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Abstract— Biped robots based on the concept of (passive)
dynamic walking are far simpler than the traditional fully-
controlled walking robots, while achieving a more natural gait
and consuming less energy. However, lightly actuated dynamic
walking robots, which rely on the natural limit cycle of their
mechanical structure, are very sensitive to ground disturbances.
Already a very small step down can cause the robot to lose
stability. In this paper, we investigate the use of reinforcement
learning to make a dynamic walking robot more robust against
ground disturbances. The learning controller is applied to a
simulated two-link biped which is an abstraction of a mechanical
prototype developed at the Delft Biorobotics Laboratory. The
learning controller has been designed such that it can be applied
as a straightforward extension of the proportional-derivative
(PD) controller currently used to drive the robot’s pneumatic
actuators. The learning controller is therefore suitable for the
future implementation in the robot hardware. Simulation results
demonstrate that the biped quickly learns to overcome step-down
disturbances on the floor up to 10% of the leg length, without
compromising the natural walking style provided by the PD
controller, which was optimized for walking on an even surface.

I. INTRODUCTION

Since McGeer introduced the concept of passive dynamic
walking [1], a number of energy-efficient and naturally walk-
ing machines have been built. However, the stability and
robustness of this kind of biped robots are still not satisfactory.
This is due to the inherent properties of dynamic walking,
which exploits the natural limit cycle of the kinematic struc-
ture, as opposed to trajectory-based humanoid robots (such as
the Asimo robot by Honda).

To enhance the robustness of dynamic walking, learning
control methods have been investigated with some promising
results [2], [3], [4]. Two types of learning are commonly used:
supervised learning and reinforcement learning. Imitation is an
example of a supervised learning method commonly applied
to humanoid robots in order to achieve the desired motion
pattern. Nakanishi et. al [5] used a human-demonstrated tra-
jectory to train a 5-link planar biped robot walking on a flat
surface. The main drawback of imitation learning is that it is
difficult to find proper target trajectories, mainly because of
the mechanical limitations and the potentially large difference
between simulations and the real robot.

Another type of supervised learning for biped walking is
based on the Zero Moment Point (ZMP) concept [6]. ZMP

controllers are popular because they can ensure stability over
a large range of conditions. The robot learns to follow a
predefined ZMP trajectory during walking. However, ZMP-
based methods require accurate mathematical models and a
suitable trajectory for each joint of the biped. Their main
drawback is that the resulting gait is energy inefficient and
appears unnatural.

Reinforcement learning (RL) algorithms have also been
studied in the context of bipedal walking. They have two main
advantages over supervised learning: 1) The algorithm can
automatically learn a good control solution, without providing
an accurate robot model. 2) The learning process can continue
in order to account for changes in the robot dynamics or terrain
properties. The control performance therefore improves with
increasing experience. Several directions can be distinguished
within the RL control paradigm:

1) Some walking robots use Central Pattern Generators
(CPG) to generate walking gaits. A CPG controller is
often realized as a recurrent neural network (RNN) whose
weights are optimized by RL [7].

2) Fuzzy control based on RL for bipedal walking has been
studied in [8], [9]. Initial fuzzy rules were designed
to capture intuitive knowledge on human walking. Dy-
namic walking experience is then incorporated through
RL. Reinforcement learning has also been used to tune
parameters of other manually designed controllers [10].

3) Tedrake [4] applied a policy-gradient-based reinforce-
ment learning algorithm to a 3D biped, starting with a
passive walker without any control. The robot learned to
walk on a flat surface in about 20 minutes.

Although dynamically walking bipeds have been extensively
studied, most of the results only apply to walking on an even
surface. The main contribution of this paper is the development
of a RL-based control scheme for a dynamic biped walking
on an uneven surface. The RL controller has been designed
to enhance the disturbance rejection properties of a well-
tuned PD controller, without compromising the natural gait
or excessively increasing the energy consumption.

The remainder of this paper is structured as follows. In
Section II, we introduce the considered biped and the PD
controller. Section III details the structure of the learning
controller and the RL algorithm. In Section IV, the simulation
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results are reported and Section V concludes the paper.

II. PD-C ONTROLLED DYNAMIC WALKER

Passive dynamic walkers can walk in a smooth and stable
manner down a shallow slope without any actuation or control.
They exhibit a steady walking pattern (limit cycle) which is
energy efficient and natural. Walking on a flat surface can be
achieved by properly timed light actuation of the hip or ankle
joints [11], [12].

