J Neurophysiol 100: 3445-3457, 2008.
First published October 1, 2008; doi:10.1152/jn.90833.2008.

Innovative Methodology

Toward Optimal Target Placement for Neural Prosthetic Devices

John P. Cunningham,' Byron M. Yu,"*® Vikash Gilja,> Stephen I. Ryu,’ and Krishna V. Shenoy'*

'Departments of Electrical Engineering, >Computer Science, and *Neurosurgery, and *Neurosciences Program, Stanford University,

Stanford, California; and °>Gatsby Computational Neuroscience Unit University College London, London, United Kingdom

Submitted 30 July 2008; accepted in final form 19 September 2008

Cunningham JP, Yu BM, Gilja V, Ryu SI, Shenoy KV. Toward
optimal target placement for neural prosthetic devices. J Neuro-
physiol 100: 3445-3457, 2008. First published October 1, 2008;
doi:10.1152/jn.90833.2008. Neural prosthetic systems have been de-
signed to estimate continuous reach trajectories (motor prostheses)
and to predict discrete reach targets (communication prostheses). In
the latter case, reach targets are typically decoded from neural spiking
activity during an instructed delay period before the reach begins.
Such systems use targets placed in radially symmetric geometries
independent of the tuning properties of the neurons available. Here we
seek to automate the target placement process and increase decode
accuracy in communication prostheses by selecting target locations
based on the neural population at hand. Motor prostheses that incor-
porate intended target information could also benefit from this con-
sideration. We present an optimal target placement algorithm that
approximately maximizes decode accuracy with respect to target
locations. In simulated neural spiking data fit from two monkeys, the
optimal target placement algorithm yielded statistically significant
improvements up to 8 and 9% for two and sixteen targets, respec-
tively. For four and eight targets, gains were more modest, as the
target layouts found by the algorithm closely resembled the canonical
layouts. We trained a monkey in this paradigm and tested the algo-
rithm with experimental neural data to confirm some of the results
found in simulation. In all, the algorithm can serve not only to create
new target layouts that outperform canonical layouts, but it can also
confirm or help select among multiple canonical layouts. The optimal
target placement algorithm developed here is the first algorithm of its
kind, and it should both improve decode accuracy and help automate
target placement for neural prostheses.

INTRODUCTION

Most neural prostheses (motor prostheses) decode neural
activity into commands which guide a smoothly moving on-
screen cursor or robotic arm (Carmena et al. 2003; Hochberg
et al. 2006; Serruya et al. 2002; Srinivasan et al. 2007; Taylor
et al. 2002; Velliste et al. 2008). Some neural prostheses
(communication prostheses) estimate just the intended reach
target. These communications prostheses could allow severely
disabled patients to communicate messages or perform simple
tasks by making a series of discrete choices such as selecting
keys on a keyboard (Hatsopoulos et al. 2004; Musallam et al.
2004; Santhanam et al. 2006; Shenoy et al. 2003). Motor
prostheses can also incorporate neural information about the
reach target into their models (Kemere et al. 2004; Srinivasan
et al. 2007; Yu et al. 2007). For communication prostheses or
motor prostheses with discrete reach targets, it is critical to
decode the intended target accurately. There is a great deal of
interest in improving the decode performance of these pros-

thetic systems, as increased performance will enhance usability
and therefore clinical viability. There are many factors which
should be considered for improving prosthetic performance,
including decoding algorithms (Brockwell et al. 2004; Brown
et al. 1998; Georgopoulos et al. 1986; Wu et al. 2004, 2006),
incorporating multiple signal modalities [e.g., electroencepha-
lography (EEG), ECoG, LFP, and spiking activity], improving
recording technology, and improving design of prosthetic end
effectors, be that a robotic arm or computer cursor (Lebedev
and Nicolelis 2006; Schwartz 2004). Here we address the
problem of target placement in a communication prosthetic
system (or a motor prosthesis using reach target information)
that uses intracortical neural spiking activity.

In the behavioral paradigm employed in communication
prosthesis studies, a monkey is trained to make center-out,
delayed reaches to one of a discrete number of visual targets
presented on a frontoparallel screen (Fig. 1). Using neural
spiking activity recorded from dorsal premotor (PMd) cortex
before the onset of movement, during the instructed delay
period, maximum likelihood (ML) decoding algorithms can
predict the intended reach target with high speed and accuracy
(Santhanam et al. 2006). Because a neural prosthesis often
consists of a keyboard or some other user interface, the key or
target layout can be physically configured as the system de-
signer sees fit. These prostheses (Hochberg et al. 2006;
Kennedy and Bakay 1998; Kennedy et al. 2000; Musallam
et al. 2004; Santhanam et al. 2006; Wolpaw and McFarland
2004) commonly place a number of targets (typically 2—-16)
evenly spaced around one or two rings, the radius of which is
determined by the subject’s maximum reach extent (Fig. 1)
(see also Fig. 2B of Santhanam et al. 2006 and Fig. 5C of
Hochberg et al. 2006). This canonical target layout, known as
the ring topology, reflects the observation that neural activity is
more strongly modulated by reach direction than reach extent
(Churchland et al. 2006a; Fu et al. 1993; Messier and Kalaska
2000; Moran and Schwartz 1999b; Riehle and Requin 1989).
Ad hoc attempts at improving decode performance by altering
target configurations were made previously (see target config-
urations in Fig. 2B of Santhanam et al. 2006). However, if we
understand the tuning properties of the particular neurons from
which we are recording, we can quantitatively exploit this prior
knowledge to place targets in a configuration that will yield
lower decode error. Thus our goal here is both to increase
decode accuracy by placing targets optimally, and to do so in
an automated fashion.
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FIG. 1. A communication prosthesis paradigm with sixteen targets. Yellow
squares show placement of targets in a canonical ring topology, evenly spaced
around 2 rings of 8 targets each. Dotted line indicates the workspace bound.

Problem intuition

To motivate our approach, we provide here an illustration of
the target placement problem. We first consider a hypothetical
case where we record from only one neuron, and further we
suppose that this neuron’s firing rate is cosine tuned with a
rightwards preferred direction (Georgopoulos et al. 1982). We
show this case in Fig. 2A, where we represent this neuron with
an arrow pointing right (the preferred direction). Let the length
of the arrow correspond to the depth of tuning. As in Fig. 1, we
have a dotted line corresponding to the workspace bound,
which may be the monkey’s reach extent or the extent of the
visual field (targets must be placed within this workspace).
Given this one neuron, where should we place two targets, T1
and T2, to maximize our decode accuracy? In Fig. 2A, we show
two possible target configurations. In the left subpanel, we
place the targets T1 and T2 at the far right and at the far left of
the workspace (targets shown in black). In this configuration, a
reach to target T1 will elicit maximal neural spiking activity,
whereas a reach to T2 will elicit minimal activity, thereby
maximizing our decode accuracy (the neural responses are
most distinguishable). In contrast, we consider the right sub-
panel of Fig. 2A, where we have placed the targets (shown in
gray) at the top and bottom of the workspace. While this
configuration is geometrically similar to the left subpanel (the
targets are maximally separated on the workspace, to exploit
distance tuning), we can see that this cosine-tuned neuron will
fire at the same rate (on average) to both targets, and the
decoder will perform at chance accuracy. Thus we see that
target placement is important, and it should also consider the
neural population at hand. In other words, symmetric geome-
tries alone are inadequate.

