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Abstract. It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time 
(negative relaxation) if they are not completely magnetized by a pulsed magnetic field. It is shown, in the 
framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or 
annuli during a pulsed field magnetization can explain the negative magnetic relaxation  in the 
superconductor. 

Advances in the synthesis of large melt grown 
crystals of high-temperature superconductors (HTS) 
based on Y (Re) BaCuO [1] led to extensive 
investigations of their superconducting properties 
with a view of practical applications. One of these 
applications is creating magnetic systems for 
compact EPR and NMR spectrometers. The 
superconductors are magnetized either in a static 
magnetic field (FC) which is switched off afterwards, 
or using a pulse method. The pulsed field 
magnetization (PFM) method is the preferred one 
because of low power consuming and simplicity. The 
main disadvantage of HTS materials is a reduction of 
the critical current Jc with time, which is caused by 
magnetic flux creep. Therefore, the trapped magnetic 
moment decreases with time, regardless of the 
magnitude of the magnetization, when 
superconductors are slowly (isothermally) 
magnetized.  Generally this process is linear in a 
logarithmic time scale [2]. On the other hand, after a 
short PFM of HTS one can observe not only the 
decrease of the magnetic moment, but also its growth 
[3,4]. The growth of the trapped magnetic field is 
observed in tablets, as well as in annuli if they are 
not completely magnetized by a pulsed magnetic 
field. This effect can be called as a negative 
relaxation according to the accepted definition of the 
relaxation rate [2]. The negative relaxation is 
observed when the trapped field is less, by 10-20%,  
than the maximal value Bmax. 

Figure 1 shows the experimental dependence of 
the normalized trapped field B(t) / Bmax in the gap of 
2mm between two superconducting annuli 
(manufactured by the method described in [5]) after 
the action of magnetizing pulses of 10 ms duration. 
The pulse amplitude was gradually increased during 
the multi-pulsed field magnetization (multi-PFM). 
The trapped field is normalized to the maximal 

attainable value of Bmax ≈ 0,7T. At the initial stage of 
magnetization, when B / Bmax << 0.75 (see figure 
1C), we observed a jump in the trapped field just 
after a field pulse, followed by a continuous growth 
of B with the time. Figure 1B shows the trapped field 
data after pulses for intermediate magnetization. In 
this case the rate of the magnetization growth is 
essentially reduced and after the jump the field 
changes only slightly with  time. In large fields 
(figure 1A) near the maximum magnetization (B / 
Bmax> 0.9), the field B decreases with time. Note that 
reducing of the trapped field is typical for 
superconductors (a positive relaxation of the 
magnetization), in contrast to the negative relaxation 
observed at the initial part of the multi-PFM.  

It is shown below that the negative relaxation is 
a result of a temperature gradient in the 
superconductor. To simplify the calculations, we 
consider the magnetization of a superconducting 
thick-walled cylinder with inner radius R1 and outer 
radius R2. For the calculation of currents and fields 
we use the Bean critical-state model (see [6]), which 
assumes that the critical current depends on 
temperature, but not on the magnetic field. The Bean 
model describes well the isothermal (slow) 
magnetization process.  

On the other hand, when the pulse of the 
magnetization field is shorter, ≤ 10 ms, the thermal 
diffusion time is much longer than the field pulse 
length. In this case the magnetization can be 
considered as an adiabatic process [7], and the 
instantaneous temperature near the outer edge of the 
cylinder is higher than in the inner one. This is 
crucial in the calculation of the fields and currents 
distribution in the superconductor.  
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Fig. 1. Time evolution of the normalized 

magnetization B (t)/Bmax in the gap of 2 mm between two 
superconducting annuli after the pulse magnetization. Bmax 
= 0.7T.  

 
It is difficult to calculate exactly the warming 

of the superconductor during pulsed magnetization, 
since in this case the current-voltage characteristic is 
unknown. As a first approximation, we assume that 
immediately after the pulse the local temperature 
depends linearly on the cylinder’s radius. Thus, T 
increases linearly from the inner edge of 
superconducting cylinder to the outer one, as it turns 
out in many calculations [8,9]. Assuming that the 
experiments are carried out at liquid nitrogen 
temperature, the radial temperature variation δT=T-
78 can be written as 

 
δT(r) =Δ⋅(r-R1)/(R2-R1)                                        (1),  
 
where Δ is the radial gradient of temperature or 
overheating of the outer wall toward the inside one. 

We assume as usual that the critical current 
decreases linearly with increasing temperature, Jc = 
J0 (1-T/Tc). In this case, the current density that 
determines the trapped flux is not constant, as in the 
simple Bean model, but decreases linearly with 
increasing radius [6]. Therefore, the critical current 
density in the inner region is higher than at the outer 
edge near R2 that can be written as: 
 
 Jc= J0 (1−(78+δT(r))/Tc)                                      (2). 

 
It is known that the trapped field reaches its 

maximum value in the body of a superconductor if it 

is not completely magnetized [6]. In this case the 
current density distribution is given by 

 
           −Jc (δT(r)),  R1<r<Rm 
Jс =                            (3), 
           + Jc (δT(r)),  Rm<r<R2 
 
which corresponds to the maximum trapped field at 
the distance Rm in the cylinder’s body. The current 
distribution (3) is schematically depicted in figure 2. 