A. Mechanical Prototype

In this study, we consider the 2D bipedal walker ‘Mike’
shown in Fig. 1a. It is powered by lightweight pneumatic
actuators (McKibben muscles) at the hip. The hip joint is
actuated by an antagonistic pair of muscles which generate the
desired joint torque. Each knee is extended by one McKibben
muscle which is counteracted by a weak passive spring, see
Fig. 1b. There is no ankle actuation.

(a) The prototype. (b) Structure schematic.

Fig. 1. ‘Mike’ is a 2D dynamic walking robot with pneumatic actuation. The
control system switches the equilibrium of the McKibben muscles according
to the foot contact signal [12].

The dynamic simulation model is a two-dimensional biped
model with two rigid legs and curved feet (the knees are not
simulated). It is implemented in MATLAB, using the following
parameter values: leg length 0.4 m, foot radius 0.1 m, leg mass
1.0 kg and leg inertia 0.01 kgm2.

B. PD Controller

The hip actuators are controlled by a PD controller, which is
represented by the spring and damper system in the mechanical
scheme of Fig. 2. The spring generates hip torque and drives
the swing leg towards the desired relative angle φd.

The hip torque τ is generated according to the following
proportional-derivative control law:

τ(t) = kp

(
φd − φr(t)

)− kdφ̇r(t) (1)

where φr is the relative angle between the two legs (which can
be easily measured by a potentiometer or encoder), kp, kd are
the PD parameters and φd is the desired relative angle between
the legs. Once the current swing leg touches the ground and
becomes the new stance leg, the sign of φd is inverted and the

Fig. 2. The PD-controlled biped. The spring and damper system represents
the PD controller, which drives the swing leg towards the desired relative
angle φd indicated by the dashed line.

State Machine Biped Robot

Foot contact signal

PD Controller
-

τ

φr

φ̇r

φd

Fig. 3. The PD control scheme of the biped robot.

controller drives the new swing leg forward. The PD control
scheme is shown in Fig. 3.

Tuning the PD parameters is a non-trivial exercise; on an
even surface, a wide range of different gaits can be obtained
within the controller’s stability region. Figure 4 shows the
stable ranges of kp and kd for three different desired angles
φd: 0.3 rad, 0.5 rad and 1.0 rad.

Fig. 4. Stable ranges for kp, kd with φd=0.30 rad, 0.50 rad and 1.0 rad.

The PD parameters were fine-tuned within the stable range
for φd = 0.5 rad, which gave the most natural gait. The fine-
tuning was based on a cost function that makes a tradeoff
between the walking speed and the energy cost per unit
distance [11]. During this tuning, we found that the PD
controller cannot achieve natural and energy-efficient walking
simultaneously with strong disturbance rejection properties.
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The learning controller described in next section is designed
to improve the rejection of ground disturbances.
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Fig. 5. The walking limit cycle generated by the optimized PD controller.
Top-left: phase plot of leg 1 angle; top-right phase plot of relative angle;
bottom-left: φd (solid) and φr (dotted); bottom-right: torque τ .

Figure 5 shows the walking cycle generated by the opti-
mized PD controller. The circles in the upper two phase plots
indicate the foot contact instants. The angles are denoted by
φ and the angular velocities by ω.

III. LEARNING CONTROL SCHEME

In order to select an appropriate signal as an input of the
learning controller, the effect of ground disturbances on the
limit cycle has been thoroughly analyzed. We found that the
difference ωdv between the measured angular velocity of the
stance leg ωsto (measured right after the foot contact) and
its nominal value ω∗

sto on an even surface carries enough
information on the deviation from the nominal walking cycle.
The angular velocity difference ωdv has therefore been selected
as the input of the learning agent.

State Machine Biped Robot

Foot contact signal

PD Controller
-

Learning Controller

Foot contact signalFailure
Detection

+ τ

φr

φ̇r

φd

ωsto

φact

φst

Fig. 6. The learning control scheme of the biped robot.

The output of the learning controller φact is a short pulse
added to the PD controller’s set-point φd (see Fig. 6). This
results in extra hip torque to move the swing leg more forward
and prevent tripping. This simple, one-input, one-output con-
trol structure facilitates quick learning convergence and allows
future real-time implementation in the robot hardware. The
purpose of the failure-detection block in Fig. 6 is to monitor
in simulations the foot contact and the angle of the stance leg
φact in order to detect whether walking failed. A failure means
that the robot fell either backward or forward or that it started
running (no foot in contact with ground). This information is
used to compute the rewards, as shown in Fig. 7 and further
detailed in Section III-B.

Learning Agent

Rewards Evaluation

Foot contact signal
Failure Detection

Reward

φact

φst

ωstoωdv

ω∗
sto − ωsto

Fig. 7. Structure of the learning controller.

