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Abstract  The problem of deterioration in an EOQ model plays a significant role in the field of inventory control and 
management. In this paper, an attempt has been made to develop an inventory model for deteriorating items with uniform 
replenishment rate with power form demand and without shortages. The rate of deterioration is a cubic polynomial as a 
function of time. A total cost function is constructed and a computing algorithm is developed to find the solution of non-linear 
problem of constrained optimization. Numerical demonstration and sensitivity analysis have been carried out for the model to 
identify the sensitive parameters in the systems which have differential variations with total optimal average cost as an im-
portant performance measure of the system. 
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1. Introduction 
The classical inventory models considered the case where 

the replenishment is done instantaneously i.e. at an infinite 
rate. Keeping this situation in mind a number of researchers 
produced a number of inventory models with replenishment 
at an infinite rate. Covert and Philip (1973) formulated an 
EOQ model in which the rate of deterioration of inventory 
involves two-parameter Weibull distribution, demand rate is 
a constant and the instantaneous replenishment occurs 
without shortage of inventory. Wee (1997) discussed a re-
plenishment policy for items with varying rate of deteriora-
tion and demand being dependent on the price level of item. 
Zhao and Zheng (2000) deduced the optimum value of price 
which is dynamic in nature for perishable assets by assuming 
that the nature of demand is heterogeneous. Ghosh and 
Chaudhuri (2004) developed an inventory model for a dete-
riorating item having an instantaneous supply, a quadratic 
time-varying demand and shortages in inventory. A 
two-parameter Weibull distribution is taken to represent the 
time to deterioration. Balkhi and Bakry (2009) considered a 
dynamic inventory model with deteriorating items in which 
each of the production, the demand and the deterioration 
rates, as well as all cost parameters are assumed to be general 
functions of time. Das and Reza (2009) establish an eco-
nomic order quantity (EOQ) model for deteriorating items 
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during phases of production , deterioration and backlogging. 
Begum et al. (2010) investigated inventory-production sys-
tem where the deteriorating items follow two parameters 
Weibull deterioration. They developed the order level in-
ventory models for deteriorating items with quadratic de-
mand. Li et al. (2010) reviewed the recent studies in dete-
riorating items inventory management research fields. He 
proposed some key factors which should be considered in the 
deteriorating inventory studies. Kalam et al. (2010) consid-
ered the production inventory problem in which the dete-
rioration is Weibull distribution; production and demand are 
quadratic function of time. The solution of the model is 
discussed for finite time horizon. 

Kang and Kim (1983) studied on the price of the deterio-
rating inventory, since is most important factor of demand as 
well as production so, production level at the firm decided on 
the basis of price. In order to quantify it, Baker and Urban 
(1988) established an economic order quantity model for 
deterministic inventory system with power form inventory 
level dependent demand pattern. Datta and Pal (1988) dealt 
with a power demand pattern inventory model with variable 
rate of deterioration. Both deterministic and probabilistic 
demands have been considered. 

Mandal and Phaujdar (1989) developed an economics 
production quantity model for deteriorating items with con-
stant production rate in which consumption rate depends on 
stock linearly. It assumed that the more consumption takes 
place at more stock. Later on, Datta and Pal (1990) estab-
lished an EOQ model in which the demand rate is a power 
function of the on-hand inventory displayed until down to a 
certain stock level, at which the demand rate becomes a 
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constant. Pal et al. (1993) studied a deterministic inventory 
model for deteriorating items and the demand of item being 
stock dependent. Giri and Choudhury (1998) determined 
economic order quantity of perishable inventory with stock 
dependent demand rate and nonlinear holding cost. Kobbacy 
and Liang (1999) concerned with the development of an 
intelligent inventory management system which aims at 
bridging the substantial gap between the theory and the 
practice of inventory management. The models incorporated 
cover deterministic demand models including: constant, 
quasi-constant, trended and seasonal demand as well as 
stochastic demand models. Mishra and Singh (2000) pre-
sented the inventory models for damageable multi items and 
also focused on the consumption cost where demand de-
pends on the available stock. Reddy and Sarma (2001) pre-
sented a periodic review inventory problem assuming that 
demand is stock dependent. Datta and Paul (2001) discussed 
an inventory system in which demand is stock dependent and 
more sensitive in the sense of price of item. Sana and 
Chaudhuri (2003) developed an inventory model of a volume 
flexible manufacturing system for a deteriorating item taking 
a stock -dependent demand rate. Demand rate remains 
stock-dependent for an initial period after which a uniform 
demand rate follows as the stock comes down to a certain 
level. The unit production cost is taken to be a function of the 
finite production rate. Ouyang et al. (2005) proposed an 
EOQ inventory mathematical model for deteriorating items 
with exponentially decreasing demand.  

