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In this paper, we examine the coupled thermo-
poromechanical behaviour of a fluid-saturated porous
medium of infinite extent bounded internally by a
fluid-filled cavity. The mechanical behaviour of the
porous skeleton can either be Hookean elastic or
elasto-plastic, with a constitutive response corres-
ponding to a modified Cam Clay plasticity model.
The fluid within the cavity can be subjected
simultaneously to a temperature rise and a pressure
pulse. The paper presents analytical results for the
spherically symmetric thermo-poroelasticity problem
and these are used to validate the thermo-poro-
elasticity module of a computational code. We
proceed to examine the thermo-poroelasto-plasticity
problem. Results presented in the paper illustrate
the interaction between thermal and mechanical
phenomena and their influence on the cavity fluid
pressure and the skeletal stresses at the cavity
boundary. The paper presents solutions that will be of
value in benchmarking exercises.

1. Introduction
The thermo-hydro-mechanical (THM) behaviour of
geomaterials is important to many areas of environ-
mental geomechanics, including deep geological disposal
of heat-emitting radioactive wastes [1–7], frictional
heating during earthquake slip [8–10], geothermal
energy extraction [11,12], freezing action in soils [13–16]
and geomechanics considerations related to geological
sequestration of carbon dioxide [17–19]. In many
instances, the scope of geoenvironmental engineering
problems in these areas is such that recourse must
be made to computational methods to solve any
realistic environmental geomechanics problems. It is
imperative that the computational methods used for
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these purposes are able to provide solutions that are accurate. One approach that is extensively
advocated is the validation of computational approaches through intercode calibrations [6,20].
An alternative is to use certain canonical problems, which can generate analytical solutions
albeit largely for the case of thermo-poroelasticity. An example of a recent exercise along these
lines is provided by Selvadurai & Suvorov [21], who examined the problem of the boundary
heating of a fluid-saturated sphere with skeletal responses that can be either elastic or elasto-
plastic. Constitutive theories that describe the mechanical behaviour of the porous skeleton of
geomaterials are well documented in the literature [22–24]. The ability of an analytical solution to
account for infinite domains is considered a requirement that computational approaches should
be able to model accurately, particularly with regard to coupled THM modelling.

In this paper, we examine the poromechanics problem for a medium of infinite extent bounded
internally by a fluid-filled spherical inclusion. We show that when the skeletal behaviour of
the porous medium is elastic the solution to the thermo-poroelastic problem can be obtained
in an analytical form. Examples of the analytical treatment of the isothermal problem of a
pressurized cylindrical cavity and a spherical cavity subjected to a constant stress are given by
Rice & Cleary [25] and Rice et al. [26]. The response of elastic and viscoelastic porous media
bounded internally by a spherical cavity and subjected to a constant radial stress was obtained
by Spillers [27]. The case of a rigid spherical heat source, with either a pervious or an impervious
boundary, contained within a poroelastic medium was examined by Booker & Savvidou [28].
Wu et al. [29] obtained an analytical solution to the problem of a cylindrical cavity (wellbore)
subjected to a constant fluid pressure and temperature rise on the cavity wall, and non-hydrostatic
stresses applied remotely. The thermo-poroelastic problem for a hollow sphere subjected to a
sudden rise in temperature and pressure on its inner wall was examined by Kodashima &
Kurasighe [30] and the thermo-poroelastic and thermo-poroelasto-plastic problems for a solid
sphere are given by Selvadurai & Suvorov [21].

The consideration of plasticity effects is of particular interest to soft geomaterials that could
display elasto-plastic constitutive behaviour in their skeletal responses, especially in the small
strain range [23,24,31,32]. The irreversible behaviour of the porous skeleton in fluid-saturated
porous media subjected to heating that induces elasto-plastic yielding with hardening/softening,
including the use of the modified Cam-Clay plasticity model is well documented in geomechanics
literature [33,34]. The development of analytical solutions for transient problems in thermo-
poroelasto-plasticity is, however, less well developed. The incremental nature of the conventional
plasticity theories makes the analytical solution of the governing coupled equations less
straightforward. An example of the isothermal consolidation of a poro-elasto-plastic column
is given by Pariseau [35]. Further references in this area are given by Selvadurai [36,37] and
Selvadurai & Suvorov [21].

The problem of damage development in the porous skeleton of brittle geomaterials and its
influence on hydro-thermo-mechanical couplings are more relevant to many geomaterials and
examples are given by Selvadurai & Mahyari [38], Mahyari & Selvadurai [39], Selvadurai [40],
Selvadurai & Shirazi [41,42] and Shirazi & Selvadurai [43]. Knowledge of the coupled THM
processes in a fluid-saturated geologic medium is also essential to accurately evaluate the
pore fluid pressure responses, where adverse fluid pressures can induce damage in the form
of microfracturing in the porous skeletal structure. Such processes can also contribute to the
development of double porosity effects, and the description of THM processes in such materials
requires alternative approaches [44]. Investigations dealing with the modelling of THM processes
in poroelastic fluid-saturated media are quite extensive. For further information, the reader
is directed to recent literature in geomechanics, particularly those conferences devoted to
poromechanics and fluid transport [36,45–48], articles with extensive reviews [37,49–51] and
articles related to nuclear waste management cited previously.

The focus of this paper is to present analytical results for the development of (i) pressure
within a fluid-filled cavity located in a fluid-saturated poroelastic medium, and (ii) the skeletal
stresses and displacements at the boundary of the cavity, when the cavity is subjected separately
to pressurization and temperature rise. Similar investigations are conducted computationally
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to examine the response of a fluid-filled cavity contained in a porous medium with a porous
skeleton that exhibits elasto-plastic constitutive behaviour. The paper presents a comparison of
analytical and computational results for the spherical cavity problem, which can serve to validate
the accuracy of computational results that can be obtained from general-purpose computational
codes such as COMSOL and ABAQUS.