A. The Reinforcement Learning Algorithm

Reinforcement learning is suitable for on-line adaptation
through interaction with the process. At each time step, the
learning agent receives information on the process’ state, the
reward (indicating a success or failure of the control task) and
chooses an action to perform. The goal of RL is to map the
states to optimal actions such that the expected future reward is
maximized [13]. In this work, we adopt the Sarsa(λ) algorithm
[14], [15], [13], which is an on-policy temporal difference
(TD) algorithm, briefly outlined below.

Denote by s the system’s state and by a the control action;
Q(s, a) is the estimated state-action value (Q-value). The Q-
value is stored in a Q-table, which is a lookup table indexed by
discrete state-action pairs (continuous states and actions must
be discretized). The expected future reward under the current
control policy π is defined as:

Qπ(sk, ak) = E

( ∞∑
n=0

γkrk+n+1

)
, with 0 < γ < 1 (2)

with E the expectation operator, rk+n+1 the future rewards,
and γ a discount factor in the range of (0, 1). The optimal
Q-value function (2) cannot be computed, but it can be
approximated through the following iterative updates:

Qk+1(sk, ak) = Qk(sk, ak) + α
(
rk+1 + γQk(sk+1, ak+1)

−Qk(sk, ak)
)

(3)

where rk+1 is the reward received for the transition from state
sk to sk+1 as a result of action ak and α ∈ (0, 1] is the
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learning rate. Note that this basic ‘Sarsa’ (state-action-reward-
state-action) rule only updates the Q-values corresponding to
the most recently visited state. As this typically leads to long
learning times in tasks with delayed reward, eligibility traces
are employed to speed up the learning process. The eligibility
trace is a memory variable associated with each state, which
decays in time. The basic idea behind the eligibility trace
is that earlier state-action pairs are given less credit for the
current reward. The decay factor of the trace is denoted by λ,
hence the term Sarsa(λ) algorithm.

The control policy is obtained by selecting the action
corresponding to the largest Q -value for the given state:

π(s) = argmax
a

Q(s, a) (4)

This greedy policy is optimal in the case that the Q -values
converged to the optimal ones. In order to discover an optimal
control strategy, the RL agent must explore its environment.
This means that it must also select other actions than dictated
by the greedy policy. We use the Max-Boltzmann exploration
strategy [16], which explores with probability ε using the
‘Boltzmann selection’ and takes the optimal action with prob-
ability 1 − ε. The learning algorithm is summarized in the
following table:

Set learning rate α, discount factor γ, eligibility trace decay factor λ,
ε -greedy exploration rate ε, Boltzmann exploration constant T .

Initialize Q(ωdv , φact) ← 0, ∀ ωdv , φact

Repeat (for each trial):
e ← 0 (clear the eligibility traces)
Initialize the biped to a stable gait
Repeat (for each step):

Take action φact
k , observe rk+1, ωdv,k+1

Choose φact
k+1 on the basis of ωdv,k+1, compute :

δk = rk + γQ(ωdv,k+1, φact
k+1)−Q(ωdv,k, φact

k )
Update the replacing eligibility traces:

e(ωdv , φact)← γλe(ωdv , φact) ∀ ωdv , φact

e(ωdv,k, φact
k )← 1

Update the Q-value ∀ ωdv , φact:
Q(ωdv , φact)← Q(ωdv , φact) + αδke(ωdv , φact)

Until trial terminated.
Until maximum number of trials is reached.

B. Reward Function for the Biped

The RL algorithm is applied on a step-by-step basis, which
means that the sampling period of the learning agent equals
to the period of one step. Moreover, the learning agent is
only triggered when ωdv > 0.1 rad/s. If the biped successfully
makes a step forward, the agent receives a small positive
reward, otherwise, a large negative reward is given. More
specifically, the reward after each step is defined by:

rk =
{

5 − φact
k−1 − ωdv,k, succesful step forward

−100, otherwise
(5)

Here φact
k−1 is the action taken at the previous step. The −ωdv,k

term encourages ωdv to converge to zero. The −φact
k term

encourages the learning agent to take energy-efficient actions:
the smaller the magnitude of φact

k , the higher the reward
rk. The constant 5 makes the reward positive (the maximum

action φact
max = 2 rad/s, and the maximum value of the state

ωdv,max = 2 rad/s).
The learning trial is terminated when the biped either

falls or when it manages to successfully walk 10 steps with
|ωdv| < 0.1 rad (this is regarded as convergence to the nominal
walking cycle). A series of several trials (e.g. 20) is called an
experiment. Within an experiment, the walking performance
will typically improve. For the sake of reliable statistical
evaluation, an experiment is repeated several times.