Berman and Perry (2006) presented a model in which 
demand rate is the function of inventory level and it is a 
piecewise constant function and a family of exponential 
functions. The demand functions and holding cost functions 
considered as quite general. Jain et al. (2007) presented an 
economic production quantity (EPQ) model for deteriorating 
items with stock-dependent demand and shortages. They 
assumed that a constant fraction of the on-hand inventory 
deteriorates and demand rate depends upon the amount of the 
stock level. Zhou and Shi (2008) developed a deterministic 
inventory model for deteriorating items with stock- de-
pendent demand. Ghosh and Chakrabarty (2009) considered 
an order-level inventory model with two levels of storage for 
deteriorating items assuming that the demand is time- de-
pendent. Panda et al. (2009) considered a single item eco-
nomic order quantity model in which the demand is stock 
dependent. After a certain time the product starts to dete-
riorate and due to visualization effect and other aspects of 
deterioration the demand becomes constant. Singh et al. 
(2009) developed an inventory model in which demand 
follows power pattern. When fresh and new items arrive in 
stock they begin to decay after a fixed time interval. Skouri 
and Konstantaras (2009) considered an order level inventory 
model for seasonable and fashionable products subject to a 
period of increasing demand followed by a period of level 
demand and then by a period of decreasing demand rate 
(three branches ramp type demand rate). The product dete-
riorates with a time dependent, namely, Weibull deteriora-
tion rate. Valliathal and Uthayakumar (2009) studied a de-

terministic inventory model for deteriorating items. They 
considered the combined stock and time varying demand to 
make the theory more applicable in practice. Patra et al. 
(2010) developed a deterministic inventory model when the 
deterioration rate is time proportional. Ghare and Schrader 
(1963) developed an inventory model for an item with an 
exponentially decaying inventory, constant demand and 
finally obtained economic order quantity for the model. 
Further, Philip (1974) extended the EOQ model by consid-
ering the deterioration rate as a variable which follows 
three-parameter Weibull distribution. Misra (1975) estab-
lished the optimal production lot size model for deteriorating 
items with constant demand and varying deterioration as 
well as constant rate (exponential case) deterioration. He 
used a two-parameter Weibull distribution to fit the dete-
rioration rate during the production of items and suggested a 
numerical method for varying rate of deterioration. Shah and 
Jaiswal (1977) considered an order-level of inventory for the 
system in which the rate of deterioration is constant (uni-
form). Cohen (1977) established the joint pricing and or-
dering policy for exponentially decaying inventory with 
known demand. Gupta and Vrat (1986) considered an in-
ventory model of stock-dependent consumption rate. Pad-
manabhan and Vrat (1995) studied EOQ models for perish-
able items under stock dependent selling rate. Wu et al. 
(1999) considered an EOQ model in which inventory is 
depleted not only by demand, but also by deterioration at a 
Weibull distributed rate, assumed the demand rate with a 
ramp type function of time. Chen and Lin (2002) focused on 
optimal replenishment inventory items and assumed that the 
deterioration is distributed normally. Mishra et al. (2002) 
have discussed an inventory models for damageable items 
with two-level storage facility and occurrence of breakdown 
of machines. 

Dye (2004) proposed an EOQ model for perishable Items 
with Weibull distributed deterioration. He assumed that the 
demand rate is a power-form function of time. Sana and 
Chaudhuri (2004) developed a stock-review inventory model 
for perishable items with uniform replenishment rate and 
stock-dependent demand. The deterioration function per unit 
time is a quadratic function of time. The associative cost 
function is optimized due to the limitation of storage capac-
ity. Deng (2005) considered inventory models with ramp 
type demand for items with Weibull deterioration. Mishra 
and Mishra (2008) determined optimum quantity and the 
price of deteriorating inventory item under perfect competi-
tion using marginal revenue and marginal cost approach for 
different level of stock based demand because it attracts 
more customers to buy more. In this model the effect of 
number of selling point in the market on the demand is also 
discussed. Roy (2008) developed a deterministic inventory 
model when the deterioration rate is time proportional. De-
mand rate is a function of selling price and holding cost is 
time dependent. He considered both the cases shortage and 
no-shortage in inventory. Shah and Acharya (2008) formu-
lated an order-level lot-size inventory model for a time – 
dependent deterioration and exponentially declining demand. 
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Singh et al. (2009) considered an inventory problem for a 
deteriorating item having two separate warehouses, one of 
finite dimension and the other of infinite dimension. Dete-
rioration rates of items in the two warehouses may be dif-
ferent, which is time dependent and the demand rate of items 
is linear with time. Arya et al. (2009) presented an optimi-
zation framework to derive optimal replenishment policy for 
perishable items with stock dependent demand rate. The 
demand rate is assumed to be a function of current level 
inventory and the inventory deteriorates per unit time with 
variable deterioration rate. These two parameter and 
third-parameter Weibull distribution functions are consid-
ered as variable deterioration rate.  

