
a Corresponding author: author@email.org

Distributed Online Judge System for Interactive Theorem Provers

Takahisa Mizuno and Shin-ya Nishizaki1
1Department of Computer Science, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan

Abstract. In this paper, we propose a new software design of an online judge system for interactive theorem
proving. The distinctive feature of this architecture is that our online judge system is distributed on the network
and especially involves volunteer computing. In volunteers’ computers, network bots (software robots) are
executed and donate computational resources to the central host of the online judge system. Our proposed
design improves fault tolerance and security. We gave an implementation to two different styles of interactive
theorem prover, Coq and ACL2, and evaluated our proposed architecture. From the experiment on the
implementation, we concluded that our architecture is efficient enough to be used practically.

1 Introduction
1.1 A New Style of Distributed Computation,
Volunteer computing
Volunteer computing is a type of distributed computing
in which computer owners (“volunteers”) donate their
computing resources to projects. Volunteers are typically
members of the general public who own Internet-
connected personal computers. The first volunteer
computing project was the Great Internet Mersenne
Prime Search (GIMPS), which was started in 1996. In
1999, the SETI@home project was launched, which
received considerable media coverage and attracted
several hundred thousand volunteers. In 2002, the
Berkeley Open Infrastructure for Network Computing
(BOINC) project was founded at the University of
California, Berkeley Space Science Laboratory. It was
originally developed to support the SETI@home project.
Later it became useful as a platform for other distributed
applications in various scientific areas. Volunteer
computing systems must deal with problems related to
correctness:
� We cannot predict the number of volunteers and the

volunteers are essentially anonymous;
� Some volunteer computers are possibly overclocked

and they occasionally do not work well and return
incorrect results;

� Some volunteers can intentionally return incorrect
results.

1.2 Interactive Theorem Provers
An interactive theorem prover is a software system which
assists in developing formal proofs through human-
machine collaboration. Formal systems, such as higher-
order logic, and higher-order type systems, are used for

describing formal proofs in interactive theorem provers.
Interactive theorem provers provide automatic assistance
for rigorous reasoning in such formal systems. The
formal reasoning and proving process on the interactive
theorem provers shed light on ambiguity in standard
mathematics. In computer science, interactive theorem
provers are applied to verification of mission-critical
software. Several kinds of interactive theorem prover
have been developed since the 1970s. LCF [1] was the
first tactic/tactical based prover; Coq[2], the HOL prover
[3], and Isabelle/HOL[4] are considered to be successors
to LCF. In these provers, automated reasoning is
provided by combining several kinds of simple reasoning
step, called tactics, with control structures, called
tacticals. The interactive theorem prover Coq is based on
a higher-order type system with inductive definitions,
Calculus of Inductive Constructions, which is powerful
enough to describe definitions and proofs in mathematics
and computer science. For example, an inductive
definition of list concatenation is given in Coq as

Fixpoint app{A:Set}(xs ys: list A) ≔
 match xs with
 | Nil => ys
 | x xs’ => x :: app xs’ ys
 end.

where xs and ys are formal parameters of the
concatenation function app, A is a type of element of the
list, Nil is the empty list, and :: is the list constructor.

A proof of associativity of the list concatenation is
written in Coq as follows.

Theorem app_assoc:
 forall {A:Set}(xs ys zs: listA),

DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2014

,
/

00016 (2014)
201

68
epjconf

EPJ Web of Conferences
46800016

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20146800016

http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20146800016

 app xs(app ys zs)=app(app x sys) zs).

intros.
induction xs.

 simpl.
 reflexivity.
 simple.
 rewrite lHxs.
 reflexivity.
 Qed.

Besides tactic/tactical based provers, there are other
kinds of interactive prover. A remarkable prover is
ACL2 [5], which is a part of the Boyer-Moore family of
provers, developed R. S. Boyer, M. Kaufmann, and J. S.
Moore. This prover is used in practical verification of
software and hardware systems. For example, the
correctness of FPU of AMD K5 is formally verified using
ACL2[6].