In Fig. 2B, we add one neuron with identical tuning strength
but different preferred direction (shown in blue). In the left
subpanel, with the neurons preferring left and right (blue and
red arrows), we intuit again that the horizontal target layout
(T1 and T2 in black) will have optimal decode accuracy, and
the vertical target layout (T1 and T2 in gray) will perform at
chance. However, if we instead record from the two neurons
shown in the right subpanel of B (where the blue neuron has an
upward preferred direction), the placement problem becomes
more complicated. It seems both the black and gray pairs of
targets will decode reasonably, but is there a better configura-
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tion? Perhaps, by a symmetry argument, the optimal layout is
a pair of diagonally oriented targets [white targets marked (?)],
but this intuition cannot be verified without simulation or
experimental testing.

Let us complicate the situation further. In Fig. 2C, we add a
third neuron (green arrow). In the left subpanel, we again see

e,

)
__________
B

FIG. 2. Intuition of optimal target placement problem, where we consider
progressively (A—E) more neurons (each neuron’s tuning direction and strength
being represented by 1 arrow) and targets (black, gray, or white squares). See
INTRODUCTION (Problem intuition) for a full description.
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that if these neurons had symmetric preferred directions of
even tuning strength, either the pair of black targets or gray
targets should decode well. In the right subpanel, however, we
now change the various tuning strengths (as represented by the
length of the arrows) and allow the preferred directions to be
less regular. In this case, our intuition breaks down. It is
unclear where to put a pair of targets to maximize decode
accuracy. This loss of intuition worsens in D, where we now
consider the same neurons, but instead consider the problem of
placing four targets (T1-T4) not the two target cases in A—C.
Again, in the left subpanel, ideal neurons should perhaps
suggest a symmetrical layout as are often used in experiments.
A more realistic neural population, shown at right, significantly
increases the difficulty of the target placement problem.

Finally, in Fig. 2E, we show a case of placing eight targets
when recording from 10 neurons. At left, an idealized, sym-
metric neural population might imply a symmetric target con-
figuration. However, the more realistic neural population
(right) makes impossible any reasonable guesses about target
placements. In prosthetic systems with more targets and more
neurons (as in Hatsopoulos et al. 2004; Musallam et al. 2004;
Santhanam et al. 2006; Shenoy et al. 2003), the problem of
target placement only gets more difficult.

One might consider a few strategies for optimal target
placement. First, as is convention, one might lay out targets in
symmetrical geometric patterns. Indeed, we see in Fig. 2A why
this strategy can fail. Thus the characteristics of the neural
population should be considered. One might then imagine a
brute-force approach, choosing some two-dimensional grid (or
three dimensional in the most general case) of possible target
locations and then picking the best choices among all target
configurations on that grid. Each possible configuration has a
decode accuracy that must be found via simulating many reach
trials, which takes a reasonable amount of computational effort
(depending on the number of targets and the number of
simulated trials). Even with a coarse grid of 16 or 32 possible
target locations, choosing a layout of 8 targets and simulating
decode accuracy would be computationally intractable: there
are over 10° (,4Cg, the number of combinations of 8 distinct
items chosen from 16 possible items, i.e., 16!/8!8!) and 108
(5,Cy or 321/24!8!) choices for these layouts with grids of size
16 and 32, respectively. These difficulties with initial ap-
proaches led us to consider the problem from a communica-
tions theory perspective.

To our knowledge, this problem has not yet been investi-
gated. We present the optimal target placement algorithm
(OTP), which uses Kullback-Leibler divergence to provide a
constellation of optimal target placements. We describe the
method and then compare the decode performance of the
optimal constellation with canonical ring topologies, using
both simulated and experimental neural data.

An introduction to this algorithm has been published in
preliminary form (Cunningham et al. 2006).

METHODS

Overview

We want to construct an algorithm that places reach targets such
that they are maximally distinguishable (to achieve optimal perfor-
mance) in terms of the neural signals we record. To do so, we must
first define a model that relates the reach target position to neural
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spiking during the delay period. We then consider a rule for decoding
a particular target, given an observation of spike data. These steps are
detailed in Spike count model and decoding in the following text. This
rule implies a decode error (our measure of prosthetic performance)
that is a function of the target locations. Ideally we could then
minimize decode error by moving reach targets appropriately. This
general problem is intractable. However, by making standard, reason-
able approximations to put this error function (a function of the target
locations) into a solvable form, we can optimize the function to
produce a set of target placements that approximately minimizes
decode error. These steps are detailed in Optimal target placement
algorithm in the following text. Finally, we test this method with data
from two monkeys trained to perform reaches to canonically placed
targets. For both monkeys, we fit a neural population (using real
reaches) and evaluate decode performance on simulated neural data
generated from canonically placed and optimally placed targets (here-
after, simulated data). The second monkey also performed real
reaches to both canonically and optimally placed targets, and we
compare decode accuracy (hereafter, experimental data). These steps
are detailed in Reach task and neural recordings and Evaluating
decode performance in the following text.

Spike count model and decoding

We must first consider how target position is reflected in neural
spiking. As described in the preceding text, we present a reach target
on the screen during an instructed delay period. We call this time
period A (e.g., A = 200 ms, the window beginning 150 ms after target
presentation and before the subject is given a movement cue) (as used
in Santhanam et al. 2006). We collect spike counts from K neural
units, and the frequency of each unit’s spiking (that is, the number of
spikes) is indicative of the intended reach target to an extent that
allows target location to be predicted (Hatsopoulos et al. 2004;
Musallam et al. 2004; Santhanam et al. 2006; Shenoy et al. 2003). We
choose a simple firing rate model (as in Smith and Brown 2003; Yu
et al. 2007) and a simple spiking model (as in (Yu et al. 2007; Zhang
et al. 1998). We will later discuss more advanced models, but even
these basic models help to simply illustrate the conceptual advance
that this method offers.

Let us consider M reach targets placed on a screen as in Fig. 1 (where
M = 16). We define each target by its Cartesian position on the screen x,,
€ N2 (for all M targets m € {1, ..., M}). We define the center of the
screen as the origin, but the optimal target placement algorithm will be
invariant to that choice. We call the collection of all M targets a
constellation of targets y € N, thatis x = [x7,..., x]%

Having defined the target constellation, we must define a model that
maps target position to neural spiking. Let us assume we record from
K neural units. Then we map position x,, to a neural firing rate for the
kth neural unit (as in Smith and Brown 2003; Yu et al. 2007) using

Fil,) = et (1)

where d, specifies a baseline firing rate, and ¢, specifies both the
preferred direction (Georgopoulos et al. 1982) and the depth of tuning
modulation for unit k. The linear mapping c} x,, + d, implies a cosine
tuning model (Georgopoulos et al. 1982; Moran and Schwartz
1999a,b). We group these parameters c,, d, (over all K neural units)
into C € N> (the matrix with columns ¢;) and d € R<<! (the
vector of elements d,). Thus f,(x,,) calculates the delay period firing
rate underlying the spiking of unit k, when the target m is presented at
position x,,,.