Tripathy and Mishra (2010) dealt with development of an 
inventory model when the deterioration rate follows Weibull 
two parameter distributions, demand rate is a function of 
selling price and holding cost is time dependent. With 
shortage and without shortage both cases have been taken 
care of in developing the inventory models. Tripathy et al. 
(2010) developed an order level inventory system for time 
dependent linearly deteriorating items with decreasing de-
mand rate, assuming that the production rate and the demand 
rate are time dependent. Two EOQ models for without 
shortage case and with shortage case have been developed. 
Kundu and Chakrabarti (2010) considered economic order 
quantities under conditions of price dependence of demand. 
In first model, the rate of deterioration is taken to be 
time-proportional and a power law form of the price de-
pendence of demand is considered. In second model, the rate 
of deterioration taken to be time-proportional and the time to 
deterioration is assumed to follow a two-parameter Weibull 
distribution. A power law form of the price-dependence of 
demand is considered. They assumed that the time where the 
inventory depletes to zero is a random point of time.  

Sana and Chaudhuri (2004) attempted the model analyti-
cally with power order deterioration but they made no at-
tempt to solve the model numerically because of mathe-
matical complexity of the model. As a result, no sensitivity 
analysis leading to economic feasibility of the model was 
attempted to study the variation of total optimal average cost 
of the model with the variation of various important pa-
rameters involved in the model. With this in mind in this 
paper, a computational algorithm has been developed to find 
the numerical solution of the model having cubic deteriora-
tion by solving the complex problem of non-linearity by 
using a set of techniques of N-R and Taylor’s series to 
compute the total optimal average cost of the system as an 
important performance measure of the model. All the com-
putations regarding the performance measures are carried out 
with the help of computing algorithm and its implementation 
in the C++ language. An exhaustive numerical demonstra-
tion and sensitivity analysis have been presented with the 
help of computing algorithm to exhibit the use of the model. 
Advantage of the present investigation of the problem lies in 
the fact that an important performance measure of total op-
timum average cost of the system is computed to gain the 

better insight for planning and controlling the production of 
the inventory. The provision of cubic deterioration is another 
useful novelty of the model to assess the reliability of the 
deterioration of inventory with respect to volatile items. 

The whole paper has been organized in various important 
sections which include introduction, fundamental assump-
tions and notations, model development and its cost analysis, 
computing algorithm, numerical demonstration and sensi-
tivity analysis and conclusion.  

2. Fundamental Assumptions and 
Notations 

We have used the following assumptions and notations for 
the model formulation. 
Assumptions 

i. Demand of perishable items depends upon on hand 
inventory I . The demand function )(ID  is taken to be a 
power form function of inventory level )(tI at any time t  as 

βαIID =)( , 0>α , 10 << β , where α  and β  are scale 
and shape parameters. The pictorial representation of de-
mand function is shown in the following figure:  

 
Figure 3.1.  Power form demand rate-time relationship 

ii. Replenishment rate is infinite (instantaneous) but rep-
lenishment size is finite.  

iii. Replenishment rate is uniform.  
iv. Lead-time is zero. 
v. Inventory model is considered for a single perishable 

product.  
vi. A variable fraction )(tθ of the on-hand inventory dete-

riorates per unit of time and is a cubic function of time. Here 
,)( 32 dtctbtat +++=θ where dcba and,, are real num-

bers, .0≠d  So that 
a) 232)(' dtctbt ++=θ  
b) dtct 62)('' +=θ  
c) dt 6)(''' =θ  
where a = initial deterioration, b = initial rate of change of 

deterioration, c = acceleration of deterioration and d = rate of 
change of acceleration of deterioration. The items undergoes 
decay at θ(t)I(t) at any time t. The intensity of deterioration is 
very low during the early stage of inventory because t is 
small. However, the intensity increases with time rapidly as 
it is a cubic function of time. The pictorial representation of 
deterioration function is shown in the following figure:  