The minus sign in figure 2 and Eq. (3) indicates 
the diamagnetic currents that occur on the rising 
edge of the pulse magnetization, and (+) 
corresponds to the currents which appear at the 
recession of the external field pulse. The currents 
change its direction at the point of current 
discontinuity r = Rm where the trapped magnetic 
field has its maximum. 

 
Fig. 2. Schematic distribution of critical currents in a 
superconducting hollow cylinder in the presence of  
temperature gradient. 
 

Superconducting currents create a trapped field 
in the cylinder hole as given by 

                                    (4).                                                            

 
At the integration one should take into account 

the condition (3), with the change of sign of the 
current.  

Due to a flux creep, the current density 
decreases linearly in the logarithmic time scale [2],  

 
J=Jc(1−S⋅ln(t/t0))                                                (5) 

Here S is the so-called logarithmic relaxation rate 
defined by the derivative of S =−d ln (J) / dln (t). 
After cooling at the equilibrium temperature (T = 78 
K) the relaxation rate of the superconducting 
currents depends on the distance r, since these 
currents had appeared at different temperatures. It is 
known that the current relaxation rate exponentially 
decreases if the relaxing superconductor is cooled 
on ΔT [2, 10]. For example, S reduces by 6 times 
after lowering the temperature from 78 K on ΔT= 2 
K and S reduces by 200 times when the temperature 
is decreased on ΔT = 4K, respectively [11]. This 
corresponds to an exponential decrease of the 
relaxatin rate S≈exp(−1,2δT). In view of the pulsed 
heating of the superconductor (1), the relaxation rate 
after cooling decreases from the inner to the outer 
edge, and the distribution of S can be written as 

 
  S=S78⋅e−1.2δT(r)                                                     (6). 
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Here S78 is the relaxation rate at T = 78 K, and δТ is 
measured in degrees K. Taking into account the 
attenuation of the superconducting currents with 
relaxation rate given by (6), the time dependence of 
the trapped magnetic field can be written as 

 
  h(t)=ho−∫Jc(r,T) S78⋅e−1,2δT(r)dr⋅ln(t/to)                 (7). 
 

By analogy with the superconducting currents 
we determine the field relaxation rate in the same 
form as (5). Accordingly, from (4) and (7) we obtain 
an expression for the relative relaxation rate of the 
trapped field in a hollow cylinder 
 

 
                                                                              (8) 

 
 
 
In order to compare our model with 

experimental data we calculated the dependence of 
S (Rm) / S78 for a hollow cylinder, in which R1 = 0.8 
cm, and R2 = 1.8 cm. Annuli with such dimensions 
have been studied in [4]. Fig. 1 illustrates some of 
these data. The calculation results S(Rm)/S78 
depending on the position Rm of the maximal 
trapped field are shown in Fig. 3.  

 
Fig. 3. The relative relaxation rate of the field in the 

bore of the hollow cylinder, depending on the position of 
Rm. The curves correspond from top to bottom Δ = 1K, 
2K, 5K and 10K 

 
During the multi-PFM the maximal field in the 

superconductor shifts from the outer to the inner 
wall. The field in the hole of the cylinder exists 
when Rm ≤ (R1 + R2) / 2 [6], so in Fig. 3 the range of 
Rm extends from the inner radius R1 up to a half of 
the wall thickness. The lower curve corresponds to 
the overheating of the outer wall on Δ = 10 K and 
the upper on Δ = 1K. For Δ = 0, the relaxation rate, 
obviously, is constant (independent of Rm), and the 
S/S78=1. In contrast, for large Δ (strong overheating) 
S rapidly decreases with increasing Rm and changes 
sign from positive to negative even at a short 
distance Rm from R1 (lower curves in Fig. 3).  In this 

case, the higher value of the superheat Δ results in 
the broader region of the negative relaxation. 

From geometrical considerations of the field 
distribution within the Bean model [3,6] it is easy to 
find the relation between the field in the hole of the 
cylinder B to its maximal value Bmax,  and the 
position Rm of the largest field inside the body of the 
superconducting cylinder   

 
  B/Bmax = 1−2(Rm-R1)/(R2-R1)                               (9). 
 

As seen in Fig. 1 the relaxation rate in the 
experiment changes sign at B/Bm=0.88. From (9) we 
easily find that this corresponds to Rm≈0.86. The 
calculation with formula (8) shows (see Fig. 3) that 
for Rm=0.86 the relaxation rate S is zero in case of 
overheating Δ ≈ 7К. According to the published data 
a typical overheating for a pulse magnetization 
consists of a few degrees [12,13]. Due to the lack of 
accurate data on the values of overheating it is 
difficult to talk about the quantitative aspect of the 
described model, but the qualitative agreement is 
evident between the presented rough approximations 
and the experimental data. 

In conclusion, the temperature gradient 
appearing in PFM strongly affects the current 
relaxation in the superconductor. The currents near 
the outer surface diminish slower than the internal 
currents, which vary in the opposite direction. This 
can lead to the negative relaxation of 
superconducting currents, that is to an increasing of 
the magnetic moment of the superconductor as a 
function of time. Negative relaxation can be used to 
improve  the time stability of the magnetic field in 
systems on basis melt grown HTS. 
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