The problems we study involve finding the solution f that
minimizes the quadratic energy

E5 =
∑
i,j∈Ω

wi,j(fi,j − di,j)2 + sxi,j(fi+1,j − fi,j − gxi,j)2

+ syi,j(fi,j+1 − fi,j − gyi,j)
2. (1)

The wi,j are (non-negative, potentially spatially-varying) data
term weights and the sxi,j and syi,j are (non-negative, potentially
spatially-varying) gradient term weights corresponding to the x and
y directions respectively. These weights are used to balance the
closeness of the values of f to d and the values of the gradients of
f to gx and gy . The target gradient values gx and gy can be set to 0
if only smoothing is desired. (See Section 6 on how these weights
map to various computer graphics and computational photography
problems.)

If we represent the values in the function f by a vector x, we can
then re-write Eqn. 1 as a quadratic energy,

E = xTAx− 2bTx+ c, (2)

where A is a sparse symmetric positive definite (SPD) and sym-
metric diagonally dominant (SDD) matrix with only non-positive
off-diagonal terms. Taking the derivative of this energy with re-
spect to x and setting it to 0 gives us the linear systems of equations
to be solved,

Ax = b. (3)

The horizontal and vertical finite differences in Eqn. 1 give A a
5-banded structure.

If we add xy cross-derivatives, A has a 9-banded structure. The
energy function becomes

E9 = E5 +
∑
i,j∈Ω

sxyi,j(fi+1,j−1 − fi,j − gxyi,j)
2

+ syxi,j(fi+1,j+1 − fi,j − gyxi,j)
2. (4)

In this paper, we consider the solution of linear systems involving
both 5-banded and 9-banded matrices. We often refer to these sys-
tems as 5-point stencils and 9-point stencils, respectively.

3 Solution techniques

In this section, we provide a summary of the methods used to solve
systems of equations of the form Ax = b when A is a sparse,
banded, symmetric positive definite matrix. For more details on
these algorithms, please see [Krishnan and Szeliski 2011].

Traditional dense direct techniques such as Cholesky decomposi-
tion and Gaussian elimination have a cost of O(n3), where n is the
number of variables. For gridded two-dimensional problems such
as the ones we study in this paper, sparse direct methods such as
nested dissection [Davis 2006] cost O(n3/2). When n becomes
large, such direct solvers incur too much memory and computa-
tional cost to be practical.

In many graphics and vision applications, it is not necessary to solve
the linear systems exactly. Approximate solutions with a medium
level of accuracy are often sufficient, owing to the eventual dis-
cretization of the output value f (e.g., a color image) into integral
values. Hence, we can use iterative methods, which have the advan-
tage of allowing termination when a pre-specified level of accuracy
has been reached [Saad 2003].

Simple iterative methods such as Jacobi and Gauss-Seidel have
O(n) cost per iteration. The number of iterations depends on the
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Figure 2: Multilevel pyramid with half-octave sampling [Szeliski
2006].

condition number κ of A and on the desired level of accuracy (Sec-
tion 4). For the kinds of reconstruction and interpolation problems
studied in this paper, the condition numbers can be very large, re-
quiring far too many iterations to be practical. However, iterative
methods such as Jacobi and Gauss-Seidel, when used as smoothers,
are an inexpensive way to discover high-frequency components of
the correction in very few iterations. Hence they are used in multi-
grid methods in conjunction with a pyramid of grids. The tradeoff
in using simple iterative methods as smoothers is their computa-
tional load versus their ability to discover high frequency compo-
nents of the correction. Smoothers that best satisfy this tradeoff
are the Gauss-Seidel family, including four-color Gauss-Seidel and
raster-order Gauss-Seidel. See [Krishnan and Szeliski 2011] for
details.

Conjugate Gradient (CG) algorithms typically exhibit much faster
convergence than Jacobi or Gauss-Seidel methods for SPD prob-
lems [Shewchuk 1994; Saad 2003]. CG is almost always used with
a preconditioner, and preconditioned CG (PCG) usually requires
many fewer iterations than Jacobi to reach the same accuracy. The
main challenge with PCG is the design of preconditioners that are
computationally efficient and yet achieve a significant acceleration
over unpreconditioned CG.

Hierarchical basis preconditioners [Szeliski 1990; Szeliski 2006]
involve re-writing the original nodal variables x as a combination
of hierarchical variables y that live on a multi-resolution pyramid
with L levels. The relationship between x and y can be written as
x = Ŝy, where the reconstruction matrix Ŝ consists of recursively
interpolating variables at a coarser level and adding in the finer-level
variables. The original paper [Szeliski 1990] used a fixed set of
full-octave interpolants, while the later paper [Szeliski 2006] used
half-octave locally adaptive interpolants (Fig. 2), whose values are
derived from the structure of the Hessian matrix A (in combination
with the sparsification rules discussed in Section 5). In this paper,
rather than simply using SST or SD−1ST (where D is the diag-
onal of the per-level Hessians) as the preconditioner, as in these
previous publications, we invert the coarse-level Hessian using a
sparse direct solver, as is commonly the case with multigrid tech-
niques. More detailed descriptions of these techniques can be found
in the extended version of this paper [Krishnan and Szeliski 2011].