The continuous input ωdv is discretized by using interval
boundaries {−2.0, −1.9, . . . , 2.0} and the control action φact

takes on discrete values from the set {0, 0.1, . . . , 2}. The
learning rate was selected as α = 0.5, the eligibility traces
decay factor λ = 0.5, and the constant of Boltzmann selection
T = 10. The exploration probability ε is set to 0.3 at the
beginning of learning and reset to zero after 15 trials in order
to switch off exploration and evaluate the strategy learned.

IV. SIMULATION RESULTS AND DISCUSSION

A. Performance Evaluation

The average reward per step is used as a performance
criterion:

r̄a =
1
N

N∑
k=1

rk (6)

where N is the total number of steps within one trial. As the
exploration involves randomness, the evaluation must be based
on statistical analysis of several learning experiments. We take
the mean of r̄a over 20 experiments:

P =
1
20

20∑
i=1

r̄i
a (7)

Higher values of P represent better performance.

B. Fixed Step-Down Disturbance

First, only a single step of 36 mm down is considered. The
learning result over 20 experiments is shown in Fig. 8. Each of
the experiments consists of 20 trials. At the start of learning,
the performance index P is negative, the biped falls nearly
each time after the disturbance occurs. As the number of
trials increases, the biped gains more experience and learns
to overcome the disturbance. After the 15th trial, at which
the exploration is switched off, the performance index stays
positive, which implies that the biped is able to overcome the
disturbance every time.

C. Random Step-Down Disturbances

The setting is the same as above, however, in each trial,
the height of the step is randomly chosen from the set
{12, 16, 20, 24, 28, 32, 36, 40}mm, which corresponds
to the range 3 to 10% of the leg length (40 cm). Note that the
PD controller without learning is able to overcome only the
12 mm step-down disturbance. Again, 20 experiments are run,
now each experiment consists of 150 trials. The parameters
are the same as above, the exploration probability is reset
to zero after 130 trials. Figure 9 shows the evolution of the
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Fig. 8. Performance index P for a 36 mm step-down disturbance, averaged
over 20 experiments.

performance index P over the trials (again averaged over 20
experiments).
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Fig. 9. The performance index P for a random step-down disturbance,
averaged over 20 experiments.

D. Performance in a Test Scenario

In order to test the robustness of the learning controller,
a test scenario with 16 steps was designed. The height of
the steps monotonically increases from 12 mm to 40 mm with
a 2 mm interval. The first step occurs at t = 2 s, and the
subsequent 13 steps after every two seconds.

If ωdv is smaller than 0.1 rad/s for 10 successive steps,
the bipedal gait is then considered as having converged to the
original stable limit cycle. In the test scenario, the exploration
is turned off (by setting ε = 0). The agent uses the control
policy it has learned during one of the experiments with 150
trials, as described above.

The foot contact points with the floor are marked by aster-
isks in Fig. 10. The feedback state ωdv that the agent receives
in the test scenario is shown in Fig. 11. The learning controller
adaptively tunes the set-point φd, as shown in Fig. 12.

These results demonstrate that the learned control policy
helps the biped overcome all the step-down disturbances of
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Fig. 10. Foot contacts during the test scenario 16 steps.
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Fig. 11. The deviation ωdv during the test scenario. The ‘∗′ markers denote
the discretized input of the learning agent.

the test scenario, in which the maximum step height is 4 cm
(about 10% of the leg length). The proposed learning algorithm
is effective in making the biped robust against step-down
disturbances on the floor.

V. CONCLUSIONS

We proposed a RL-based controller to help a dynamic walk-
ing robot overcome step-down disturbances on the walking
surface. The learning agent learns to apply additional hip
torque to adapt the gait after a step-down disturbance occurs.
The effectiveness of the learning algorithm was demonstrated
by two simulation experiments. In the first experiment, the
agent learned a control policy to overcome a single step down
on the floor within only 20 trials. In the second experiment, the
learning agent learned to overcome a random height step-down
within 150 trials. Although the biped was trained by only one
step in each trial, it is able to walk through a test scenario
with 16 different step-down disturbances. This demonstrates
the good generalization properties of the learning controller.
The learned control policy is also effective in the presence
of multiple subsequent disturbances. The Sarsa(λ) algorithm
proved to be suitable for this task. Our future research will
include an extension to a more complex simulation model,
RL based on function approximation techniques and finally
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an implementation in the robot hardware.
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