2. Governing equations
Attention is restricted to porous geomaterials that exhibit isotropic mechanical, fluid flow and
heat conduction properties. The pore space is assumed to be fully saturated and the skeleton can
exhibit mechanical and thermal deformations, associated with stresses and temperatures applied
to the skeletal phase; we also assume that the failure of the porous skeleton can be described by an
appropriate elasto-plastic model, characterized by a yield condition, a flow rule and a hardening
law. The thermo-physical properties for the solid phase of the geomaterial are assumed to be
constant, irrespective of whether it exhibits elastic or elasto-plastic responses. In addition, we
assume that the fluid transport properties in the porous medium are the same in both the intact
and yielded regions.

As the spherical cavity problem examined here exhibits a state of spherical symmetry, we
can develop the governing equations of thermo-poroelasticity by considering the spherical polar
coordinate system (R, Θ , Φ), where R is the radial distance, Θ is the polar angle and Φ is the
azimuthal coordinate. The displacement vector is given by u = {u(R, t), 0, 0}T, where u(R, t) is
the time-dependent radial displacement and the corresponding infinitesimal strain tensor ε(R, t)
and the total Cauchy stress tensor σ (R, t) are given by

ε =

⎛
⎜⎜⎜⎝

∂u
∂R

0 0

0
u
R

0

0 0
u
R

⎞
⎟⎟⎟⎠ and σ =

⎛
⎜⎝σRR 0 0

0 σΘΘ 0
0 0 σΦΦ

⎞
⎟⎠. (2.1)

The development of the poroelastic part of the constitutive modelling adopts the procedures
described by Selvadurai & Nguyen [52]. The constitutive equation governing the poroelastic
response of the fluid-saturated porous medium is given by

σ = 2GDε + (KD − 2
3 GD)εVI − αpI − 3KDαSTI; εV = ∇ · u, (2.2)

where p(R, t) is pore fluid pressure, I is the unit tensor, T is the temperature; KD and GD are
the bulk and shear moduli of the porous skeleton, αS is the linear thermal expansion coefficient
of the solid phase and εV is the volumetric strain. In (2.2), α is the Biot coefficient defined by
α = 1 − KD/KS, where KS is the bulk modulus for the solid phase. If KS → ∞, the Biot coefficient
α = 1. In the absence of body forces and inertia effects, the equation of equilibrium can be
expressed in terms of the total stress tensor in the form [53]

∇ · σ = 0, (2.3)

which can be combined with constitutive relationship (2.2) to give

GD∇2u + (KD + 1
3 GD)∇εV − α∇p − 3KDαS∇T = 0, (2.4)

where ∇ is the gradient operator and ∇2 is Laplace’s operator. For spherical symmetry, Laplace’s
operator takes the form

∇2 = 1
R2

∂

∂R

(
R2 ∂

∂R

)
. (2.5)

The flow of water through the porous medium is described by the conventional form of Darcy’s
law applicable to an isotropic porous medium [54,55], i.e. the fluid velocity in the pore space vf
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relative to the porous skeleton velocity vs is given by

vf − vs = −K
η

∇p, (2.6)

where K is the permeability and η is the dynamic viscosity. The mass conservation equation for
the fluid-saturated poroelastic geomaterial can be written as

− K
η

∇2p + α
∂εV

∂t
+
(

ϕ

Kf
+ α − ϕ

Ks

)
∂p
∂t

= 3 [ϕαf + (α − ϕ)αs]
∂T
∂t

, (2.7)

where αs and αf are the linear thermal expansion coefficients of the solid phase and pore fluid,
respectively, Kf is the bulk modulus of the fluid and ϕ is the porosity. Equation (2.7) also
holds for elasto-plastic porous geomaterials with an incompressible solid phase that in itself
behaves elastically.

When dealing with quasi-static deformations in thermo-poroelasto-plastic materials with
relatively low permeability (e.g. dense sandstones, limestones and granite; [56–59]), we can
assume that neither the deformation rates of the medium nor the fluid flow rates result in heat
generation, and therefore do not contribute to any change in temperature within the medium. This
considerably simplifies the equations governing the heat transfer process, which can be expressed
as a classical heat conduction equation of the form [60]

∇2T = ρcp

kc

∂T
∂t

, (2.8)

where kc, ρ and cp are, respectively, the effective values of the thermal conductivity, mass
density and heat capacity of the saturated porous medium. These can be expressed as the
weighted averages of the properties of the solid (subscript ‘s’) and fluid (subscript w) phases: i.e.
kc = ϕkcw + (1 − ϕ)kcs, ρcp = ϕ(ρcp)w + (1 − ϕ)(ρcp)s.

In addition to the elastic response associated with the porous skeleton, we assume that the
skeleton can exhibit failure upon attainment of a stress state prescribed by a yield condition.
The choice of yield condition depends on the type of geomaterial and, for the purposes of
illustration, we consider the modified Cam-Clay model [22–24]. The yield surface is given by

(P̃ − ay)2 +
(

q
My

)2
− a2

y = 0, (2.9)

where ay is the radius of the yield surface, My is the slope of the critical state line, P̃ is the effective
pressure and q is the von Mises stress defined as

P̃ = −1
3

(trσ̃ )I; q =
√

3
2

s̃s̃; σ = σ̃ − αpI; s̃ = σ̃ − 1
3

(trσ̃ )I. (2.10)

Here, σ̃ is the effective stress and tr denotes the trace of the tensor. The centre of the yield surface
(ay, 0) in the (P̃, q) plane can be expressed as 2ay = σ̃ 0

c + σ̃c(trεpl), where σ̃ 0
c is the initial yield stress

for the isotropic compression stress state and

σ̃c = σ̃c(tr εpl) (2.11)

is the hardening law that prescribes the dependence of the isotropic stress on the volumetric
plastic strain.