To relate this firing rate to spike counts, we use a simple Poisson
count model (Yu et al. 2007; Zhang et al. 1998). Specifically we
assume the delay period spiking activity for one neural unit, when
conditioned on the target m (at position x,,), is independent of other
neural units and of its own spiking history. The probability of all
observed spike counts y (the vector y € R“*! is a vector of

nonnegative integer spike counts), during the delay period A, is then
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[T s )

p(y [ m) = Al:[lPoisson(yk;ﬂ(xm)A) =

=1 Y!

According to this model, on a given trial, the presented target m* at
position x,,.. is chosen by the experimenter, where m* € {1, ..., M}.
The observed spike counts y, conditioned on m*, are assumed to be
distributed according to Eg. 2. We record y and want to decode the
identity of the presented target m* from among the M possible
choices. We note that we only consider spike counts from the delay
period A, during which we assume the reach target is fixed and the
firing rate (Eq. I) is constant. Thus all decodes are made from that
time period alone (and accordingly, error rates and all other values are
calculated during that fixed window). To decode a reach target, we use
maximum a posteriori (MAP) decoding (Zhang et al. 1998)

m = argmax p(m | y) (3
= argﬂnax% “4)
= argmax p(y | m) (%)

where 1 is the index of the estimated reach target (at position x,;).
Equation 3 states that we choose the decoded target as the most likely
target, given the neural data. Eq. 4 is obtained using Bayes’ rule; Egq.
5 is a result of all reach directions being equally likely (since in our
experiments all targets are presented an equal number of times)" and
p(y) not being dependent on m. Thus the decode rule (Eq. 3) reduces
to a maximum likelihood (ML) estimator (Eq. 5) (Papoulis and Pillai
2002). If the assumptions of the model are satisfied (i.e., Poisson
spiking statistics, cosine tuning, etc.), this decode rule will minimize
the total error probability (at a given target constellation x) (Cover and
Thomas 1991)

M
In words, Egq. 6 is the probability that, when any target m is
presented (the presented target m* = m), some other target is erro-
neously decoded (the decoded target 1 # m). Thus the goal of our
optimal target placement algorithm is to choose the constellation y
that will minimize the total probability of decode error of Egq. 6.

Optimal target placement algorithm

This general problem of minimizing total error probability of Eq. 6
(over the constellation y), well known in communications literature (see
e.g., Proakis and Salehi 1994), is often analytically intractable (i.e., there
is no closed form solution, which will be required so we can calculate
how changes in target position effect decode error). Indeed, minimizing
Eq. 6%is similarly difficult in our case. As a result, it is common to instead
minimize the worst pairwise error probability (we denote pairwise
probabilities P,,;,) (Gockenbach and Kearsley 1999). Pairwise error
probability is simpler to calculate than total error probability because
pairwise error does not consider the influence of other targets. For
example, a pair of targets might have a certain error rate in isolation,

UIf the targets were not presented with equal frequency (for example, in a
keyboard application, one might know that certain targets/keys will be used
more often than others), then Eg. 5 would still have p(m) (MAP estimation).
The OTP algorithm can be extended to incorporate this change; see Future
work in DISCUSSION.

2 This upper bound can be seen by expanding each term in the sum of Eq.
6 using the union of events bound (Boole’s inequality), such that 3¥_, P[(i #
m)|(m* =m)] =33, ., POt = m))|(m* = m)]. This sum of pairwise
errors is upper bounded by M (M — 1) times the worst pair, and thus
minimizing the worst pair is equivalent to minimizing an upper bound on total
error probability.
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but that may change with the presence of a third target, because the
correct target can now be mistaken for this third target as well.
Minimizing the worst pairwise error probability is equivalent to
minimizing an upper bound to Eq. 6. That is, instead of considering all
the targets jointly, we consider all pairs of targets. We then select the
least distinguishable (“worst”) pair of targets (that is, the pair with the
highest error rate when trying to decode which of these two targets is
the intended reach goal), and we will try to minimize this error rate
(make these two targets more distinguishable). Doing this procedure
jointly across all pairs of targets should yield a lower global decode
error (Eg. 6). Mathematically, we define the solution to this problem
Xotp (the optimal constellation) as

Xop = argmin(max P({m = m'} | {m* = m})) )

m'#m

The inner expression P,;.(+) is the pairwise probability of error
between two targets m (the correct, presented target m*) and m’ (the
erroneously decoded target #71). For M targets, there are M (M — 1)
such probabilities of error (all target pairs). The maximum of these
probabilities of error is the worst pair in that it has highest decode
error. Finally, the outermost expression [argmin(*)] finds the constel-
lation x (the collection of target positions), which minimizes this
worst pairwise error. Thus Eq. 7 provides a constellation of targets
that minimizes the worst pairwise error over all targets.

To calculate the probability of decode error between any pair of
targets, we must consider the spiking noise introduced by the Poisson
output distributions (Eq. 2). Owing to the noisy Poisson model,
particular spike counts will erroneously decode a target m’ when in
fact the presented target was m. There is no closed-form expression
for the probability of decode error between two Poisson noise distri-
butions (Verdu 1986). Kullback-Leibler (KL) divergence is often used
as a close proxy to pairwise error probability (Gockenbach and
Kearsley 1999; Johnson and Orsak 1993; Johnson et al. 2001). KL
divergence measures how different two probability distributions are.
Pairwise error probability also measures how different two distribu-
tions are in that it quantifies how often a draw from one distribution
will be incorrectly classified as having been drawn from another
distribution. The use of KL as a proxy to error probability is intu-
itively sound, and our simulations have shown that increasing KL
divergence (making the two distributions more different) corresponds
well to decreasing error probability. KL is commonly used when error
probability is not closed form (Gockenbach and Kearsley 1999;
Johnson and Orsak 1993; Johnson et al. 2001) with the understanding
that making distributions more distinguishable (increasing the KL
divergence) will generally reduce probability of error also. The
relationship between KL and error probability can be motivated
mathematically by returning to the two-target case of the ML decode
rule (Eg. 5) and writing it as

piylm _
ply|m) &)

m' otherwise,

if

m =

(i.e., the decoder predicts m if p(y|m) is larger than p(y|m’), and m’
otherwise). Assuming a trial has reach target m presented, we want to
maximize the likelihood ratio in Eq. 8 over all possible instances of y.
Doing so will provide the maximum distinguishability between the
distributions [p(y|m) and p(y|m’)] and will minimize the chance that
the likelihood ratio will be <1 (which implies an error). We can
equivalently maximize the logarithm of this likelihood ratio, and,
taking the expectation to consider all possible y, we have the KL
divergence

)

KL(xm || xm’) = Ev|m|:logm:|

ply|m")
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where the expectation is taken with respect to y given m. We write
KL as a function of the target positions x,, and x,,,, to emphasize that
it calculates our proxy to error probability in terms of the target
positions. Thus KL in Eq. 9 is a measure of distinguishability between
targets m and m'; to minimize the probability of decode error, we want
to maximize Eq. 9 by changing target locations x,,, and x,,,.. Under the
Poisson output distribution, we introduced in Eg. 2, KL divergence
can be calculated exactly (substitute Eq. 2 into Eq. 9; see Appendix A
for details)

Jilx)
Jexw)

Note that this form is not constrained by the form of the firing rate
fe (x,,) in Eq. 1, allowing OTP to easily generalize for other, more
complex firing rate models (on the other hand, changing the spiking
model—Egq. 2—will change the form of the KL; see Future work in
DISCUSSION).