Multigrid (MG) methods [Briggs et al. 2000; Trottenberg et al.
2000] are an alternative family of numerically stable and compu-
tationally efficient methods for iteratively solving SPD linear sys-
tems. Originally developed for homogeneous elliptic differential

equations, MG methods now constitute a family of methods under
a common framework that can be used to solve both inhomoge-
neous elliptic and non-elliptic differential equations. This family
includes algebraic multigrid (AMG) [Briggs et al. 2000; Trotten-
berg et al. 2000; Kushnir et al. 2010; Napov and Notay 2011] and
combinatorial multigrid (CMG) techniques [Koutis et al. 2009].

Like hierarchical (multilevel) preconditioners, multigrid techniques
use a pyramid to accelerate the reduction of low-frequency errors.
However, in order to ensure that both high- and low-frequency er-
rors are reduced, multigrid techniques perform additional smooth-
ing at each level in the pyramid.

Geometric multigrid (GMG) approaches, like the original hierar-
chical basis technique, use fixed full-octave coarsening and inter-
polation schemes. Algebraic multigrid (AMG) techniques, like lo-
cally adaptive basis functions, derive their interpolation weights
from the structure of the Hessian A, giving more weight to neigh-
bors that have larger |aij | values. Algebraic multigrid techniques
also use an adaptive subsampling of variables to define the coarse-
level grid. Combinatorial multigrid (CMG) techniques resemble
algebraic multigrid but use an agglomerative coarsening scheme
in which clusters of fine-level variables get replaced by a single
coarse-level variable [Koutis et al. 2009]. This has the advantage of
simpler and faster interpolation and also supports deriving bounds
on the growth in relative condition numbers as the number of levels
increases.

While multigrid techniques can be used as stand-alone iterative
solvers (like Jacobi and Gauss-Seidel), it is now common to use cer-
tain forms (those whose effects are equivalent to SPD transforms)
as preconditioners in conjugate gradient. We evaluate both variants
in this paper.

In Appendix A, we describe an algorithm that contains as special
cases all of the algorithms described above. The input to the algo-
rithm is the current residual rk, and the output is a correction term
ek, which is added to the current iterate xk to give the next iterate.
rk and xk are related as rk = b − Axk. The algorithm consists of
pre-smoothing steps, a coarse level solve, fine-level diagonal pre-
conditioning, and post-smoothing steps. Except for the coarse level
solve, the other steps are optional. Setting νpre = νpost = 0 and
d = 1 gives the multilevel ABF and HBF preconditioners; setting
d = 0 and νpre = νpost = 1 gives the multigrid AMG, GMG and
CMG algorithms.

Looking at the algorithm in Appendix A, one can see that it is
possible to combine the smoothing elements of multigrid with the
fine-level subspace solution (diagonal preconditioning) in multi-
level preconditioners. This produces a new algorithm that bene-
fits from both previous approaches, albeit at a higher computational
cost. If we set νpre = νpost = 1 and d = 1, we get a hybrid algo-
rithm that performs pre-smoothing, followed by a coarse-level split-
ting and preconditioning of the coarse-level and fine-level variables,
followed by another step of post-smoothing. The performance of
this new algorithm is analyzed in Section 7.

In our experiments, we use the implementation of CMG provided
by the authors of [Koutis et al. 2009]. Because we have been unable
to find a public domain implementation of algebraic multigrid, we
have only implemented the adaptive interpolant portion of AMG,
but still use a fixed regular full-octave coarsening scheme. More
details about multigrid techniques and our own re-implementations
can be found in [Briggs et al. 2000; Trottenberg et al. 2000; Kushnir
et al. 2010; Koutis et al. 2009; Krishnan and Szeliski 2011].



4 Convergence analysis

To estimate or bound the asymptotic rate at which an iterative algo-
rithm will converge, we can compute the convergence rate, which
is the expected decrease in error per iteration.

For simple iterative algorithms such as Jacobi and Gauss Seidel
[Saad 2003; Krishnan and Szeliski 2011], we get a general recur-
rence of the form

xk = Rkb+Hkx0 (5)

= x∗ +Hk(x0 − x∗), (6)

where x0 is the initial solution, xk is the current solution, Rk =
(I − Hk)A−1 is defined in [Krishnan and Szeliski 2011, Ap-
pendix A], x∗ = A−1b is the optimal (final) solution, and H is
the algorithm-dependent iteration matrix. The spectral radius of
the iteration matrix

ρ(H) = max
λ∈σ(H)

|λ| (7)

is the eigenvalue of H that has the largest absolute value.