Using (2.11), yield condition (2.9) can be rewritten as

√√√√√
⎛
⎝P̃ − σ̃ o

c

2
− σ̃c(εpl

V )
2

⎞
⎠

2

+
(

q
My

)2
≥ σ̃ o

c
2

+ σ̃c(εpl
V )

2
, ε

pl
V = trεpl. (2.12)
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To determine the incremental plastic strains, we specify an associated flow rule such that

dεpl = dλ
∂G
∂σ̃

; G =

√√√√√
⎛
⎝P̃ − σ̃ o

c

2
− σ̃c(εpl

V )
2

⎞
⎠

2

+
(

q
My

)2
− σ̃ o

c
2

− σ̃c(εpl
V )

2
. (2.13)

The plastic multiplier dλ can be found from the consistency condition

∂G
∂σ̃

dσ̃ + ∂G

∂ε
pl
V

dε
pl
V = 0. (2.14)

Substituting flow rule (2.13) into consistency condition (2.14), the plastic multiplier can be
obtained as

dλ = (∂G/∂σ̃ )DEdε

(∂G/∂ε
pl
V )(∂G/∂σ̃ )I + (∂G/∂σ̃ )DE(∂G/∂σ̃ )

, (2.15)

where DE is the elasticity tensor of isotropic materials [53].
The incremental total strains can now be obtained as

dε = [DE]−1dσ̃ + dλ
∂G
∂σ̃

. (2.16)

The incremental form of the elasto-plastic constitutive tensor defined as dσ̃ = DEPdε can be
expressed as

DEP = DE

⎡
⎣I − (∂G/∂σ̃ )(DE(∂G/∂σ̃ ))T

(∂G/∂ε
pl
V )(∂G/∂σ̃ )I + (∂G/∂σ̃ )DE(∂G/∂σ̃ )

⎤
⎦ . (2.17)

The hardening rule adopted here assumes that

σ̃c = σ̃c(εpl
V ) = −H ε

pl
V , (2.18)

where H is a positive constant. When the volumetric strain is negative (compaction), hardening
will take place and the yield stress σ̃c will increase. In such situations, the load path in the (P̃, q)-
plane will intersect the yield surface when the effective pressure P̃ is larger than the radius of
the yield surface. Alternatively, if the volumetric strain is positive (dilatation), then the yield
stress will decrease, and the load path in the (P̃, q)-plane will intersect the yield surface when
the effective pressure P̃ is smaller than the radius of the yield surface.

Hardening law (2.18) can be obtained as an approximation to the exponential hardening law

σ̃c = σ̃ 0
c exp

(
1 + e0

λ − κ
ε

pl
V

)
− σ̃ 0

c , (2.19)

where e0 = ϕ/(1 − ϕ) is the initial void ratio, λ and κ denote, respectively, the slope of the normal
consolidation line and unload–reload compression lines in the isotropic compression test. Typical
values of these parameters are λ = 0.2 and κ = 0.05.

3. Thermo-poroelasticity of the fluid-filled cavity
We examine the problem of a fluid-saturated poroelastic medium of infinite extent, which is
bounded internally by a spherical cavity of radius a. The cavity is filled with an inviscid fluid
identical to that saturating the pore space of the poroelastic medium. Poroelastic effects in the
system can be induced by pressurization of the fluid cavity; thermo-poroelasticity effects can be
induced by heating the fluid cavity. In each of these loading scenarios, the information of interest
relates to the development and decay of fluid pressure p within the cavity, the circumferential
stress σΦΦ (a, t) and the radial displacement u(a, t) at the boundary of the cavity.
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For spherically symmetric problems, the governing thermo-poroelasticity equations are

(
KD + 4

3
GD

)
(u,RR + 2R−1u,R − 2R−2u) − αp,R − 3KDαsT,R = 0

− K
η

(p,RR + 2R−1p,R) + αε̇V + M−1ṗ = ϕ3αfṪ + (α − ϕ)3αsṪ; εV = u,R + 2R−1u

and kc(T,RR + 2R−1T,R) = ρcpṪ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (3.1)

where M = (ϕ/Kf + (α − ϕ)/Ks)−1 is the Biot modulus and ϕ is the porosity.
Boundary and initial conditions are given as follows:

At R → ∞ σRR(t) = σ∞
RR; p(t) = p∞; T(t) = 0 for ∀t ≥ 0

For t = 0 p(R) = p∞ R > a; p(R) = pσ
0 R < a

and For t = t0 p(R, t0 + 0) = p(R, t0 − 0) + p0; R < a

T(R, t0 + 0) = T(R, t0 − 0) + T0

and p(R) = p∞; T(R) = 0 R > a.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.2)

The boundary conditions at infinity always correspond to the undrained state, which means that
the applied stress σ∞

RR, the fluid pressure p∞ and the volumetric strain ε∞
V at infinity must be

related by

σ∞
RR = Kuε∞

V ; p∞ = −αMε∞
V = −αM

Ku
σ∞

RR, (3.3)

where Ku = KD + α2M is the undrained bulk modulus.
The initial condition at t = 0 corresponds to the internal fields, generated by the compressive

stress σ∞
RR suddenly applied at infinity at t = 0. ‘Initial’ conditions at t = t0 for 0 < R < a imply that

sudden pressure and temperature increases are applied at time t = t0 to the fluid volume of the
spherical cavity.

Let the initial fluid pressure in the cavity, generated by the applied stress σ∞
RR, be denoted by

pσ
0 as in (3.2). This pressure can be related to the applied stress if it is assumed that the initial state

in the cavity is undrained. This condition gives pσ
0 = −Kf(3ua)/a, where ua is the displacement

of the cavity wall. As shown below (see (3.11)), the displacement of the cavity wall is related to
the applied stress σ∞

RR at infinity and the fluid pressure pσ
0 in the cavity by ua/a = pσ

0 /(4GD) +
σ∞

RR(1/(3Ku) + 1/(4GD)). From these relationships, we can obtain the initial fluid pressure in the
cavity as

pσ
0 = −σ∞

RR
1/(3Ku) + 1/(4GD)
1/(3Kf) + 1/(4GD)

. (3.4)

Note that for very stiff geomaterials, the elastic moduli Ku → ∞ and GD → ∞, and thus the initial
fluid pressure in the cavity reduces to zero.