In summary, we have replaced the analytically intractable proba-
bility of error between two Poisson distributions with the tractable
form of Eq. 10. We have done so with the understanding that finding
a pair of target positions (x,,, x,,) that maximizes the KL divergence
from x,, to x,,,. is nearly equivalent to finding that which minimizes the
probability of decoding m’ when m was presented. Mathematically,
we write

KL(-xm || 'xm') = A[\Z(ﬁc(-xm') _ﬁ((xm) +ﬁc(xm)10g ) (]0)

argmax KL(x,, || x,,) = argmin P, ({m = m'} | {m* = m}) (11)

XmsXm' Xm>Xm'

For the Poisson distributions used here, as we have noted, our simu-
lations show that the relationship between error probability and KL
divergence is nearly monotonic. Thus we believe maximizing KL diver-
gence is a valuable proxy to minimizing probability of error in this
problem. One might also consider using the Chernoff bound (Cover and
Thomas 1991), which proves an upper bound on error probability with
respect to KL divergence in hypothesis testing. However, this bound has
been found to be loose (Johnson et al. 2001). Although not a provable
bound (upper or lower) on error probability, KL divergence does provide
a very close proxy; further supporting arguments can be found in
(Johnson and Orsak 1993; Johnson et al. 2001).

Having made this approximation, we can return to our problem of
interest, namely finding the optimal target placement y,,,, as in Eq. 7.
Using KL divergence, Eq. 7 becomes

Xop = argmax (mln KL(X,” H xm')) (12)
X

m#m'

Note that the two targets with the smallest KL divergence (the inner
expression in Eg. 12) are the least distinguishable and thus should
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have the highest probability of error (the worst pair as in Eg. 7).
Accordingly, improving the worst pair in Eg. 7 (minimizing the
maximum error probability) is the same as improving the worst pair in
Eq. 12 (maximizing the minimum KL divergence). An algorithm
solving this problem will push the target positions x,, as far apart as
possible from each other in terms of KL divergence. We impose a
workspace limitation such as how far a subject’s arm can reach, the
extent of the subject’s visual field, or the bounds imposed by the
prosthesis (such as a computer screen). We capture this limitation with
a constraint vy on the Euclidean distance of x,, from the center of the
workspace screen (other constraints, such as a rectalinear workspace,
could be readily included as well). With this constraint, our optimal
target placement x,, is the solution to

maximize(min KL(x,, || x,,,/))
X

m#m'’

subjectto || x, || =y Vm=1...M (13)

We call the algorithm that solves Eq. 13 the optimal target placement
algorithm. We applied sequential quadratic programming (SQP) (Boggs
and Tolle 1996; Gockenbach and Kearsley 1999) to solve Eq. 13. It is
important to note here that SQP is an established technology for opti-
mizing nonlinear, constrained objectives such as Eq. 13. For example, the
MATLAB (The MathWorks, Natick, MA) function fmincon (nonlinear,
constrained optimization solver) uses SQP. SQP finds an optimum to this
problem (Eg. 13 is not convex in ), and this optimum depends on the
choice of seed constellation y,. To find the global optimum, we solved
the SQP multiple times (832, depending on the number of targets in the
constellation) starting at randomly chosen y,. After these iterations, a
“best” optima (best in terms of having the largest objective, i.e., the
minimum worst pair KL divergence, as in Eq. 12) typically appeared
several times, giving confidence that we had indeed found the global
optimum. This solution was designated the optimal constellation x,,. We
include notes on our use of SQP in APPENDIX B.

Reach task and neural recordings

Animal protocols were approved by the Stanford University Insti-
tutional Animal Care and Use Committee. We trained two adult male
monkeys (Macaca mulatta, monkeys H and L) to perform delayed
center- out reaches for juice rewards. As illustrated in Fig. 3, visual
targets were back-projected onto a frontoparallel screen 30 cm in front
of the monkey. The monkey touched a central target and fixated his
eyes on a crosshair adjacent to the central target. After a center hold
period of 300-500 ms for monkey L and 400—600 ms for monkey H,
a pseudorandomly chosen target was presented at one of the target
locations. For the canonical reach data sets, the 16 targets were placed

Move onset

FIG. 3. Task timeline (fop), simulta-
neously recorded spike trains (middle), and
arm and eye position traces (bottom) are
";: iy shown for a single trial. Red and blue lines
*.,.. correspond to horizontal and vertical position,
respectively. The range of movement for the
arm and eye position (on the screen) is *£15
cm from the center target. Neural unit activity
and physical behavior were taken from trial
H20041106.1.

Center hold Target onset GO cue
+ +
v v instructed delay period v
1t . ! L ! .
o . 0 0
= i
c
>
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in two rings of 8, as shown in Fig. 1, of radius 7 and 12 cm for monkey
H (4 and 8 cm for monkey L). After a pseudorandomly chosen
instructed delay period (rmonkey H: uniformly distributed between 200
and 500 ms; monkey L: exponentially distributed with a mean of 750,
850, or 950 ms, shifted to be no less than 50, 100, or 150 ms), the “go”
cue (signaled by both the enlargement of the target and the disappear-
ance of the central target) was given, and the monkey reached to the
target. After a hold time of 200 or 300 ms at the reach target
(depending on the experimental day), the monkey received a liquid
reward. The next trial started 100—400 ms later (depending on the
experimental day). Eye fixation at the crosshair was enforced through-
out the delay period. Reaction times (defined as the time between the
go cue and movement onset) were enforced to be >80 or 100 ms and
<400 or 425 ms (depending on the experimental day).

During experiments, the monkey sat in a custom chair (Crist
Instruments, Hagerstown, MD) with the head braced. The presentation
of the visual targets was controlled using the Tempo software package
(Reflective Computing, St. Louis, MO). A custom photo-detector
recorded the timing of the video frames with 1-ms resolution. The
position of the hand was measured in three dimensions using the
Polaris optical tracking system (Northern Digital, Waterloo, Ontario,
Canada; 60 Hz, 0.3- mm accuracy), whereby a passive marker taped
to the monkey’s fingertip reflected infrared light back to the position
sensor. Eye position was tracked using an overhead infrared camera
(Iscan, Burlington, MA; 240 Hz, estimated accuracy of 1°).

A 96-channel silicon electrode array (Cyberkinetics, Foxborough,
MA) was implanted straddling PMd and motor (M1) cortex (left
hemisphere for both monkeys H and L), as estimated visually from
local landmarks, contralateral to the reaching arm. Surgical proce-
dures have been described previously (Churchland et al. 2006b;
Hatsopoulos et al. 2004; Santhanam et al. 2006). Spike sorting was
performed off-line using techniques described in detail elsewhere
(Sahani 1999; Santhanam et al. 2004; Zumsteg et al. 2005). Briefly,
neural signals were monitored on each channel during a 2-min period
at the start of each recording session while the monkey performed the
behavioral task. Data were high-pass filtered, and a threshold level of
three times the RMS voltage was established for each channel. The
portions of the signals that did not exceed threshold were used to
characterize the noise on each channel. During experiments, snippets of
the voltage waveform containing threshold crossings (0.3-ms precrossing
to 1.3-ms postcrossing) were saved with 30-kHz sampling. After each
experiment, the snippets were clustered as follows. First, they were
noise-whitened using the noise estimate made at the start of the experi-
ment. Second, the snippets were trough-aligned and projected into a
four-dimensional space using a modified principal components analysis.
Next, unsupervised techniques determined the optimal number and loca-
tions of the clusters in the principal components space. Events assigned
to each cluster are considered spikes for a given neural unit.