As the iteration progresses, the component of the error e = x0 −
x∗ in the direction of the associated “largest” eigenvector vmax of
H , ẽ = vTmaxe, gets reduced by a convergence factor of ρ at each
iteration,

ẽk = ρkẽ0. (8)

To reduce the error by a factor ε (say ε = 0.1) from its current
value, we require

ρk < ε or k > logε ρ = − log1/ε ρ. (9)

It is more common [Saad 2003, p.113] to define the convergence
rate τ using the natural logarithm,

τ = − ln ρ, (10)

which corresponds to how many iterations it takes to reduce the
error by a factor ε = 1/e ≈ 0.37.

The convergence rate allows us to compare the efficiency of two al-
ternative algorithms while taking their computational cost into ac-
count. We define the effective convergence rate of an algorithm as

τ̂ = 100 τ/C, (11)

where C is the amount of computational cost required per itera-
tion.1

The details on how to compute the computational costC for each of
the algorithms we evaluate are given in our companion paper [Kr-
ishnan and Szeliski 2011] and exact numbers are presented in the
experimental results section. Roughly speaking, we find that be-
cause of the need for smoothing, traditional geometric and algebraic
multigrid techniques (GMG, AMG) have about twice the computa-
tional cost of hierarchical basis techniques (HBF, ABF). Combina-
torial multigrid (CMG) only uses additions in the restriction and
prolongation steps but still does smoothing, and so its computation
cost is between that of HBF/ABF and GMG/AMG techniques.

1To make these numbers more similar across problems and independent
of grid size, we define C as the number of floating point operations per grid
point in the fine grid. The scale factor of 100 makes τ̂ easier to print and
corresponds roughly to how many flops it takes to perform one multigrid
cycle.

For conjugate gradient descent [Shewchuk 1994; Saad 2003], the
asymptotic convergence rate is

ρCG ≤
(√

κ− 1√
κ+ 1

)
, (12)

where κ is the condition number of A,

κ(A) =
λmax

λmin
, (13)

i.e., the ratio of the largest and smallest eigenvalues ofA. When the
eigenvalues of A are highly clustered, the convergence rate can be
even faster [Shewchuk 1994].

For preconditioned conjugate gradient, the convergence factor in
Eqn. 12 depends on the condition number of B−1A, where B =
M−1 is the simple-to-invert approximation of A corresponding to
the preconditioner M . The derivations of the formulas for M cor-
responding to various preconditioners and multigrid techniques are
given in our longer companion report [Krishnan and Szeliski 2011].

An intuitive way to compute the generalized condition number is to
use generalized Rayleigh quotients

κ(B−1A) = κ(A,B) ≡ max
x

xTAx

xTBx
·max

x

xTBx

xTAx
(14)

[Koutis et al. 2009]. Each of the quadratic forms xTAx can be
interpreted as the power dissipated by network A, where the edge
weights aij give the conductances and the vector x specifies the
input voltages.

Thus, a good preconditioner B is one that dissipates neither signif-
icantly more nor significantly less power than the original matrix
A across all possible voltages (both smooth and non-smooth). We
use this observation to develop better sparsification rules in the next
section.

To summarize, the convergence factor ρ for a standard iterative al-
gorithm such as Jacobi, Gauss-Seidel, or multigrid, depends on the
spectral radius of the associated iteration matrix H . For precondi-
tioned conjugate gradient, it depends on the generalized condition
number κ(A,B), which can be thought of as the ratio of the greatest
increase and decrease in relative power dissipation of the precondi-
tioner matrix B with respect to the original matrix A. In our ex-
perimental results section, we compute the theoretical convergence
factor ρ, the convergence rate τ , and the effective convergence rate
τ̂ for problems that are sufficiently small to permit easy compu-
tation of their eigenvalues. For all problems, we also estimate an
empirical convergence rate τ̃ by dividing the logarithmic decrease
in the error |ek| by the number of iterations,

τ̃ = − 1

N
ln
|eN |
|e0|

. (15)

5 Sparsification

The adaptive hierarchical basis function algorithm of [Szeliski
2006] relies on removing unwanted “diagonal” links after each
round of red-black multi-elimination, as shown in Fig. 3. The rule
for re-distributing an unwanted connection ajl to its neighbors is

a′jk ← ajk + sN ajkajl/S, (16)

where S = ajk + akl + ajm + alm is the sum of the edge weights
adjacent to ajl and sN = 2 is a constant chosen to reproduce the fi-
nite element discretization at the coarser level. The diagonal entries
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Figure 3: Sparsification: (a) after the black node i is eliminated,
the extra “diagonal” links ajl and akm shown in (b) are introduced.
(c) Since nodes j and l (now shown in black) are eliminated at
the next round, only the ajl edge needs to be eliminated and redis-
tributed to the adjacent edges ajk, akl, ajm, and aml.

corresponding to the edges being eliminated and those being “fat-
tened” are modified appropriately to maintain the same row sums
as before, thereby resulting in the same energy for constant-valued
solutions.2

In this paper, we introduce several extensions and improvements to
this original formulation:

N8 grid sparsification. Although the original paper only de-
scribed how to handle 4-neighbor (5-point stencil) discretizations,
it is straightforward to apply the same sparsification rule used to
eliminate unwanted diagonal elements from an 8-neighbor (9-point
stencil) discretization. We demonstrate this in our experiments with
colorization algorithms.