Demand 

Time 
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Figure 3.2.  Deterioration-time relationship 

vii. Storage capacity is limited. 
viii. Shortages are not allowed. 
ix. All ordered units arrive new and fresh, that is, their age 

equals zero. 
x. The time-horizon is infinite. 
xi. Holding cost per unit per unit time and set-up cost per 

inventory cycle both are constant.  
xii. Procurement cost (i.e. costs to acquire inventory from 

various manufacturing centers or units) per unit item is also 
constant. 
Notations 

I(t)=On hand inventory at time t. 
I1=Starting and ending inventory level. 
I2=Pick of the inventory level. 
R=Finite replenishment rate. 
Cs=Set up cost per cycle. 
Ch=Holding cost per unit per unit time. 
Cp=Procurement cost per unit item. 

1t =Pick off time of the inventory level. 
T=The length of a cycle. 
TAC=Total average cost for a replenishment cycle. 

3. Model Development & Cost Analysis 
The inventory system developed is depicted by the fol-

lowing figure:  

 
Figure 2.3.  Inventory level-time relationship 

In this model, the inventory cycle time consists of two 
segments [0, t1] and [t1, T]. Uniform replenishment rate 
starts with inventory I1 and continues upto time t = t1. The 
inventory piles up during [0, t1], after meeting demands in 
the market. The inventory level at time t = t1 is I2. The 
storage space is limited here. It can store maximum (Ix) units. 

Again, the inventory level gradually reaches to I1 at time t = 
T. The instantaneous states of the inventory level )(tI at any 
time t are governed by the following system of differential 
equations:  

1
( ) ( ) ( ) ( ), 0dI t R I t t I t t t

dt
βα θ= − − ≤ ≤      (3.1) 

211 )()0( ItIandIIwith ==  

  (3.2) 

with 1)( ITI =  
Without loss of generality, we prefer to work IastI )( ,

θθ ast)( , ')(' θθ ast , '')('' θθ ast  and '.'')(''' θθ ast  
We solve the above equations by approximation using Tay-
lor’s series expansion. Then eqn (3.1) reduces to 

. ,dI R I I
dt
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Similarly, applying initial condition at t = t1 from eqn 
(3.2), we have 
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Total cost invested during each inventory cycle is given by 
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Therefore, the total average cost is 
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Now we optimize )(TTAC  for 01 ≥I , 11 aIIR +> βα , 

12 II >  and .2 xII ≤  
The optimal value of T  for the minimum total average 

cost is the solution of the non-linear equation in T  i.e. 

0=TAC
dt
d  provided that this obtained value of T  satisfies 

the condition 0
*

2

2

>








=Tt

TAC
dt
d , where T* is the optimal 

value of T. 
The above constrained optimization problem can be 

solved using any iterative numerical method when the values 
of the parameters are prescribed. Here, this objective is ful-
filled by developing computing algorithm and using N-R 
method which returns us optimal value of T and total optimal 
average cost (TOAC) of the system.   

4. Computing Algorithm 
The following computing algorithm is developed to find 

out the optimal cycle time and total optimal average cost of 
the inventory system. 

Step (i): Begin 
Step (ii): Data input 
Step (iii): Enter D 
Step (iv): Enter Ch, Cs and Cp 
Step (v): Enter deterioration rate  
Step (vi): Enter initial guess of cycle time 
Step (vii): Define function 
Step (viii): Do 
Step (ix): Compute function  
Step (x): Compute function derivative  
Step (xi): Compute  
Step (xii): Compute diff. (Tn-To) 
Step (xiii): Assign To=Tn  
Step (xiv): While 
Step (xv): Abs(diff)<0.0001 & diff. ≠  0. 
Step (xvi): Data output fn  
Step (xvii): Data output fnd  
Step (xviii): Data output Tn 
Step (xix): Define total average cost function (tacf) 
Step (xx): Enter Tn  
Step (xxi): Compute tacf 
Step (xxii): Data output tacf 
Step (xxiii): End  

5. Numerical Demonstration & Sensi-
tivity Analysis 

The following tables are the output of the computing al-
gorithm implemented in C++. 