Figure 3 shows the delayed reach task timeline along with neural
and behavioral data for a single trial with a lower-right reach target.
We refer to the time between reach target onset and the go cue as the
delay period. It is the neural activity during this delay period that will
be used to predict the reach target.

The monkeys were trained over several months, and multiple data
sets of the same behavioral task were collected. Each data set was
collected in one day’s recording session. For monkey H, all reaches
were made to canonically placed targets. For monkey L, each data set
was split into two segments, the first comprising reaches to a canon-
ical target topology, and the second to an OTP constellation. After
collecting 700-2,000 trials of the canonical topology, the task was
stopped. Units isolated by the spike sorting method were fit to the
cosine tuning model of Eq. I. We counted spikes for the 200-ms
period that started 150 ms after target onset (a 200-ms integration
window, i.e., Ty, = 150 ms and 7;, = 200 ms, in the terminology
of Santhanam et al. 2006). We fit C, d from the neural data by
maximizing the data likelihood (Egq. 2) taken across all trials. This
fitting problem is convex (in C, d) and can be readily solved using
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Newton’s Method (Boyd and Vandenberghe 2004) (glmfit in
MATLAB will also readily solve this problem). This population of
neural fits was then given to the OTP algorithm, which then
generated an optimal target topology. This entire OTP process
generally took <10 min on 2006-era workstations (Linux Fedora
Core 4 with 64 bit, 2.2- to 2.4-GHz AMD processors and 2—-4 GB of
RAM) running MATLAB (R14). For monkey H, this neural popula-
tion fitting was done off-line to provide neural tuning data for OTP
simulation. For monkey L, the task was begun again with reaches to
the newly configured OTP target topology, typically for 700—1,500
more trials. For both the canonical and OTP trials, we only analyzed
successful trials (where the monkey obeyed the hold times, reached to
the target with a proper reaction time, etc.) that had delay periods long
enough to allow T, and T;, as just described. This screening
typically left 300—800 valid OTP and 300—-800 valid canonical trials
for analysis (we used equal numbers of OTP and canonical trials so
performance comparisons could be meaningfully made). This seg-
mentation allows us to analyze and compare decode performance
from the canonical and optimal target topologies.

Evaluating decode performance in experimental data

Collecting experimental data allows us to verify the performance
improvements we see in simulation. In Spike count model and decod-
ing (preceding text), we introduced a maximum likelihood decoder
that (when the model assumptions are satisfied) minimizes the prob-
ability of decode error (Eg. 6). For simulated trials, we know the
neural parameters C and d, and thus we calculate the firing rate f,(x,,)
exactly for any target position x,,, (in simulation, the data fit the model
of Egs. I and 2 exactly). In this case, we use the ML decoding rule of
Eq. 5 directly. However, in experimental reach trials, we do not have
access to the neural parameters C and d, and thus we do not have
Jfi(x,,). Instead, for each target x,,, we must fit an estimate f(x,,).
Because each unit y, is modeled as Poisson (conditioned on the target
X,,)» ¥i has expected value of f,(x,)A. With a set of training trials to
a particular target, our estimate f,(x,,) is the empirical mean (normal-
ized by) of those training trials (a ML estimator of f,(x,,) (Papoulis
and Pillai 2002)).

In an experimental data set, we have J blocks of trials, where a
block consists of one trial to each of the M reach targets. We define
the neural data collected during the delay period of each trial as y“"”
forablockj € {1,...,]J} andatarget m € {1, ..., M}. To decode
a single trial, we use J-fold cross validation (Duda et al. 2001). For a
given block j of reach trials, we exclude the block as a test data set and
use all other (J — 1) blocks as the training set to train the decoder (i.e.,
estimate f,(x,,) forall k € {1,..., K} and m € {1,..., M}). With
these parameter estimates, we can again use the ML decoder of Eq.
5 as in Santhanam et al. (2006), Shenoy et al. (2003), Yu et al.
(2004), and Musallam et al. (2004). This J-fold cross validation is
repeated across all blocks of trials and produces a total decode
performance for a given data set.

We note that fi(x,,) does not in general equal f,(x,,) because the
empirical mean over the training trials we collected will not be exact
(even if the firing rate model holds). This factor may degrade decoder
performance in experimental data, but such performance reductions
should be seen equally for OTP and canonical topologies. In this
study, we are only interested in how the different target constellations
compare in decode accuracy, not their absolute values. We confirmed
in simulation that using the empirical mean resulted in similar per-
formance reductions across both topologies, thereby suggesting that
OTP is no more susceptible to this source of error than is the canonical
topology. The accuracy of the target decoder also varies with the
duration and placement of the time window in which spikes are
counted and the spike count model P(y|x,,) that is used (Hatsopoulos
et al. 2004; Santhanam et al. 2006). Optimizing these aspects of the
target decoder (which we again expect to affect performance equally
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across topologies) is beyond the scope of this work and is treated in
detail in Santhanam et al. (20006).

RESULTS

As we saw in Fig. 2, for small numbers of targets and neural
units, we can make a reasonable prediction about where the
optimal targets should be placed, even without the use of an
optimization algorithm. In the simplest case, we seek to place
two targets optimally with only one neural unit (Fig. 2A).
Given the preferred direction of the unit ¢, the targets should be
placed as far apart as possible (on the circular workspace bound,
as firing rate is typically modulated by reach target distance) along
the axis defined by c,. In this configuration, the presentation of
one target elicits maximal firing, while the other target gives
minimal firing. Indeed, our SQP approach to optimal target
placement yields this result. Extending beyond this trivial case, the
utility of OTP becomes apparent when looking at larger neural
populations and larger numbers of targets.

With a population of neural units that are fairly uniform in
their preferred directions and tuning strength, we imagine that
the placement of four or eight targets will reduce effectively to
a geometric problem, and placing the targets evenly around a
ring will produce a near optimal result. We will validate this
intuition in the following text. When the number of targets
grows larger, intuition breaks down: for example, with 16
targets, should they be placed evenly around the circular
workspace bound? Should they be placed in two rings; if so,
how many targets in each ring? OTP gives answers to these
questions. Two examples are shown in Fig. 4, where OTP
returns a constellation (blue circles) with 11 targets spaced
roughly evenly around the circular workspace bound and with 5
targets placed elsewhere in the workspace for monkey H (in A).
For monkey L (B), OTP finds a constellation with 10 targets on the
workspace bound and 6 placed on the workspace interior. Despite
the complexity of this problem, there is some intuition to be
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gleaned from the constellations discovered by the OTP algorithm;
see DISCUSSION (Intuition gained from OTP).

Simulated data results

Having shown a few examples of optimal target place-
ments, we now turn to systematic performance comparisons
of OTP versus canonical ring topologies. We randomly drew
a set of K units from one of two collected data sets: one
from monkey H (H20041119) and one from monkey L
(L20061030). We ran OTP to find the constellation x,,, and
then we generated simulated spike counts for 1,000 trials to
each of M optimally placed targets according to Eq. 2 (i.e.,
M X 1,000 total trials). We then computed decode accuracy
using the method described in the preceding text in Evalu-
ating decode accuracy. We also simulated 1,000 trials to
each target of the canonical ring topology (again, M X 1000
total trials).> This whole procedure was repeated 100 times
(10 times for the 16 target case, due to computational
limitations) for each K.