Fine-fine sparsification. The original algorithm eliminates both
sets of “diagonal links”, i.e., ajl and akm in Fig. 3b. Closer in-
spection reveals that this is unnecessary. At the next level of coars-
ening, only two out of the four nodes, say j and l (shown as dark
red nodes in Fig. 3b and black in Fig. 3c), will be themselves elim-
inated. Therefore, it is only necessary to sparsify the links con-
necting such nodes, which results in a lower approximation error
between the original and sparsified network. The other akm link is
left untouched and does not participate in the computation of the
adaptive interpolants or cause the coarse-level Hessian matrix to
grow in bandwidth. In the subsequent text, we refer to this spar-
sification as the “7-point stencil” sparsification, since the Hessian
matrix after sparsification is on average 7-banded.

Pre-sparsification. The original algorithm in [Szeliski 2006]
performs sparsification (elimination of “diagonal links”) each time
a coarse-level Hessian is computed using the Galerkin condition
[Szeliski 2006, Eqn. (13)]. However, unless the system is going to
be further coarsened, i.e., unless another set of adaptive interpolants
needs to be computed, this is unnecessary. The higher-bandwidth
coarse-level matrix can be used as-is in the direct solver, at a slight
increase in computational cost but potentially significant increase
in accuracy (preconditioning efficacy). We call deferring the spar-
sification step to just before the interpolant construction as pre-
sparsification and call the original approach post-sparsification.
Both variants are evaluated in our experimental results section.

The limits of sparsification. Given that our sparsification rules
are based on a sensible approximation of the low-frequency modes
of one matrix with a sparser version, we can ask if this always re-
sult in a reasonably good approximation of the original problem.
Unfortunately, this is not always the case. Consider the case where

2The modified incomplete LU (Cholesky) or MILU algorithm also main-
tains row sums, but it simply drops off-diagonal entries instead of re-
distributing them to adjacent edges [Saad 2003; Szeliski 2006].

(a) (b) (c) (d)
Figure 4: Two examples of High Dynamic Range compression
[Fattal et al. 2002]: “Belgium” (a) Input and (b) Compressed;
“Memorial” (c) Input and (d) Compressed.

the value of |ajl| is much larger than all of the adjacent edge values
in Fig. 3c. In this case, the sparsification rule (Eqn. 16) can in-
crease the values of the adjacent edges by an arbitrarily large ratio
sNajl/S � 1. The problem with this is that while the power dis-
sipation of the sparsified system to the 0/1 voltage shown in Fig. 3c
can be kept constant, if we then set all but one (say Vj = 1) of the
voltages in our network to zero, the power dissipated by the original
and sparsified network can have an arbitrarily large Rayleigh quo-
tient (Eqn. 14) and hence an arbitrarily bad generalized condition
number.

A more intuitive way of describing this problem is to imagine a grid
where neighbors are connected in long parallel chains (say a tight
spiral structure, or two interleaved spirals with strongly differing
values or voltages). If we use regular two-dimensional coarsening,
there is no way to represent a reasonable approximation to this dis-
tribution over a coarser grid. Adaptive coarsening schemes such as
CMG or full AMG, on the other hand, have no trouble determin-
ing that a good coarsening strategy is to drop every other element
along the long linear chains. Therefore, an approach that combines
sparsification rules with adaptive coarsening may perform better for
such problems, and is an interesting area for future work.

6 Sample problems
To measure the performance of the various techniques, we analyze
a number of quadratic minimization problems that arise from the
solution of two-dimensional computer graphics and computational
photography problems.

The problems in this section are ordered from most regular to most
irregular, which corresponds roughly to the level of difficulty in
solving them. Regular problems have spatially uniform (homoge-
neous) data (wi,j) and smoothness (si,j) weights and are well suited
for traditional multigrid techniques. Moderately regular problems
may have irregular data constraints and occasional tears or discon-
tinuities in the solution. The most challenging problems are those
where the smoothness can be very irregular and where elongated
one-dimensional structures may arise. Techniques based on regular
coarsening strategies generally do not fare well on such problems.

High Dynamic Range (HDR) Compression HDR image com-
pression [Fattal et al. 2002] (also known as tone mapping) maps an
input image whose values have a high dynamic range into an 8-bit
output suitable for display on a monitor. The gradients of the log of
the input luminance are compressed in a non-linear manner. An im-
age is then reconstructed from the compressed gradients {gxi,j , gyi,j}
by minimizing Eqn. 1. We follow the formulation given in [Fattal
et al. 2002] to perform the HDR compression. Fig. 4 shows the two
images used for our HDR compression tests.