The fluid flow equation in (3.1) can be simplified if we rewrite (3.11) as,

(KD + 4/3GD)
dεV

dR
− α

dp
dR

− 3KDαs
dT
dR

= 0. (3.5)

Integrating this equation with respect to R and using the fact that at infinity the dependent
variables are constant, we obtain

εV = α

KD + 4/3GD
p + 3KDαs

KD + 4/3GD
T +

(
ε∞

V − α

KD + 4/3GD
p∞
)

. (3.6)
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Using this relationship, the fluid flow equation in (3.1) can be rewritten as

− K
η

(p,RR + 2R−1p,R) +
(

M−1 + α2

KD + 4/3GD

)
ṗ

= ϕ3αfṪ + (α − ϕ)3αs

[
1 − αKD

(α − ϕ)(KD + 4/3GD)

]
Ṫ. (3.7)

The fluid flow equation now contains only two unknowns, the fluid pressure and the temperature,
and thus becomes decoupled from the elasticity equation. It is convenient to introduce a new
storage coefficient and a new thermal expansion of the solid phase, such that this equation
becomes formally equivalent to the diffusion equation for the fluid pressure, used in ground water
flow calculations [55,61]

S = M−1 + α2

KD + 4/3GD
; as = αs

[
1 − αKD

(α − ϕ)(KD + 4/3GD)

]
. (3.8)

Equation (3.7), valid for the region of the geomaterial R ≥ a, must now be solved together with
the heat conduction equation for the temperature field, i.e.

− K
η

(p,RR + 2R−1p,R) + Sṗ = ϕ3αfṪ + (α − ϕ)3asṪ, for R ≥ a

and kc(T,RR + 2R−1T,R) = ρcpṪ for ∀R,

⎫⎪⎬
⎪⎭ (3.9)

To obtain an analytical solution of the problem in a closed form, it is also advantageous to replace
conditions prescribed inside the spherical cavity with boundary conditions at the cavity wall and
solve the problem for the region R ≥ a only. The boundary conditions at the cavity wall are

K
η

∂p
∂R

− du
dt

= a
3

d
dt

(
p
Kf

− 3αfTA

)
; R = a

and σRR = −p; R = a

⎫⎪⎬
⎪⎭ , (3.10)

where TA is the volume average of the temperature in the cavity, u is the radial displacement. The
first boundary condition is derived in appendix A. The displacement u can be eliminated from
boundary condition (3.101) if we use the following relationships between the displacement at the
cavity wall and the fluid pressure in the cavity

ua = pa
4GD

+ a
4GD

(KD + 4/3GD)
(

ε∞
V − αp∞

KD + 4/3GD

)

= pa
4GD

− p∞a
4GD

KD + 4/3GD

α
S = pa

4GD
+ σ∞a

(
1

3Ku
+ 1

4GD

)
.

(3.11)

The last relationship in (3.11) was already used for deriving (3.4). In turn, equation (3.11)
can be derived using the traction boundary condition σRR = −p at the cavity wall and the
relationship (3.6) between the volumetric strain and the fluid pressure. Namely, from traction
boundary condition (3.102) and equation (3.6), we have a system of two linear equations for u
and ∂u/∂R

(KD + 4/3GD)
∂u
∂R

+ 2
(

KD − 2
3

GD

)
u
R

− 3KDαsT − αpR=a+0 = −pR=a−0

and
∂u
∂R

+ 2
u
R

= α

KD + 4/3GD
p + 3KDαs

KD + 4/3GD
T +

(
ε∞

V − α

KD + 4/3GD
p∞
)

; R = a.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

The first equation of (3.12) takes into account the fact that the pressure may be discontinuous
at the cavity wall at time t = t0 when the sudden pressure increase (pulse) is applied, i.e.
p(R = a + 0) �= p(R = a − 0). By solving (3.12) for u and ∂u/∂R we can derive (3.11).
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Next, using the connection between the displacement of the cavity wall and fluid
pressure (3.11), the boundary condition at the cavity wall (3.101) can be rewritten as

K
η

∂p
∂R

= a
3

d
dt

[
p
(

1
Kf

+ 1
4/3GD

)
− 3αfTA

]
at R = a. (3.13)

Let us introduce a modified bulk modulus of the fluid in the cavity

1
Kf

= 1
Kf

+ 1
4GD/3

. (3.14)

With this notation, the boundary condition at the cavity wall finally becomes

K
η

∂p
∂R

= a
3

d
dt

[
p
Kf

− 3αfTA

]
at R = a. (3.15)

In summary, we derived the equation for fluid pressure (3.91) decoupled from the elasticity
equation and the corresponding boundary condition at cavity wall (3.15), also decoupled from
the mechanical variables.

The solution of the differential equation for the fluid pressure and temperature can be obtained
by using a Laplace transform technique. First, we derive a solution for t < t0 when the stress
σ∞

RR is applied at infinity. For this case, T = 0. Applying a Laplace transform to differential
equation (3.91) gives

− K
η

(p̄,RR + 2R−1p̄,R) + S(sp̄ − p∞) = 0, (3.16)

where s is the Laplace transform variable. Applying a Laplace transform to boundary
condition (3.15) at the cavity wall gives

K
η

dp̄
dR

= a
3

sp̄ − pσ
0

Kf
at R = a. (3.17)

The solution of (3.16) for the pressure field can be represented by

p̄ = A
exp(−cR)

cR
+ p∞

s
, R ≥ a, (3.18)

where c2 = (η/K)sS. The constant A can be found from boundary condition (3.17). It gives

A = (a/(3Kf))(pσ
0 − p∞)

(s/(3Kf))(exp(−ca)/c) + (K/η)(c + 1/a)(exp(−ca)/(ca))
. (3.19)

The resulting fluid pressure at the cavity wall becomes

p̄(a, s) = (a/(3Kf))(pσ
0 − p∞)

as/(3Kf) + (K/η)(c + 1/a)
+ p∞

s
. (3.20)

The initial fluid pressure in the cavity pσ
0 is given by (3.4).

Now consider the solution at t > t0 after a sudden increase in the fluid pressure (pulse)
and/or the temperature. Owing to the linearity of the problem, we can assume that the applied
compressive stress at infinity is zero, and then use the principle of superposition to take into
account the solution at t < t0, which is caused by the compressive stress. In addition, to simplify
the derivation, we can set t0 = 0.