In ACL2, the list reverse function is defined as
(defun rev (x)
 (if (endp x) nil
 (append(rev(cdr x))(list(car x)))))
For example, let us prove that (rev (rev (rev x))) is equal
to (rev x). If we first prove a lemma:
(defthm rev-rev

 (implies (true-listp x)
 (equal (rev(rev x)) x)))
then the claim is automatically proved as

(defthm triple-rev
(equal (rev(rev(rev x))) (rev x)))

1.3 Online Judge System

An online judge system poses problems such as questions
in programming contests to users, receives their answers
from the users, and checks the correctness of the
submitted answers. Checking programs’ correctness
implies decision problem of programs’ termination, and
therefore, it is undecidable. Consequently, the program
checking is restricted to an approximation of correctness
checking, in which a submitted and the submitted
programs are compared with the output data generated by
the correct answer programs installed in advance. In the
ACM International Collegiate Programming Contest
(ACM-ICPC), a contest support system PC2 [7] is used.
The system PC2 is also an online judge system which
checks a submitted answer by comparing the results of
pre-installed correct answer programs with pre-
installed input data.

Another remarkable example of a contest support
system is that of Google Code Jam
(https://code.google.com/codejam). The checking method
of this system is different with that of PC2, which is
depicted in Figure 1. If the user completes an answer
program code, then he/she requests input data to test
his/her code. A checking system on the client side
executes the answer program code with the received input
data and obtains the result of the execution. The checking
system sends back the output result to the checking server
and the server verifies the result. We call this method
“client side checking.”

From the viewpoint of security, the server-side
checking is potentially vulnerable to denial-of-service
attacks because a server has to execute unknown codes.
On the other hand, the client-side checking forces clients
to equip a compilation and execution environment for
checking and it imposes a heavy burden on the
developers of a judge system.

1.4 Research Purpose

In this paper, we propose a new design of an online judge
system for interactive theorem proving in the style of

Figure 1. Server-Side Checking

User Judge System

Submitting Answer Code

Result of Checking

Executing with
Pre-installed input

Comparing the result
with the correct code’s

output

Figure 2. Client-Side Checking

User Judge System

Request of Input Data

Input Data for Checking

Ouput Result of User’s
Code

Result of Checking

EPJ Web of Conferences

00016-p.2

server-side checking. We study a method for reducing the
vulnerability of server-side checking and computational
load on the server, introducing volunteer computing.

In comparison with the existing proof-checkers, our
proposed system has a merit that it can be used in the
open distributed environment safely. The existing online
judge systems such as PC2 [7], PKU JudgeOnline, and
Google Code Jam verify a submitted program by
executing it with test data prepared in advance. Therefore,
the submitted program possibly includes errors. On the
other hand, our proposed system checks a submitted
proof using theorem provers and the correctness of the
checked proof is theoretically guaranteed.

2 Online Judge System Volunteer
Computing
In this section, we propose a new design of an online
judge system for interactive theorem proving. The
following points concerning security of the online judge
should be considered.

– Checking submitted proofs for existing interactive

theorem provers has similar vulnerability to
checking for contest programming. Because proof
scripts in many interactive theorem provers can
include program scripts, checking of proof scripts
can derive executing of programs. The existing
implementations of interactive theorem provers are
not assumed to be used by anonymous users
including malicious attackers on the internet. A
malicious program code can carry out a buffer
overflow attack on a server and hijacks the server.
This kind of attack can be fended off by executing
codes in a sandbox arranged in the server.

– A malicious contributor can submit a proof script
which saps the computational resources of a
checking server and makes the server stop. This
kind of attack cannot be avoided by using a
sandbox, since execution in the sandbox can
exhaust the computational resources of the server.