Poisson Blending In Poisson blending [Pérez et al. 2003; Levin
et al. 2004b; Agarwala et al. 2004], gradient domain operations are
used to reduce visible discontinuities across seams when stitching
together images with different exposures. There are a few differ-
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(d) (e) (f)
Figure 5: Two examples of Poisson blending: (a,d) first source
image; (b,e) second source image; (c,f) blended results.

ent variants of Poisson blending. In our implementation, we blend
each of the RGB channels separately, using the formulas provided
in Section 2 of [Szeliski et al. 2011]. Fig. 5 gives two examples
of Poisson blending, where two input images of the same scene are
stitched together along a seam. The seam is almost unnoticeable
because the stitching is done in the gradient domain.

2D membrane A membrane refers to an energy-minimizing 2D
piecewise smooth function used to interpolate a set of discrete data
points [Terzopoulos 1986]. It is a good canonical problem to test
the performance of techniques for solving spatially-varying (inho-
mogeneous) SPD linear systems. Our current test problem, mod-
eled after those previously used in [Szeliski 1990; Szeliski 2006],
uses four data points at different heights and a single tear (zeros in
the sxi,j weights at appropriate locations) running halfway up the
middle of the surface.

Colorization In colorization [Levin et al. 2004a], a gray-scale im-
age is converted to color by propagating user-defined color strokes.
In order to prevent color bleeding across edges, the propagation of
the color is controlled by the strength of edges in the gray-scale
image. Let Y be the gray-scale luminance image and S the stroke
image. As in [Levin et al. 2004a], we work in YIQ color space. The
system Eqn. 2 or Eqn. 4 is solved to recover both the I and Q color
channels. This is combined with Y to give the output YIQ image.
If sxy and syx are set to 0, a 5-band system results, otherwise we
have a 9-band system. Fig. 1 gives an example of colorization.

Edge-preserving decomposition (EPD) An edge-preserving
multi-scale decomposition of an image can be created using non-
linear filters to smooth an image while preserving sharp edges
[Farbman et al. 2008]. The non-linear smoothing step is performed
by minimizing a system of equations similar to those used in col-
orization, except that instead of sparse color strokes, the complete
input image is used as a weak constraint on the final solution, i.e.,
wi,j is small but constant everywhere. We use this as another ex-
ample of an inhomogeneous Poisson reconstruction problem, since
the smoothness weights si,j are spatially varying. Fig. 6 gives an
example of edge-preserving decomposition, with the original im-
age being passed through 2 successive layers of edge-preserving
smoothing.

7 Experiments

In this section, we summarize the results of our experimental com-
parisons of the solvers of Section 3 on the different sets of problems
outlined in Section 6. Table 1 shows an example of the full set of
results available in the full-length version of this paper [Krishnan
and Szeliski 2011], while Fig. 7 shows sample convergence plots.
Table 2 summarizes the empirical convergence rate τ̂ applied to all

(a) (b) (c)

(d) (e) (f)
Figure 6: An example of edge-preserving decomposition [Farbman
et al. 2008]: (a) input gray-scale image; (b) first layer of edge-
preserving smoothing; (c) second layer of edge-preserving smooth-
ing (by smoothing first layer). (d)-(f) input gray-scale image and
two layers of smoothing for another gray-scale image;

theoretical empirical
Algorithm κ ν ρ τ C τ̂ ρ̃ τ̃ C τ̂

HBF 23.59 356.83 0.66 0.42 32.5 1.28 0.76 0.27 32.5 0.84
ABF-Pre7 3.05 8988.59 0.27 1.30 40.6 3.21 0.03 3.57 40.6 8.79
ABF-Pre7-W 1.09 8988.59 0.02 3.81 141.3 2.69 0.01 4.98 141.3 3.53
ABF-Pre7-4C 1.22 8988.59 0.05 3.01 97.4 3.09 0.00 11.17 97.4 11.47
ABF-Pre7-4C-W 1.95 7148.51 0.17 1.80 121.3 1.48 0.00 15.12 440.3 3.43
AMG-J 3.12 7148.51 0.28 1.28 87.9 1.46 0.09 2.46 87.9 2.80
AMG-4C 2.38 7148.51 0.21 1.54 83.4 1.85 0.01 4.70 83.4 5.64
AMG-4C-W 1.95 7148.51 0.17 1.80 121.3 1.48 0.01 4.89 121.3 4.03
GMG-J 9.46 356.83 0.51 0.67 91.2 0.74 0.32 1.15 91.2 1.26
V(1,1)-4C 2.38 7148.51 0.21 1.54 79.4 1.95 0.01 4.63 79.4 5.83
V(0,1)-4C 3.18 7148.51 0.28 1.27 44.2 2.87 0.12 2.09 44.2 4.73
CMG 5.01 0.38 0.96 87.3 1.10 0.32 1.15 91.2 1.26