The sudden change in the fluid pressure p0 can be caused by rapid fluid injection, leakage
and/or a rapid increase in temperature T0. Consider first the case when T = 0; here, the Laplace
transform of the fluid pressure can be obtained in a similar manner to the case of the applied
compressive load (see (3.18) and (3.19)). The Laplace transform of the pressure is given by

p̄(R, s) = (a/(3Kf))p0

(s/(3Kf))(exp(−ca)/c) + (K/η)(c + 1/a)(exp(−ca)/(ca))
exp(−cR)

cR
, R ≥ a. (3.21)

Consider now the case where a rapid increase in temperature T0 �= 0 is applied to the volume
of the cavity. Let us first obtain the solution to the heat conduction equation (3.92). In order
to simplify the analytic derivation, we assume that the thermal properties of the inclusion and
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the surrounding geomaterial are identical. The Laplace transform version of heat conduction
equation (3.92) is given by

kc(T̄,RR + 2R−1T̄,R) = ρcp(sT̄ − T0) in R < a

and kc(T̄,RR + 2R−1T̄,R) = ρcpsT̄ in R > a

⎫⎬
⎭ . (3.22)

The solution can be represented by

T̄ = A
sinh(γ R)

γ R
+ T0

s
R < a; T̄ = B

exp(−γ R)
γ R

R > a, (3.23)

where γ 2 = sρcp/kc. Using the standard temperature and heat flux continuity conditions at R = a,
we find that

T̄ = −T0

s
1 + γ a

exp(γ a)
sinh(γ R)

γ R
+ T0

s
; R < a

and T̄ = T0

s
(γ a cosh(γ a) − sinh(γ a))

exp(−γ R)
γ R

; R > a.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.24)

The volume average of the temperature field in the cavity can be found by integration of (3.24).
This gives

T̄A = 3T0

s
1 + γ a

γ 3a3 exp(γ a)
[sinh(γ a) − γ a cosh(γ a)] + T0

s
. (3.25)

The moment the temperature increase is applied, there is no change in the fluid content inside the
cavity, i.e. the cavity is ‘initially’ undrained. The initial pressure p0 in the cavity is

p0 = −Kf
3ua

a
+ 3KfαfT0. (3.26)

Again, using the connection between the displacement of the cavity wall ua and the fluid pressure
given by (3.11), we can show that

p0 = αfT0

1/(3Kf) + 1/(4GD)
. (3.27)

The pressure field in the geomaterial, as a function of time, can be found by solving differential
equation (3.91). Recall also the boundary condition at cavity wall (3.15); applying the Laplace
transform to differential equation (3.91) gives

− K
η

(p̄,RR + 2R−1p̄,R) + Ssp̄ = ϕ3αfsT̄ + (α − ϕ)3assT̄, R > a, (3.28)

and applying the Laplace transform to the boundary condition at the cavity wall (3.15) yields

K
η

dp̄
dR

= a
3

[
sp̄ − p0

Kf
− 3αf(sT̄A − T0)

]
at R = a (3.29)

owing to the non-zero initial values of the pressure and temperature.
The solution of (3.28) can be represented by

p̄ = A
exp(−cR)

cR
+ Ã

exp(−γ R)
γ R

R ≥ a, (3.30)

where, as before, c2 = (η/K)sS. The constant Ã can be found by substituting this solution into
differential equation (3.28) and using (3.24), resulting in

Ã = − T0

γ 2 − c2
η

K
[ϕ3αf + (α − ϕ)3as][γ a cosh(γ a) − sinh(γ a)]. (3.31)

The remaining constant A is found by enforcing boundary condition (3.29) giving

A = (a/(3Kf))p0 + aαf(sT̄A − T0) − (s/(3Kf))Ã(exp(−γ a)/γ ) − (K/η)Ã(γ + 1/a)(exp(−γ a)/(γ a))
(s/(3Kf))(exp(−ca)/c) + (K/η)(c + 1/a)(exp(−ca)/(ca))

.

(3.32)
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With the use of (3.31) and (3.32), the result for the transformed expression for the pressure (3.30)
at the cavity boundary, R = a, is simplified to

p̄(a, s) = (a/(3Kf))p0 + aαf(sT̄A − T0) + (K/η)Ã(c − γ )(exp(−γ a)/(γ a))
as/(3Kf) + (K/η)(c + 1/a)

. (3.33)

Note that this expression is valid for all points within the cavity, R ≤ a, because the pressure within
the cavity is uniform.

The inverse Laplace transform for the pressure (3.33) and temperature (3.24) can be
found numerically by using an expansion involving Legendre polynomials [21]. Alternatively,
the pressure and temperature fields can be found by evaluation of the Bromwich integral, the
details of which are presented in Rice et al. [26]. Using the latter approach, the temperature at the
cavity wall and at the centre of the cavity can be expressed as

T(a, t) = T0

π

[
2

∫∞

0
exp

(
− y2t

κ2a2

)
sin2 y

y2 dy −
∫∞

0
exp

(
− y2t

4κ2a2

)
sin y

y
dy

]
,

T(0, t) = T0

π

[
2

∫∞

0
exp

(
− y2t

κ2a2

)
sin y

y
dy − 2

∫∞

0
exp

(
− y2t

κ2a2

)
cos(y)dy

]

= T0

[
erf
(

κa

2
√

t

)
− κa√

π t
exp

(
−κ2a2

4t

)]

and κ =
(

ρcp

kc

)1/2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.34)

Note that the temperature field is not uniform within the cavity.
The resulting fluid pressure in the cavity can be expressed as

p(R, t) = pM(R, t) + pT1(R, t) + pT2(R, t), (3.35)

where

pM(R, t) = p0

π

∫∞

0
exp(−st)

Dca
(s − D)2 + D2c2a2 ds

pT1(R, t) = 9KfαfT0

π

∫∞

0
exp(−st)L(γ a)

−Dca[cos(γ a) + γ a sin(γ a)] − (−s + D)L(γ a)
γ 3a3[(s − D)2 + D2c2a2]

ds

pT2(R, t) = −9Kf[ϕαf + (α − ϕ)as]T0

π

∫∞

0
exp(−st)L(γ a)

−Dca sin(γ a) + (−s + D) cos(γ a)
γ a(γ a + ca)[(s − D)2 + D2c2a2]

ds

and D = 3Kf

a2
K
η

, c =
(

s
η

K
S
)1/2

, γ =
(

s
ρcp

kc

)1/2
,

L(γ a) = sin(γ a) − γ a cos(γ a).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.36)

The first contribution to the pressure field is made by the initial pressure increase p0. The second
part is due to the thermal expansion of the fluid inside the cavity, whereas the third part is due
to the thermal expansion of the geomaterial constituents. For convenience, a further change of
variables y = s2 can be made in (3.36).