From the above, we know that checking of submitted
proof scripts should be carried out on another machine
than the main server. However, it is not easy to prepare
machines for checking submitted proof scripts. We
therefore introduce the idea of volunteer computing for
processing possibly enormous demands of computational
resources.
 Our online judge system for interactive theorem
proving consists of

– Web Server,
– Judge Controlling Server,
– Database Server
– Judge Bots.

The web server provides a web-based interface to users.
The judge bots are in charge of checking the correctness
of submitted proof scripts. The judge controlling server

supervises the judge bots. The database server mediates
between the web server and the judge controlling server.

The distinctive feature of our system is that each judge
bot requests a proof script to be checked autonomously;
in other words, each judge bot is an initiator of
communication between the judge controlling server and
the judge bot, which is the reason why we call them bots.
Judge bots are “subcontractors” of the judge controlling
system, but judge bots initiate the communication with
the judge controlling server. This is important because it
enables us to place judge bots inside volunteers’
machines in private networks. Thanks to the private
networks, if a judge bot were intruded and hijacked, its
damage could be limited inside the private networks.
Volunteers’ machines in their private networks play a
role of sandbox. In Figure 4, we show the procedures of
our online judge system in Figure 4.

Though our system works normally with a single judge
bot, a redundant configuration of multiple judge bots is

Figure 4. Procedures in Online Judge System

Database
Server

Web
Server

Judge
Controlling

Server

Judge
Bot

Users

Request

Proof
Script Proof

Script Proof
Script Proof

Script
Check

Result
Result

Result
Result

Figure 3. Overview of Our Online Judge System

Database Server

Web
Server

Judge
Server

Judge
Bot

Judge
Bot

Judge
Bot

Users

Host Machine

Volunteers’ Machines

ICASCE 2013

00016-p.3

usually assumed, which improves the fault-tolerance of
the system. The overview of communication between the
judge controlling server and the judge bots can be
described as follows.
1. The judge controlling server indicates a proof script

submitted by a user, which is obtained via the
database server.

2. Several judge bots that are disengaged enough to
check a new proof script, pick it up from the judge
controlling server.

3. The judge bots check the proof script using an
interactive theorem prover and return the result to
the judge controlling server.

4. The judge controlling server receives multiple
results from some of the judge bots and compares
them. If they are consistent, then it registers the
result on the database server. If the judge controlling
server finds some inconsistency, then it purges
suspicious judge bots.

The redundant configuration of judge bots improves the
reliability of the results. We assume that a judge bot is
installed on a volunteer’s computer and it could be
malicious and unfaithful. By comparing multiple results
from judge bots, we can find a false result from such a
malicious judge bot.
 Moreover, if an attacker submits a proof script
including a malicious code, then the judge bots can be
damaged but the host machine is not invaded.

3 Implementation and Evaluation

We implement the online judge system for interactive
theorem proving following the design explained in the
previous chapter.
 We take up Coq and ACL2 as the interactive
theorem provers which are supported in our judge system.
We assume that users submitted proof scripts of either
Coq or ACL2. Judge bots include these theorem provers
in order to check the submitted proof scripts.
 In our implementation, we use the following
software:

– Python 2.7, by which we describe codes of the web

server, the judge controlling server, and the judge
bots;

– Django 1.3: a Python-based framework for web
applications which is used for implementing the web
server;

– SQLite 3.7.1.0: DBMS which is used in the database
server;

– Coq 8.3: an LCF-style interactive theorem prover,
which checks submitted proof scripts in the judge
bots;

– ACL2 2.6.8: a Boyer-Moore-style interactive
theorem prover, which also checks submitted proof
scripts.

We evaluate our implementation with the following proof
scripts (Table 1).

Table 1. Proof scripts for Evaluation

 Theorem Prover Lines
(1) Modus Ponens Coq 6
(2) GCJJ R1 C Coq 396
(3) Triple Reverse ACL2 11
(4) Dupsp ACL2 29

We want to know overhead of our design in comparison
with a naïve implementation without using bots and with
direct usage of interactive theorem provers.