Table and Graph (5.1): Replenishment rate (RR) Vs. 
TOAC 

)2,5,1,5,2000,1500,1000
,01.0,02.0,03.0,05.0,5.0,4(

121 =======
======

tTCCCII
dcba

phs

βα
 

RR TOAC 
150 6960 
250 7000 
350 7040 
450 7080 
550 7120 
620 7148 

1 1

1
0 0

( ) ( ) ( )
T t

T

t
I t dt I t dt I t dt= +∫ ∫ ∫
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Table and Graph (5.2): Starting and ending inventory level (SEIL) Vs. 
TOAC 

2 1

( 4, 0.5, 200, 0.05, 0.03, 0.02, 0.01,
1500, 2000, 5, 1, 5, 2)s h p

R a b c d
I C C C T t
α β= = = = = = =

= = = = = =
 

SEIL TOAC 
500 5980 
700 6380 
900 6780 

1100 7180 
1300 7580 
1400 7780 

 
Table and Graph (5.3): Pick-off inventory level (PIL) Vs. TOAC 

1 1

( 4, 0.5, 200, 0.05, 0.03, 0.02, 0.01,
1000, 2000, 5, 1, 5, 2)s h p

R a b c d
I C C C T t
α β= = = = = = =
= = = = = =

 

PIL TOAC  
1100 5780 
1200 6080 
1300 6380 
1400 6680 
1500 6980 
1600 7280 

 
Table and Graph (5.4): Set up cost per cycle SCPC Vs TOAC 

1 2 1

( 4, 0.5, 200, 0.05, 0.03, 0.02, 0.01,
1000, 1500, 5, 1, 5, 2)h p

R a b c d
I I C C T t
α β= = = = = = =
= = = = = =

 

SCPC TOAC 
1000 6780 
1400 6860 
1800 6940 
2200 7020 
2600 7100 
2800 7140 

 
Table and Graph (5.5): Holding cost per unit per unit time HCPUPUT Vs 
TOAC 

1 2 1

( 4, 0.5, 200, 0.05, 0.03, 0.02, 0.01,
1000, 1500, 2000, 1, 5, 2)s p

R a b c d
I I C C T t
α β= = = = = = =
= = = = = =

 

HCPUPUT  TOAC 
1 1780 
3 4380 
5 6980 
6 8020 
7 9580 
8 10880 

 
Table and Graph (5.6): Procurement cost per unit item PCPUI Vs TOAC 

)2,5,5,2000,1500,1000
,01.0,02.0,03.0,05.0,200,5.0,4(

121 ======
=======
tTCCII

dcbaR

hs

βα  

PCPUI TOAC  
0.3 6924 
0.6 6949 
1.0 6980 
1.2 6996 
1.5 7020 
1.8 7044 

 
Table and Graph (5.7): Length of a cycle LC Vs TOAC 

1 2 1

( 4, 0.5, 200, 0.05, 0.03, 0.02, 0.01,
1000, 1500, 2000, 5, 1, 2)s h p

R a b c d
I I C C C t
α β= = = = = = =
= = = = = =

 

LC   TOAC 
3 6633 
4 6850 
5 6980 
6 7067 
7 7129 
8 7175 
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Table and Graph (5.8): Pick-off time of inventory level 

PTIL Vs TOAC 

1 2

( 4, 0.5, 200, 0.05, 0.03, 0.02, 0.01,
1000, 1500, 2000, 5, 1, 5)s h p

R a b c d
I I C C C T
α β= = = = = = =
= = = = = =

 

PTIL TOAC 
0.5 7670 
1.0 7440 
2.0 6980 
3.0 6520 
3.5 6290 
4.0 6060 

 

The aim of the sensitivity analysis is to demonstrate the 
variability of the model based on the simulations or the hy-
pothetical data-input. In this paper, we prefer the hypo-
thetical data-input to run the search program of the system. It 
is the process of varying model parameters over a reasonable 
range and observing the relative changes in the model re-
sponse. Remarkable are the observed changes in the total 
optimal average cost of the inventory model under consid-
eration. We wrote a program in C++ to compute the total 
optimal average cost of the inventory model under consid-
eration. In sensitivity analysis, variational effect of parame-
ters on the total optimal average cost is presented. The fol-
lowing observations have been drawn from the model under 
consideration. 