It is worth noting that the denominator [(s − D)2 + D2c2a2] has complex roots if 3KfS < 4.
This constraint is satisfied by most geomaterials, particularly commonly occurring rocks.
Therefore, the integrands have no singularities on the interval of real numbers s ∈ (0, ∞), and the
integrals can be evaluated numerically. In the case of real roots of the denominator, the integral in
pM(R, t) can also be evaluated analytically [62].

 on August 14, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130634

...................................................

Now, we can evaluate the stresses at the cavity wall. The effective radial stress can be directly
evaluated using the traction boundary condition at the cavity wall (3.102) and the definition of
the effective stress, i.e.

σRR(a, t) = σ̃RR(a, t) − αp+ = −p−, (3.37)

where p− = p(a − 0) and p+ = p(a + 0), and σ̃RR is the effective stress. Here, we take into account
the fact that, at the instant when the pressure pulse or sudden temperature change is applied,
there is a pressure jump at the interface. For all other times, the pressure is continuous, i.e.
p(a) = p(a − 0) = p(a + 0).

Using the expression for the radial stress at the cavity wall (3.121), the expression for the
volumetric strain (3.6) and the stress–strain relationship for the effective hoop stress σ̃ΦΦ , the
hoop stress at the cavity wall can be expressed as,

σ̃ΦΦ (a, t) = p−
2

+ KD − 2/3GD

KD + 4/3GD
αp+ − 6KDGD

KD + 4/3GD
αsT+ + 3KD

2
Ku + 4/3GD

Ku(KD + 4/3GD)
σ∞, (3.38)

or, alternatively,

σ̃ΦΦ (a, t) = p−
2

+ KD − 2/3GD

KD + 4/3GD
αp+ − 6KDGD

KD + 4/3GD
αsT+ + 3KD

2

(
ε∞

V − α

KD + 4/3GD
p∞
)

, (3.39)

where T+ = T(a + 0). The effective pressure at the cavity wall can now be evaluated from (3.37)
and (3.38) as

P̃(a, t) = −1
3

(σ̃RR + 2σ̃ΦΦ ) = KD

KD + 4/3GD

[
−αp+ + 4GDαsT+ − Ku + 4/3GD

Ku
σ∞

]
. (3.40)

4. Results for the thermo-poroelasticity problem
In this section, we present results pertaining to the thermo-poroelastic problem. Consider a
fluid-filled cavity of radius a = 0.02 m embedded in a geomaterial of infinite size. The porosity
of the geomaterial is ϕ = 0.01, and the Biot coefficient is α = 0.7. The elastic properties of the
geomaterial are bulk modulus KD = 5 GPa, and Poisson’s ratio ν = 0.3. The permeability of the
geomaterial is K = 3 × 10−19 m2, and the dynamic viscosity of the pore fluid is η = 0.001 Pa s.
The bulk modulus of the fluid is Kf = 2.2 GPa. The thermal properties are thermal expansion of
the fluid αf = 69 × 10−6 1/C and the thermal expansion of the solid phase αs = 8.3 × 10−6 1/C. The
thermal conductivity of both the fluid cavity and the geomaterial is kc = 3.15 Wm−1 C−1, whereas
the specific heat multiplied by the density is ρcp = 1912913 J m−3 C−1.

As the elastic problem is linear, it makes sense to separate the effects caused by the compressive
stress applied at infinity, the sudden change in the fluid pressure and/or the temperature applied
to the volume of the cavity. Each of these loadings will thus be considered separately. The
computational modelling was performed using the COMSOL Multiphysics code. The domain
used in the finite-element modelling of the infinite region was a two-dimensional sector bounded
externally at R = 20a, where a is the radius of the cavity, and contained by planes Θ = 0 and
Θ = π/2. The element used in the finite-element modelling was of the six-node Lagrangian type;
the displacement, the fluid velocity and the heat flux were all prescribed to be zero in the normal
direction, on all nodal points of the bounding planes Θ = 0 and Θ = π/2. The boundary conditions
on the outer region of the finite-element domain corresponded to the applied stress at infinity and
zero fluid velocity in the radial direction to represent undrained conditions. The computational
results obtained for the thermo-poroelasticity problems, from the computational code COMSOL,
are indicated in figures 1–4 and they confirm the validity of the modelling of infinite domains
with appropriate choices for the positioning of the far-field boundaries and boundary conditions.
The results presented in this paper generally support the conclusions arrived at by the authors in
their previous investigations [21].

Figure 1 shows the evolution of the fluid pressure in the cavity when a compressive radial
stress σ∞

RR of magnitude 1 MPa is applied to the geomaterial as a step function at infinity. The
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Figure 1. HM-coupled and -uncoupled solutions for the fluid pressure in the spherical cavity located within a fluid-saturated
geomaterial regionof infinite extent. A compressive far-field radial stress ofmagnitude 1 MPa is applied at t = 0. (Online version
in colour.)
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Figure 2. HM-coupled and -uncoupled solutions for the fluid pressure in the spherical cavity located within a fluid-saturated
geomaterial region of infinite extent. A sudden change in the fluid pressure of magnitude 1 MPa is applied at time t0 = 0 to the
volume of the cavity. (Online version in colour.)
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corresponding fluid pressure in the geomaterial at infinity p∞ is evaluated from (3.3) as

p∞ = −αM
Ku

σ∞, (4.1)

assuming that the geomaterial is undrained at infinity at all times. This gives us p∞ = 0.9726 MPa.
The initial fluid pressure in the cavity is evaluated from (3.4) as

pσ
0 = −σ∞

RR
1/(3Ku) + 1/(4GD)
1/(3Kf) + 1/(4GD)