These results are shown for monkey H in Fig. 5 for 2, 4, 8§,
and 16 targets and similarly for monkey L in Fig. 6. In Fig. 54,
for two targets, OTP provides up to 8% improvement in decode
accuracy (from 71 to 79% with K = 2, for example). OTP
provides similar results for monkey L, raising performance 6%
(from 71 to 77% with K = 4, for example). As K grows and
decode accuracy saturates to the performance ceiling of 100%,
we expect the canonical topology to approach the performance

*To get a true average performance for the canonical topology, we rotated
the ring topology across trials to prevent any possible bias in the results. For
example, if we chose a vertical canonical layout in the two target case (as in
Fig. 2A, right) and these particular neural populations had more tuning strength
in the horizontal axis, then canonical layouts would be artificially punished in
decode performance (so too, canonical performance could be artificially
inflated if we instead chose the layout of Fig. 24, left). Rotating the canonical
targets ensures a fair comparison between decode performances.
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FIG. 4. Sixteen target placement examples from data set H20041119 (A) and data set L20061030 (B). Blue circles: optimal target placement algorithm (OTP)
solution; red squares: a canonical ring topology. Workspace bound shown as a dotted line (y = 120 mm in A, 80 mm in B).
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Comparison of performance in simulated data: optimal target placements vs. ring topologies. Monkey H (H20041119). A: 2 targets. B: 4 targets.

C: 8 targets. D: 16 targets. Blue and red lines show performance under OTP and a single ring topology, respectively. In D, green and magenta lines show
performance under the aligned and staggered double ring topologies, respectively (red, green, and magenta curves are highly overlapped). Error bars (vanishingly
small, due to hundreds of thousands of simulation trials) based on a binomial distribution with 95% confidence level (see Zar 1999). Insets: different ring

topologies tested.

of OTP, and indeed we see this effect. In both the four- and
eight-target cases, there is less improvement above the ring
topology for both monkeys H and L with performance improve-
ments ranging from 0 to 3% (monkey H) and O to 1% (monkey
L). This is not surprising: the OTP layouts closely resemble
canonical ring topologies. For example, a four- or eight-target
OTP layout is often just a rotated version of a canonical layout,
which does not look much different from a canonical layout
(i.e., a rotated version of the black targets Fig. 2, D and E,
appears quite similar to an unrotated constellation). Contrast
this to a two target case, where a rotation of a pair of targets
can look significantly different (i.e., in Fig. 2A, the black and
gray pairs of targets are quite different). Thus we do not expect
a substantial performance difference in the four- and eight-
target cases.

At larger target constellations, we can again see substantial
improvements offered by OTP. Figure 5D illustrates the per-
formance of the optimal configuration in the 16-target case
with monkey H and similarly in Fig. 6D for monkey L. We
compare OTP to three canonical ring topologies: 16 targets
evenly spaced around the workspace bound, two radially
aligned rings of 8 targets each, and two radially staggered rings
of 8 targets each. In our experience, most OTP constellations
seen in the 16-target case for both monkeys (for different
values of K and different sets of units drawn at random) place
4-6 interior targets and 10-12 on the workspace bound;
examples are shown in Fig. 4. See piscussioN (Intuition gained
from OTP) for comments about why these constellations are
sensible results of the algorithm. Over a range from 50 to 100
units, OTP target topologies yield 8 —-9% average improvement
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FIG. 6. Comparison of performance in simulated data: optimal target placements vs. ring topologies. Monkey L (L20061030). A: 2 targets. B: 4 targets.
C: 8 targets. D: 16 targets. Blue and red lines show performance under OTP and a single ring topology, respectively. In D, green and magenta lines show
performance under the aligned and staggered double ring topologies, respectively (red, green, and magenta curves are highly overlapped). Error bars (vanishingly
small, due to hundreds of thousands of simulation trials) based on a binomial distribution with 95% confidence level (see Zar 1999). Insets: different ring

topologies tested.
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over the canonical ring topologies in monkey H.* For monkey
L, more units are required to see substantial performance gains,
achieving 4—-5% improvement for 140-200 neural units.* We
discuss this difference between monkeys H and L in DISCUSSION
(Comparing results from two monkeys). Again, in the 16-target
case, we see that the OTP and canonical layouts perform
comparably when either we have very many neural units
(performances saturate) or when we have very few neural units
(there is insufficient neural information, and thus many con-
stellations will be indistinguishable in terms of performance).
These findings should ideally all be confirmed with real ex-
perimental data.

Experimental data results

Having developed some expectation of the improvements
offered by OTP in simulation, we wanted to verify the algo-
rithm in real experiments, in at least some regime of the data
studied in simulation. Across the four different constellation
sizes tested above, creating Figs. 5 and 6 required 100 full data
sets (each with 1,000 trials per condition) for each choice of
neural population size. This implies tens of thousands of
experimental days to replicate this result in experimental data;
clearly this is infeasible. Instead, we tested this algorithm with
four full day data sets in monkey L, with the goal of providing
some evidence that the proposed algorithm offers improve-
ments in a real experimental setting. Although many more
experiments are needed to fully validate the simulation results,
finding similar improvements in these experimental results
should give confidence that, over a broader range of conditions,
the method could well perform as predicted by simulation.

As described in METHODS, monkey L first performed many
reaches to sixteen canonically placed targets, and a subset of
these reaches were used to fit an OTP constellation. In each of
the four data sets (L20061106-L20061122), we used roughly
40 neural units (sorted by our automatic spike sorter), regard-
less of unit quality (single unit, multi unit, or “noise” unit
(Wahnoun et al. 2006) or tuning depth. The results for these
data sets are in Table 1. Note that, as Table 1 comes from a
sixteen target experiment with monkey L, Table 1 is compara-
ble to Fig. 6D. Looking at Fig. 6D at 35-45 neural units (the
x axis), simulation suggests OTP should realize 0-2% decode
improvement, and we see in Table 1 that we achieved 3.6%, so
the results are comparable. Factors such as array lifetime and
the quality of unit tuning resulted in these experimental days

“To put these results into the context of a few other prostheses studies,
Santhanam et al. (2006) reported recording 80—130 units in a typical session,
and Hatsopoulos et al. (2004) reported recording 32—143 units in a typical
session.
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having low decode performance, regardless of the topology
used. We see that in each data set OTP improved our decode
accuracy. We want to ask, for the data we collected, if OTP
shows a statistically significant improvement over canonical
placements in terms of decode performance. Using a binomial
significance test with 95% confidence level (Zar 1999), we see
across all our data that indeed OTP does statistically outper-
form canonical placements (Table 1), confirming what we saw
in simulation to be a meaningful improvement.” This improve-
ment is captured in the final column of Table 1, where we see
in this case that the decode performance is raised from 13.4 to
17.0% on >2,000 trials. The purpose of these data are to
validate experimentally that the OTP algorithm is giving us the
improvements we anticipate. Although the absolute decode
accuracy is low, we nonetheless see that there is a meaningful
improvement in decode accuracy. Further, we see that in no
case (of the 4 full data sets) is there a reduction in decode
accuracy. Thus our experimental results serve to verify that
OTP is indeed making good use of the neural population
available to find a nontrivial improvement to decode perfor-
mance.