Table 2. Result of Evaluation

 (1) (2) (3) (4)
Our
System

3.818 7.001 0.4 0.551

Naïve
System

3.178 5.783 0.284 0.663

Direct
Checking

0.605 5.375 0.162 0.380

(Seconds)

Our System: Our implementation of the online judge
system
Naïve System: A naive implementation of an online
judge system for interactive theorem provers. This
executes interactive theorem provers directly, without
using judge bots.
Direct Usage: Direct usage of interactive theorem
provers.

From the result of Table 2, we know that the overhead of
our software architecture proposed in this paper is not
heavy: at worst, the overhead is less than double.

4 Conclusion
 In this paper, we proposed new software architecture

of an online judge system for interactive theorem proving.
The distinctive feature of this architecture is that our
online judge system is distributed on the network and
especially involves volunteer computing. Several
components of our system are possibly located in the
various computers and they are connected with each other
via the Internet. We gave an implementation to two
different styles of interactive theorem prover, Coq and
ACL2, and evaluated our proposed architecture. From the
experiment on the implementation, we conclude that our
architecture is efficient enough to be used practically.

In future, we would like to extend our online judge
system to other kinds of interactive theorem provers.
Moreover, collaboration with social network systems,
such as Facebook and Google+ is also important and
should be studied.

EPJ Web of Conferences

00016-p.4

Acknowledgements

One of the authors, Takahisa Mizuno, is deeply thankful
to the ACM ICPC 2012 Asian regional contest in
Indonesia and its host university, BINUS university,
which give him a chance to participate in the contest. The
experience of the contest inspired this work.
This work was supported by Grants-in-Aid for Scientific
Research (C) (24500009).

References

1. L. C. Paulson, Logic and Computation: Interactive
proof with Cambridge LCF, Cambridge University
Press (1987)

2. Y. Bertot and P. Castéran, Interactive Theorem
Proving and Program Development Coq’Art: The
Calculus of Inductive Constructions, Springer, 2004.

3. M. J. C. Gordon and T. F. Melham (editors),
Introduction to HOL: A theorem proving
environment for higher order logic, Cambridge
University Press (1993)

4. L. C. Paulson, Isabelle: A Generic Theorem Prover,
Lecture Notes in Computer Science, Vol. 828,
Springer-Verlag (1994)

5. M. Kaufmann, P. Manolios, J. S. Moore, Computer-
Aided Reasoning: An Approach, Kluwer Academic
(2000)

6. D. M. Russinoff, A Mechanically Checked Proof of
Correctness of the AMD K5 Floating Point Square
Root Microcode, Formal Methods in System Design,
Vol. 14, Issue 1, pp 75—125, Kluwer Academic
(1999)

7. PC2 home page,http://www.ecs.csus.edu/pc2/ (2013)
8. Google Code Jam Home Page,

https://code.google.com/codejam (2013)
9. S. Nishizaki, Programs with Continuations and

Linear Logic, Science of Computer Programming,
Vol. 21, No. 2, pp. 165—190, Elsevier (1994)

10. S. Nishizaki, A Polymorphic Environment Calculus
and Its Type-Inference Algorithm, Higher-Order and
Symbolic Computation, Vol. 13, No. 3, pp 239—278,
Kluwer (2000).

11. T. Sasajima and S. Nishizaki, Blog-based Distributed
Computation, Proceedings of ICICA2012, Lecture
Notes in Computer Science, Vol. 7273, pp. 461-467,
Springer (2012)

12. T. Mizuno and S. Nishizaki, Analyzing Systems
Dependent on Execution Speed with Model Checker,
Proceedings of ICASCE 2012, Procedia Engineering,
Vol. 50, pp. 544—554, Elsevier (2012)

ICASCE 2013

00016-p.5