, (4.2)

assuming that the fluid cavity is initially undrained. The result is pσ
0 = 0.4988 MPa. Figure 1

shows the fluid pressure obtained using both the coupled theory of poroelasticity, in which the
hydro-mechanical (HM) interaction between the unknown variables is taken into account, and
the uncoupled theory. Using the term ‘uncoupled solution’, we imply that the solution is obtained
by neglecting both the volumetric strain εV in the fluid pressure equation and the displacement
of the cavity wall ua in boundary condition (3.10) at the cavity wall. The initial conditions for the
coupled and uncoupled problems are assumed to be the same. We can see that the fluid pressure
obtained by solving the coupled system of equations of poroelasticity shows a slower change. In
general, the rate of change in the fluid pressure depends not only on the permeability but also on
the ratio Kf/KD. When this ratio decreases (KD increases), the rate of change in the fluid pressure
for the coupled solution will be more rapid, and the difference between the two solutions, coupled
and uncoupled, will become less notable.

Consider now the effect of a sudden change in the fluid pressure inside the cavity. Figure 2
shows the evolution of the fluid pressure in the cavity when there is a sudden increase in the
fluid pressure (pressure pulse) of magnitude p0 = 1 MPa applied to the volume of the cavity
at t = 0. This increase in the fluid pressure can be caused, for example, by fluid injection or a
sudden temperature change if there is a large thermal resistance that does not permit heat flow
across the cavity wall. The applied compressive stress at infinity is set to zero. Again, we present
two solutions corresponding to the coupled and uncoupled system of equations. We observe
that the rate of change of the fluid pressure for the coupled solution is slower than that for the
uncoupled solution.

Figure 3 shows the effect of the permeability of the geomaterial on the evolution of the fluid
pressure in the cavity. Three values for the permeability were used: the reference value K0 = 3 ×
10−19 m2, and values three times smaller and larger than the reference value. Again, the sudden
increase in the fluid pressure (pressure pulse) of magnitude p0 = 1 MPa is applied to the volume of
the cavity. Figure 3 presents the solution obtained by solving the coupled system of equations of
poroelasticity. We can see that the rate of change in the fluid pressure in the cavity depends on the
permeability of the geomaterial, and thus the application of the pressure pulse can potentially be
used in experiments to measure the permeability of geomaterials.

Figure 4 illustrates the effect of a sudden (or initial) temperature change T0 in the volume of
the fluid cavity. The applied compressive stress at infinity is assumed to be zero, and the thermal
resistance at the cavity wall is absent. The initial temperature increase within the cavity is taken
as T0 = 11◦C. It is assumed that the cavity is initially undrained, i.e. no injection or leakage of the
fluid occurs initially in the cavity, unlike the previous case. This condition allows us to obtain the
initial pressure in the cavity as (see (3.27))

p0 = αfT0

1/(3Kf) + 1/(4GD)
. (4.3)

This result gives p0 = 2.92 MPa. From figure 4, we can see that the dissipation of the fluid pressure
is faster compared with the case of the ‘pure’ pressure pulse, i.e. without any temperature change.
This can be explained by the fact that the dissipation of the initial fluid pressure (4.3) is caused
not only by the fluid flow across the cavity wall, but also by the heat dissipation. We can see
that the fluid pressure can become negative. In figure 4, we present the solutions to both the
thermo-hydro-mechanically coupled and uncoupled systems of equations. In the latter case,
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Figure 5. THM-coupled solutions for the fluid pressure in the spherical cavity located within a fluid-saturated geomaterial
region of infinite extent for three values of permeability of the geomaterial. A sudden change in the temperature of magnitude
11◦C is applied at time t0 = 0 to the fluid volume of the cavity. (Online version in colour.)

the effect of the volumetric strain of the porous skeleton εV in fluid flow equation (2.7) and the
skeletal displacement of the cavity wall ua in boundary condition (3.10) are neglected. The initial
pressure in the cavity for both solutions is assumed to be the same, i.e. p0 = 2.92 MPa. We can
see that in the case of the coupled solution, the fluid pressure dissipation is much slower, and
the magnitude of the negative pressure is small. It should be noted that the fluid pressure in the
cavity could be generated not only by heating the fluid within the cavity but also by injecting a
preheated fluid into an empty cavity. In this case, the volume of fluid that must be injected to
create the same pressure as (4.3) is derived in appendix B.

Figure 5 shows the influence of the permeability of the geomaterial on the evolution of the fluid
pressure in the cavity subjected to a sudden increase in the temperature T0 = 11◦C. As before,
three values of the permeability of the geomaterial are used: K = 3 × 10−19, K = 1 × 10−19 and
K = 9 × 10−19 m2. Owing to the relatively rapid dissipation of the fluid pressure in the cavity,
it is more difficult to distinguish among the three solutions and to use the sudden temperature
increase in an experiment for measuring the permeability of a geomaterial. However, we can
observe that the time required for the pressure to intersect the horizontal axis (zero pressure level)
clearly depends on the permeability of the geomaterial and this fact can potentially be useful
in experiments.

The fluid pressures shown in figures 1–5 have been obtained by inversion of transformed
solution (3.33) using the numerical inversion algorithm [21]. Alternatively, the integrals
in (3.35), (3.36) can be evaluated numerically. It was confirmed that these solutions compare very
accurately with results derived using the finite-element method. In the finite-element method,
boundary condition (3.10) at the cavity wall can be difficult to implement; instead, the fluid cavity
is included in the model and represented as a porous material for which the permeability K is very
large, whereas the elastic stiffness KD is very small. Both the porosity and the Biot coefficient for
such a porous material must be set to unity. The results of finite-element modelling obtained using
the COMSOL software are indicated in dotted lines in figures 1–4.
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5. Results for the thermo-poroelasto-plasticity problem
In this section, we present the computational results pertaining to the thermo-poroelasto-plastic
problem. The elastic and thermal parameters for the geomaterial and fluid cavity are the same
as given in §4. The initial yield stress or initial size of the yield surface is σ̃ 0

c = 40 MPa. Further

evolution of the yield surface is controlled by the hardening rule σ̃c = −10ε
pl
V GPa, and the

parameter My in (2.9) is set to unity.
The geomaterial region containing the fluid-filled cavity is first subjected to a far-field

compressive radial stress σ∞
RR = −1 MPa applied at infinity. Once a steady state is reached

(0.9726 MPa), after approximately 2000 s, a sudden increase in the pressure or temperature is
applied to the fluid cavity. This increase in the fluid pressure can be caused by fluid injection
and/or heating.