Table 1: Sample convergence results for three-level (L = 3) pre-
conditioners applied to a 32×32 5-point stencil colorization prob-
lem. The convergence rates κ . . . τ̂ are described in the section on
convergence analysis and the algorithms are described in the ac-
companying text. ν refers to the condition number of the coarsest
level Hessian.

of our sample problems. The number of levels for each problem is
fixed so that the coarsest level problem is always approximately the
same size (consisting of between 4 to 8 unknowns). Table 3 summa-
rizes empirical convergence rate τ̂ for very large (multi megapixel)
problems. The complete set of results is available in [Krishnan and
Szeliski 2011].

In these tables and figures, the algorithms are denoted as follows:

• HBF: full-octave non-adaptive hierarchical basis precondi-
tioning [Szeliski 1990];

• ABF-Pre7: half-octave adaptive hierarchical basis precondi-
tioning [Szeliski 2006], where sparsification is applied before
the interpolants and coarse-level Hessians are computed,

• ABF-Pre7-W: a W-cycle variant of ABF-Pre7;

• ABF-Pre7-4C: ABF-Pre7 with four-color Gauss-Seidel pre-
smoothing and post-smoothing; this is the unified algorithm
described in Appendix A with all components (smoothing,
fine-level diagonal preconditioning and coarse-level solve)
enabled;

• ABF-Pre7-4C-W: W-cycle variant of ABF-Pre7-4C;

• AMG-S: algebraic multigrid preconditioning with a fixed full-
octave coarsening scheme and either a Jacobi (J) smoother or
four-color Gauss-Seidel (4C) smoother; (our current imple-
mentation does not do full justice to AMG, since we were
unable to find adaptive coarsening code);

• GMG-J: geometric multigrid preconditioning with full-octave



HDR Poisson Membrane Color. 5-pt Color. 9-pt EPD
33 512 768 33 128 512 33 256 32 256 239 32 256 239 33 800 535
(4) (8) (7) (4) (6) (7) (4) (7) (4) (7) (6) (4) (7) (6) (4) (8) (7)

HBF 3.35 2.09 2.78 3.54 2.80 2.41 0.94 0.7 0.92 1.18 0.93 0.96 1.06 0.82 1.97 1.78 1.37
ABF-Pre7 5.42 2.81 2.88 5.39 4.48 4.83 6.41 5.19 8.75 9.97 5.65 4.55 4.17 3.68 3.82 3.09 2.54
ABF-Pre7-W 3.15 2.42 2.56 3.41 2.86 2.42 3.98 3.15 2.72 3.43 0.39 1.22 0.65 0.43 0.57 0.25 0.26
ABF-Pre7-4C 7.15 5.55 4.75 8.01 7.77 8.49 4.64 4.29 11.29 5.90 3.28 2.65 2.85 2.18 4.03 2.23 1.93
ABF-Pre7-4C-W 2.55 1.69 1.91 2.41 1.80 1.74 1.44 0.77 2.51 1.03 0.88 0.71 0.44 0.39 1.14 0.14 0.15
AMG-J 4.37 3.20 3.73 4.82 4.40 4.46 3.99 3.32 2.77 2.23 1.10 3.13 1.83 1.07 1.47 0.93 0.72
AMG-4C 7.53 4.56 4.95 8.25 6.73 7.21 5.35 4.29 5.58 3.30 1.68 4.02 2.75 1.17 1.91 1.19 0.92
AMG-4C-W 4.66 5.32 5.16 5.21 5.25 5.19 3.94 3.30 3.74 2.95 1.81 3.34 2.68 1.70 1.57 1.28 1.16
GMG-J 4.65 3.48 4.17 5.09 4.41 4.41 1.06 0.33 1.39 1.14 0.78 1.87 1.21 0.83 0.99 0.89 0.71
V(1,1)-4C 6.95 4.59 4.93 7.67 5.03 6.34 2.93 3.68 5.76 2.93 1.43 3.97 2.22 1.00 0.93 0.82 0.39
V(0,1)-4C 4.74 2.74 4.28 6.30 3.96 5.36 5.49 5.12 4.68 3.66 2.52 5.09 2.76 1.55 1.48 1.35 0.62
CMG 1.36 1.16 1.25 1.92 1.87 2.18 1.82 1.97 - 2.82 2.39 1.56 1.81 1.89 4.87 4.44 4.24

Table 2: Empirical effective convergence rates τ̂ for preconditioners applied to all of our sample problems. The boldface numbers are the
“winners” (fastest empirical convergence rate) in each column. For each problem, test results on two image sets and a small version of one
of the sets are provided. The number of rows in the tested image is at the top of each column. Below that is the number of levels is given in
parentheses.