DISCUSSION

We have shown, for communication prosthetic systems
using spiking activity, that reach target decode accuracy can be
improved by optimally placing the reach targets. We have
introduced this general problem, and we have created a first-
of-its-kind algorithm that finds an improved target constella-
tion by approximating an intractable problem with a tractable
form. For four and eight targets, OTP layouts closely resem-
bled canonical layouts, thus validating the canonical topology
used in Santhanam et al. (2006). Also we realized substantial
decode performance improvements in simulation for 2- and
16-target configurations across a wide range of unit counts.
Our experiments in real data (Table 1) confirm the expected
improvement offered by OTP, at least in the limited regime
tested, indicating that target placement is a valuable consider-
ation in the design of neural prostheses.

5 Note that doing statistical tests on the data by day (or by any subdivision)
will reduce the statistical power (fewer trials) of the data and may lead to
inconsistent results (some data sets significant; others not). Thus the total
number of trials should be used to show that OTP does indeed outperform
canonical topologies. One might also want to know whether or not, by using
OTP on a given experimental day, the performance will be improved over
canonical placements. Our results indicate that indeed an improvement will be
seen, based on the 2,000 trials we collected. Note also that, had we run this
experiment on a stronger array with more units, we would expect statistically
significant effects with much smaller numbers of trials, since the magnitude of
the performance improvement would be greater (cf. Fig 5D, at 50—150 units,
or Fig 6D, at 140-200 units).

TABLE 1. Decode performance in experimental data for canonical and OTP methods on monkey L

L.20061106 L200611113 L20061117 L.20061122 Total
Neural units (K)* 46 41 43 35 NA
Number of targets (M) 16 16 16 16 16
Total OTP reach trials 324 528 720 544 2116
Canonical decode performance, % 13.0 15.3 14.2 10.8 13.4
OTP decode Performance, % 159 15.5 20.6 14.5 17.0
Decode improvement, % 2.9 0.2 6.5 3.7 3.6

*Units include all automatic spike sort isolations used to fit the optimal target placement constellation. This includes all units regardless of tuning strength
or modulation significance. TWe compared equal numbers of OTP and canonical reach trials.
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Intuition gained from OTP

In Fig. 2 and Problem intuition, we saw that intuition for
how to place targets quickly breaks down when faced with
many neurons and many targets. The OTP algorithm addresses
this difficulty, and indeed it gives us reasonable solutions that
outperform canonical layouts. Besides the performance im-
provements, is there anything to be learned from the results of
this algorithm? We have noted that ring topologies have
classically been chosen based on the observation that neural
activity is more strongly modulated by reach direction than
reach distance (Churchland et al. 2006a; Fu et al. 1993;
Messier and Kalaska 2000; Moran and Schwartz 1999b; Riehle
and Requin 1989). If direction was essentially the only source
of discriminability, a single 16-target ring would presumably
be optimal. If the opposite was true, perhaps a line of targets at
various distances from the origin would be chosen. When
placing 16 targets with OTP, we typically see 4—6 targets on
the interior and 10—12 on the workspace bound. The perfor-
mance improvements seen in these OTP results (Figs. 5 and 6
and Table 1) support the mixtures of tuning reported in previ-
ous studies (Churchland et al. 2006a; Fu et al. 1993; Messier
and Kalaska 2000; Moran and Schwartz 1999b; Riehle and
Requin 1989). However, it is important to note that this
observation depends on the choice of tuning model (here the
cosine model of Eg. 7). More tuning functions should be tried
(recall that OTP is general to the choice of tuning function; see
Eq. 10) before this claim can be formalized.

Approximations in OTP algorithm

Across the range of unit and target counts tested in simula-
tion, OTP outperforms each canonical ring topology, with
performance gains of up to 9%. The minimum improvement
was in all cases 0%, in the case of very many neural units,
where performances saturate to 100%; or very few neural units,
where noise dominates and many different layouts are indis-
tinguishable. We speculate that this logical simulation result
would also hold in experimental data, but future experiments
should confirm more points on these performance curves. The
results shown here are subject to three approximations, which
we summarize here: in Eq. 7, we solve a minimax problem
(minimizing an upper bound) instead of a total probability of
error problem; we use KL divergence as a proxy for pairwise
error probability in Eg. 11; and we optimize a nonconvex
problem in Eq. 13 via a sequence of local quadratic approxi-
mations (SQP). Each of these approximations is necessary to
put the problem in a tractable form and enables us to address
this previously unanswerable question. Although the impact of
these approximations has yet to be fully characterized, their use
allows us to achieve performance gains (cf. Figs. 5 and 6) that
would not otherwise be possible.

It is important also to note that, even when we bundle
these approximations together (as we do in the OTP algo-
rithm), we still get consistent improvements in decode
accuracy versus canonical target placements. It is possible
in theory for OTP to under perform canonical layouts, if, for
example, one of the approximations was highly inappropri-
ate. Interestingly, OTP never underperforms canonical lay-
outs in either the simulated data or the experimental data.
We anticipate performance improvements beyond the 9%

J. P. CUNNINGHAM, B. M. YU, V. GILJA, S. I. RYU, AND K. V. SHENOY

shown here, by using better approximations and improved
algorithmic techniques.

Comparing results from two monkeys

Comparing the simulation results for monkeys H and L, there
is an apparent difference in the decode accuracies. We found in
our experiments that monkey H had significantly better tuned
delay period activity than did monkey L. Factors such as
electrode array lifetime (Polikov et al. 2005), array positioning
in M1/PMd (Crammond and Kalaska 2000), and behavioral
training could all contribute to these differences. The net result
in monkey L is that a given number of neural units did not
decode as well as in monkey H. Hence the performance curves
in monkey L saturate less quickly than in monkey H. It is
encouraging nonetheless to see that OTP has similar perfor-
mance effects at similar regions of the performance curves for
both monkeys regardless of the performance scaling introduced
by different strengths of neural populations.

Comparing simulated results to experimental results

For monkey L, comparing Table 1 results to Fig. 6D, one
sees a difference between the predicted decode performances at
given numbers of units and the actual results found in exper-
iments. In simulated data, while the parameters of the firing
rate model (Eq. 1) were fit to real neural data, the spike counts
used to measure performance in Figs. 5 and 6 were generated
from the model in Eq. 2 (simulated data). The performance
improvements for real experimental data depend further on
how well the spiking model (firing rate—FEgq. [—and output
distribution—Egq. 2) fits the neural data collected, how well the
model generalizes to other target locations for which we have
no neural data, and a host of other factors (spike sort instabil-
ities, behavioral changes, etc.). These factors can reduce the
performance of both the canonical and OTP topologies (e.g.,
spiking model) or can reduce just the performance of the OTP
topology (e.g., generality of the firing rate model).

Regarding the spiking model approximation, in our simula-
tion study, a unit fit with a particular tuning model behaved
according to that model, and its spiking was Poisson. In real
experiments, these assumptions do not hold for any target
constellation. Real units can be untuned to target position
and/or tuned to some other behavioral correlate; both possibil-
ities can introduce a punitive source of noise to the decoder
with a limited number of training trials. The spiking model
assumptions are approximations that can only reduce perfor-
mance for both topologies. This performance reduction should
be equivalent across topologies, and so we focus our results on
the performance differences between topologies and not the
absolute accuracies of each decoder. Using a different output
distribution (e.g., Barbieri et al. 2001; Cunningham et al. 2008;
Truccolo et al. 2004) might improve decoding for both OTP
and the canonical topology. Nonetheless the simple Poisson
choice allows us to readily demonstrate the improvements
offered by OTP.