In table and graph (5.1), we observe that as replenishment 
rate increases, the total optimal average cost of the inventory 
cycle increases. Numerically, an increase of 17% in the 
replenishment rate of the inventory cycle amounts to in-
crease of about 0.29% in total optimal average cost of the 
inventory cycle. It indicates that as replenishment rate of the 
inventory cycle increases, the system will be more eco-
nomically feasible. Here is a positive correlation between 
replenishment rate and the total optimal average cost. 

In table and graph (5.2), we see that as starting and ending 
inventory level increases, the total optimal average cost of 

the inventory cycle increases. In fact, about 20% increase in 
the starting and ending inventory level of the inventory cycle 
amounts to approx. 3.35% in total optimal average cost of the 
inventory cycle. Thus, we observe that changes in the total 
optimal average cost of the inventory cycle with respect to 
starting and ending inventory level is very slow. This also 
shows a positive correlation between starting and ending 
inventory level and the total optimal average cost. 

In table and graph (5.3), we find that as pick of the in-
ventory level increases, the total optimal average cost of the 
inventory cycle increases. Moreover, an increase of 9.1% in 
the pick of the inventory level of the inventory cycle amounts 
to increase of about 5.19% in total optimal average cost of 
the inventory cycle. Thus, the changes in the total optimal 
average cost of the inventory cycle with respect to pick of the 
inventory level are almost same. Here is a positive correla-
tion between starting and ending inventory level and the total 
optimal average cost. This is in the complete agreement with 
the basic idea that the inventory level is directly proportional 
to the total optimal average cost of the inventory cycle in 
nature.  

In table and graph (5.4), we find that as Set up cost per 
cycle increases, total optimal average cost of the inventory 
cycle increases. Further, an increase of 20 % in set up cost 
per cycle creates approx. 0.006 % increase in the total op-
timal average cost of the inventory cycle. There exists a 
positive correlation between set up cost per cycle and the 
total optimal average cost of the inventory cycle.  

In table and graph (5.5), we see that as holding cost per 
unit per unit time of the inventory cycle increases, the total 
optimal average cost of the inventory cycle increases. Thus, 
a positive correlation is found between them. Moreover,  
33.3% increase in holding cost per unit per unit time of the 
inventory cycle amounts to increase of about 29.68% in the 
total optimal average cost of the inventory cycle. Thus, al-
most same changes are observed in holding cost per unit per 
unit time of the inventory cycle with respect to the optimal 
total Average Cost of the inventory cycle. 

In table and graph (5.6), we observe that as Procurement 
cost per unit item in the inventory cycle increases, the op-
timal Total Average Cost show an increasing trend. Actually, 
an increase of 20% in procurement cost per unit item in the 
inventory causes about 0.23 % increase in the optimal Total 
Average Cost of the inventory cycle. This shows a positive 
correlation between them.  

From table and graph (3.7), it is clear that when length of 
an inventory cycle increases, the optimal total average cost 
show an increasing trend. Actually, an increase of 25% in 
length of an inventory cycle causes about 0.44 % increase in 
the optimal total average cost of the inventory cycle. This 
also shows a positive correlation between them. 

From table and graph (5.8), it is clear that when pick off 
time of the inventory level increases, the optimal total Av-
erage Cost  show a decreasing trend. Actually, an increase 
of 25% in pick off time of the inventory level causes about 
3.3 % decrease in the optimal total average cost of the in-
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ventory cycle which shows a negative correlation between 
them. 

5. Conclusions 
It is a real fact that a large pile of goods motivated the 

customer to buy more. So the demand rate should be a 
function of the stock-level. In the literature, deterioration rate 
is considered as constant, linear, quadratic function of time 
and Weibull distribution. But we have considered the dete-
rioration is a cubic function of time. Because, when dete-
rioration starts then it is accelerated with time. This situation 
happens in case of fast deteriorating items such as meat, 
vegetables, fruits, dairy and allied products (milk, curd 
cheese, yoghurt, and Khoya etc), bread, sweets, food, and 
high nitrogen containing chips, pharmaceuticals, blood and 
radioactive chemicals. Shortages are not allowed.  

As in the constructed model, the considered environment 
does not fit to any specific system but captures some com-
mon characteristics of that environment; the model devel-
oped provides the best possible solution subject to the model 
constraints. Various observations laid down (tables 5.1- 5.8) 
for the model to see the adaptability of the proposed model. 
The objective of our model is to determine the total optimal 
average variable inventory cost at optimal inventory-level, 
which is the sum of set-up costs, holding costs and pro-
curement costs of inventory items.  
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