HDR Poisson Membrane Color. 5-pt Color. 9-pt EPD
2048 × 1365 2048 × 2048 2048 × 2048 1854 × 2048 1854 × 2048 1365 × 2048

(10) (10) (10) (8) (8) (8)

HBF 2.23 2.58 0.96 0.41 0.56 1.65
ABF-Pre7 2.61 5.52 3.97 20.35 16.48 2.60
ABF-Pre7-4C 5.75 9.52 3.00 12.17 7.56 1.74
AMG-J 2.93 5.15 3.35 3.00 2.71 0.60
AMG-4C 4.16 7.69 3.33 8.62 4.16 0.87
GMG-J 3.21 4.98 0.57 1.05 0.98 0.91
V(1,1)-4C 4.06 6.72 3.45 8.94 4.29 0.37
V(0,1)-4C 3.55 5.48 4.02 1.41 2.42 0.59
CMG - 2.29 1.75 5.58 3.55 4.18

Table 3: Empirical effective convergence rates τ̂ for preconditioners applied to all of our sample problems for multi-megapixel images. Next
to problem size, the number of levels is given in parentheses. The boldface numbers are the “winners” (fastest empirical convergence rate)
in each column. The size of the tested image is at the top of each column. Below that is the number of levels in parentheses.

bilinear interpolants and Jacobi smoothing;

• V(m,n)-4C: V-cycle multigrid with a fixed step size and four-
color Gauss-Seidel m pre-smoothing and n post-smoothing
steps; the interpolants and Hessians are computed using the
same logic as for AMG-S; this variant tests the effectiveness
of using stand-along multigrid cycles instead of PCG;

• CMG: combinatorial multigrid, using the code provided by
the authors of [Koutis et al. 2009].

There are other possible variants such as the original ABF 5-banded
sparsification algorithm from [Szeliski 2006]. The new partial spar-
sification we introduce always works better than the original spar-
sification both empirically and theoretically, so we do not include
these runs in our results.

Looking at the complete set of results available in the supplemen-
tary materials [Krishnan and Szeliski 2011], we see that the relative
behavior of the various algorithms depends both on the amount of
smoothness and the amount of inhomogeneity in the sample prob-
lems, i.e., how regular they are.

HDR and Poisson blending are homogeneous problems, ideally
suited to geometric multigrid. Indeed GMG (and AMG, which re-
verts to GMG on uniform problems) have very fast convergence rate
τ . Furthermore, τ is independent of the number of levels, as is pre-
dicted by multigrid theory. However, when we factor in the compu-
tational cost C, the effective convergence rate τ̂ for the ABF-Pre7-
4C is significantly better. Using the new partial (7-point stencil)
sparsification rule consistently lowers the condition numbers and
usually helps the empirical performance. Comparing the empirical
rates for AMG-J and AMG-4C shows that the four-color smoother
is a much better choice than Jacobi smoothing for all problems, but
has an especially dramatic effect for the homogeneous problems.

The 2D membrane exhibits a moderate amount of inhomogene-
ity, including scattered data constraints and a strong discontinuity.
Here, non-adaptive techniques such as HBF and GMG-J start to fall
apart. ABF-Pre7 starts to pull away, with the additional smoothing

of ABF-Pre7-4C not providing significant improvement. AMG-4C
is still competitive if we ignore computational costs. CMG, even
though it’s designed for irregular problems, has slower convergence
because it uses a piecewise-constant interpolator for what is essen-
tially a mostly smooth problem.

The results on colorization (for both 5-point and 9-point fine-level
stencil formulations) are similar to the 2D membrane, even though
the number of discontinuities is quite a bit larger. Here, we would
expect a full (adaptive coarsening) implementation of AMG-4C to
do better, but we currently don’t have such an implementation to
test. In terms of theoretical effective convergence rates, CMG is
starting to look competitive, but still doesn’t do as well empirically.

The edge-preserving decomposition is much more challenging. Be-
cause of the large number of discontinuities and thinner elongated
structures, CMG starts to perform very well, both in terms of the-
oretical condition numbers, and in terms of practical convergence
rates. It will be interesting to compare its performance against true
(adaptive coarsening) algebraic multigrid, and also to future ex-
tensions of our sparsifying approach that use adaptive coarsening
schemes.

Note that for these problems, the theoretical convergence rates pre-
dicted by condition number analysis are much worse than the actual
empirical convergence rates we observe. We believe the reason for
this is the clustering of eigenvalues after preconditioning, whereas
the theoretical condition number is computed using the largest and
smallest eigenvalues, which may be outliers.

The unified algorithm ABF-Pre7-4C performs well on all the prob-
lems, even after taking into account computational load. Further
research into combining adaptive coarsening with the unified algo-
rithm may result in better performance for the less smooth problems
such as edge-preserving decomposition.
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Figure 7: Sample convergence plot for three-level (L = 3) precon-
ditioners applied to a 32× 32 5-point stencil colorization problem.
Top: The horizontal axis plots the number of floating point oper-
ations (flops) performed per input (fine-level) variable, while the
vertical axis plots the log error between the current and optimal
solutions; Bottom: plot of flops against A-norm of error (defined as
eTAe where e is error and A is the Hessian).