Our experiments also require an assumption about how
different target locations modulate neural firing. The cosine
tuning model in Eg. I is a simple first approach. The tracta-
bility of the OTP algorithm does not, however, rely on this
specific firing rate form, so any improved model (e.g., Kauf-
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man et al. 2005) can be seamlessly incorporated into OTP (as
noted in Eg. 10; to be clear, this is the case with the firing rate
model of Eq. I, not the spiking model of Eg. 2). As tuning
models were not the focus of this study, however, we chose a
simple firing rate model to show the improvements offered by
OTP even in this case. A more accurate firing rate model, as it
would improve the ability of OTP to find an optimal constel-
lation, should only increase the OTP performance gains from a
canonical topology. Our presentation of OTP is conservative in
this regard.

Implementation considerations

When considering implementing OTP in a neural prosthetic
system, an investigator may consider some factors regarding
usage mode. In our experiments with monkey L, we split our
experimental days, using the first half for canonical topology
reaches and the second half for OTP topology reaches. In a real
system, this training time need not be spent daily. Realistically,
the extent to which one records the same neural units (with the
same tuning properties) dictates how often one needs to reop-
timize the target constellation. We recently reported that neural
tuning is stable at least during an experimental day and poten-
tially over multiple days (Chestek et al. 2007). If this is the
case, the target configuration would need only be trained
infrequently and possibly during an off-line period (e.g., while
the subject is sleeping). Anecdotally, we find that OTP fits
similar constellations across adjacent days, which further sup-
ports this possibility. Furthermore, in our experiments, we used
neural units isolated by our automatic spike sorting algorithm
regardless of the quality of these units. We did this to focus on
the difference in decode accuracy from canonical to OTP, but
this choice drags down absolute decode accuracy (due to
untuned “noise” units) (for example, see Wahnoun et al. 2006).
In a real prosthetic system, better sorts and unit isolations may
be made and fed into the OTP algorithm. Doing so would
likely raise the decode accuracy of both canonical and OTP
topologies. Again, this step may be done off-line to improve
overall system performance without compromising the avail-
ability of the prosthetic system. The OTP algorithm can also be
run on data collected from any target constellation, so one
could also iteratively run OTP on a previous OTP configuration
(there is no need to revert the system to a canonical topology).

Future work

As mentioned earlier in this paper (e.g., Comparing simu-
lated results to experimental results), future work should focus
on extending OTP beyond the cosine tuning and Poisson
spiking models of Egs. I and 2. Future work could also
incorporate an iterative OTP algorithm that would monitor for
new units appearing, old units rolling off, and units changing
tuning, all the while updating the target constellation appropri-
ately. Technology is being developed to allow this recording
capability (Chestek et al. 2008; Santhanam et al. 2007). The
experiments in this paper presented targets with equal fre-
quency, but future experiments should relax this assumption
and extend OTP to handle this case. Furthermore, we have
shown here an algorithm using spiking activity only. As
multiple modalities (LFP, EEG, ECoG, etc.) are incorporated
into a prosthetic system, OTP could be extended to place target
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constellations based on those sources of neural information as
well.

APPENDIX A. DERIVATION OF KL DIVERGENCE
FOR POISSON NEURONS

We wish to show, for the Poisson spiking distribution p(y|m)
(parameterized by target position x,,, as given in Egq. 2), that the KL

divergence has the simple closed form of Eg. /0. We begin by
substituting Eg. 2 into Eq. 9

[ p(y|m)
KL(Xm xm’) = Em 10g ’ :| (A])
| 5l L p(y | m')
5, | tog R0~ )
il OBLL(f (x, ) AYre ~ oIy |

. [ & ﬁ(x”l) _ n
- Eylm i kz:l <yk logﬁ{(xm') + Aﬁc(xm') Ajk(xm)>:| (A3)

where the third line follows using standard rules of exponents and
logarithms (and canceling redundant terms in both numerator and
denominator). Note that all f,(-) terms are constant with respect to the
expectation [that is, f, () does not depend on y because x,, or x,,. is
given]. Using this fact and the linearity of expectation (bringing out

the sum), we can simplify this KL divergence to

p— $ ﬁf(xﬂl)
KL(xm H xm') - E Aﬁ(xm’) - Aﬂ(xm) + Ey\mb)k]log . (A4)
k=1 ﬂ(xn1')
Finally, we note that E,, [y,] = Af, (x,,), and so we see
K
KL(xm H -xm') = AE(f;((xm') 7fk('xm) +ﬁ<(‘xm)logﬁ(xm)> (AS)
k=1 ﬁ((xm')

which is the form given in Egq. /0.

APPENDIX B. NOTES ON SQP

SQP is a method for solving nonlinear constrained nonconvex
problems as in Eq. 13. The following gives only a brief overview of
our implementation; the interested reader is referred to the excellent
tutorial (Boggs and Tolle 1996) and the general reference on convex
optimization (Boyd and Vandenberghe 2004). We note at first that
SQP is a well known general method; the commonly used MATLAB
(The MathWorks, Natick, MA) function for constrained optimization
Jfmincon uses an SQP implementation (for medium-scale optimization
problems). At low number of targets (M = 2 or 4), we found this
implementation to be effective. With more targets (M = 16), this
MATLAB implementation had convergence difficulties presumably
associated with its numerical estimates of derivatives. Our implemen-
tation of this specific SQP problem, which calculates gradients and
Hessians (2nd derivatives) in closed form, remains very effective to
larger numbers of targets.

To begin, we must pose Eq. 13 as a standard optimization problem.
To solve this minimax problem [i.e., minimizing the maximum ele-
ment of a finite set, here the M (M — 1) target pairs], it is common to
introduce a slack variable ¢ (Boyd and Vandenberghe 2004; Gocken-
bach and Kearsley 1999)

maximize ¢*
X-t

subject to KL(x,, || x,,) = £V m # m’

| x| =yVm=1...M (BI)
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Maximizing ¢ subject to the KL constraints imposes that > will have
the value of the worst pairwise KL divergence. Introducing this slack
variable only makes the problem algorithmically tractable; it does not
change the result.

Newton’s Method minimizes an (unconstrained) objective function
by iterating through a series of minimizations of quadratic approxi-
mations to the objective function. Similarly, SQP minimizes a con-
strained objective function by iterating through a series of minimiza-
tions of constrained quadratic approximations to the original problem.
These approximations are convex quadratic programs (QP) (see Boyd
and Vandenberghe 2004 for extensive reading on QP). Each QP
locally approximates the Lagrangian of Eq. B1 at the current estimates
of x and r [Boggs and Tolle (1996) justifies the choice of the
Lagrangian instead of the objective itself]. In our algorithm, we solve
each QP quickly and accurately using the MATLAB solver quadprog.
SQP requires a merit function to determine the length of steps that are
taken in y and #; we used backtracking line search with an /, merit
function. Beyond these particulars of our algorithm, the reader is
again referred to (Boggs and Tolle 1996) for many general imple-
mentation details and practical considerations.
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