8 Discussion and Conclusions
Our experimental results demonstrate that with our new extension
to partial sparsification, adaptive hierarchical basis function precon-
ditioning (ABF) outperforms traditional multigrid techniques on a
wide range of computer graphics and computational photography
problems. This runs contrary to the usual belief in the multigrid
community that appropriate smoothing between level transfers is
necessary for reasonable performance. Traditional adaptive hierar-
chical basis functions achieve slower (but still reasonable) conver-
gence rates without using any smoothing steps, but use many fewer
computations per level because they do not require any smoothing
(other than that implicit in the recomputation of the residual at the
beginning of each iteration).

For irregular problems, such as edge-preserving decomposition,
adaptive coarsening schemes such as combinatorial and (adaptive)
algebraic multigrid start to become important. Our experiments
also show that taking into account only the number of iterations
without incorporating flop counts gives a misleading picture of rel-
ative performance. However, we note that flop counts are them-
selves not a complete predictor of actual performance, since issues
such as caching and memory access patterns will be important in

high-performance implementations of these algorithms.

Recently, a number of fast edge-aware smoothing techniques have
been developed for solving tone mapping and colorization problems
[Fattal 2009; Gastal and Oliveira 2011]. These techniques have
linear complexity in the number of pixels and have extremely fast
computational performance. However, the best-performing precon-
ditioning methods in our paper also converge in a single iteration
for tone mapping and colorization. Therefore the effective time for
processing is the multilevel pyramid setup time and a single itera-
tion of (preconditioned) conjugate gradient. Both these steps are a
small constant multiple of the number of pixels in the image and are
highly parallel operations. This leads us to believe that a carefully
optimized GPU version of our MATLAB code would give very fast
computational performance as well for the tone mapping and col-
orization algorithms.

For the other algorithms such as Poisson blending and edge-
preserving decomposition, solving a large linear system is a ne-
cessity. Our MATLAB code has been written explicitly with GPU
implementation in mind, since such an implementation would be
of significant practical interest to the graphics and computer vision
communities.

Currently, our adaptive hierarchical bases are defined on a fixed
half-octave grid. However, we believe that the coarsening heuristics
used in AMG could be adapted to our bases. The sparsification step
used in constructing the adaptive interpolants requires a decomposi-
tion into coarse and fine variables, where the connections between
fine variables (which need to be sparsified) are no stronger than
those to their corresponding coarse-level “parents”. AMG coarsen-
ing strategies perform a very similar selection of nodes.

Another promising direction for future research is the extension to
three-dimensional and more unstructured meshes. The advances
available by combining all of these ideas together should lead to
even more efficient techniques for the solution of large-scale two-
and three-dimensional computer graphics and computational pho-
tography problems.
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A Unified multilevel multigrid preconditioner

Algorithm 1 Unified multigrid/multilevel algorithm
[el] = MGCYC(l, rl, {A1 . . . AL}, {S1 . . . SL},MG)
INPUT: Current level l, residual rl , per-level HessiansAl ,
per-level interpolation matrices Ŝl ,
MG is a parameter structure that contains:
number of levelsMG.L, damping factorMG.ω,
pre- and post-smoothing iterationsMG.νpre

andMG.νpost , number of cyclesMG.γ,
flag for optional diagonal preconditioningMG.d
OUTPUT: Correction at level l el

1. // Pre-smoothing correction
e
pre
l

= Smooth (0, Al, rl, ω, ν
pre)

2. // Update the residual
r̄l = rl − Ale

pre
l

3. // Restrict residual to coarse level
r̄l+1 = STl r̄l

4. if l = L − 1

5. el+1 = A
−1
L

r̄l+1
6. else
7. el+1 = 0

8. //γ = 1 is V-cycle; γ = 2 is W-cycle
for j = 1, . . . γ

9. // Update the residual
r̂l+1 = r̄l+1 − Al+1êl+1

10. ẽl+1 = MGCYC(l + 1, r̂l+1, {A1 . . . AL},
{S1 . . . SL},MG)

11. // Add up corrections over the cycles
el+1 ← el+1 + ẽl+1

12. endfor
13. endif
14. // Prolong coarse-grid correction

e
cgc
l

= Slel+1
15. // Optional fine-level diagonal preconditioning

if (d = 1)
16. // Precondition with inverse diagonal elements ofAl .

edl = DiagPrecond(r̄l ,Al )
17. else
18. // No diagonal preconditioning

edl = 0
19. endif
20. // Add up corrections: pre-smooth, coarse-level, and diagonal

esuml = e
pre
l

+ e
cgc
l

+ edl
21. // Post-smoothing

el = Smooth(esuml ,Al, rl, ω, ν
post)
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