Figure 6 shows the fluid pressure evolution in the cavity when, at time t = 0, the geomaterial
is subjected to the compressive radial stress σ∞

RR = −1 MPa and, at time t0 = 2000 s, a sudden
increase in the fluid pressure is applied to the volume of the cavity. Solutions are given for both
poroelastic and poroelasto-plastic geomaterials. For t < 2000 s, these solutions coincide, i.e. the
applied compressive radial stress does not cause any plastic strains. When the pressure increase
(pulse) is applied to the volume of the cavity, plastic strains occur. The maximum plastic strain
is reached at the time of application of the pressure pulse, i.e. at t = 2000 s; the plastic strains
remain constant after t = 2000 s. If the same amount of fluid is injected to the volume of the cavity,
the instantaneous increase in the fluid pressure at t = 2000 s will be smaller for the poroelasto-
plastic geomaterial. Therefore, to achieve the same value of the instantaneous pressure increase
in the cavity, more fluid must be injected into the spherical cavity contained within a poroelasto-
plastic geomaterial. The maximum value of the fluid pressure is chosen to be 21.9 MPa, both for
the poroelastic and poroelasto-plastic geomaterials. It is evident from figure 6 that, although the
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Figure 7. Pressure evolution in a fluid-filled cavity within either a poroelastic or a poroelasto-plastic geomaterial. The
geomaterial is first subjected to a far-field compressive radial stress σ∞

RR = −1 MPa and upon attainment of a steady state,
the fluid within the cavity is subjected to a sudden temperature increase of 42◦C. (Online version in colour.)

maximum fluid pressure values are equal for the poroelastic and poroelasto-plastic geomaterials,
the rate of fluid pressure dissipation is greater when the geomaterial is poroelasto-plastic.

Figure 7 illustrates the fluid pressure evolution in a cavity subjected to a temperature increase
of 42◦C at time t0 = 2000 s. As before, the geomaterial is subjected to a far-field compressive radial
stress σ∞

RR = −1 MPa applied at infinity at t = 0 s. Solutions are given for both poroelastic and
poroelasto-plastic geomaterials. A corresponding increase in the fluid pressure at time t0 = 2000 s
is observed assuming that the cavity is undrained. For T = 42◦C, the instantaneous increase in
the pressure is equal to 11.1527 MPa if the geomaterial is elastic. We note that this instantaneous
increase in the fluid pressure must be smaller for the poroelasto-plastic geomaterial, but this is not
apparent in figure 7 due to the fact that the plastic strains are small for the selected temperature
increase. If the magnitude of the applied temperature is chosen to be larger, then the difference
between the instantaneous increases in the fluid pressure for the poroelastic and poroelasto-
plastic geomaterials will become more evident. As can be seen in figure 7, the decrease in the
fluid pressure is faster for the poroelasto-plastic geomaterial, and the extremum point in the fluid
pressure evolution curve is more apparent.

Figure 8 shows the radial displacement of the surface of a cavity located either in a poroelastic
or poroelasto-plastic geomaterial region. The geomaterial is first subjected to a compressive radial
stress σ∞

RR = −1 MPa applied at infinity and, after reaching a steady state, a pressure pulse is
applied within the cavity. The maximum resulting fluid pressure in the cavity immediately after
application of the pressure pulse is 21.9 MPa (the same conditions that were used in figure 6).
Figure 8 demonstrates that when the geomaterial is subjected to the compressive stress applied
remotely, the radial displacement of the cavity is small but negative (contraction). Fluid flows
towards the cavity centre as the fluid pressure in the cavity is initially smaller than that in the
geomaterial (figure 1). After application of the pressure pulse, the cavity expands to accommodate
the fluid that was injected. As the injected fluid flows from the cavity into the geomaterial,
the radial displacement of the cavity gradually decreases. If the geomaterial is poroelastic, all
the fluid that was injected is transferred to the geomaterial in the long term. In the case of the
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Figure 8. Radial displacement of a fluid-filled cavity within either a poroelastic or poroelasto-plastic geomaterial. The
geomaterial is first subjected to a compressive radial stress σ∞

RR = −1 MPa applied at infinity and, after reaching a steady
state, a pressure pulse is applied within the fluid-filled cavity. Maximum resulting fluid pressure is 21.9 MPa. (Online version in
colour.)

poroelasto-plastic geomaterial, however, there is a residual cavity displacement, which suggests
that not all the fluid that was injected initially is able to flow into the geomaterial.

Finally, it should be mentioned that the poroelasto-plastic solutions were obtained using the
finite-element code ABAQUS which is well suited for solving the poroelasto-plasticity problems.
As shown before, the fluid cavity was modelled as a poroelastic medium with porosity equal to
unity, with a comparatively large permeability and a relatively small value for the elastic stiffness.
The heat conduction problem was solved first; the resulting temperature field was used as an
input to the second problem, for which the unknowns were the displacements and the fluid
pressure. Similar to the computational modelling of the poroelastic THM problem, the domain
used in the poroelasto-plastic finite-element modelling of the infinite region was a sector bounded
externally at R = 20a, where a is the radius of the cavity, and contained by the planes Θ = 0 and
Θ = π/2. The element used in the finite-element modelling was of the six-node Lagrangian type;
zero displacement, zero fluid velocity and zero heat flux were prescribed in the normal direction
on all nodal points of the planes Θ = 0 and Θ = π/2. The boundary conditions on the outer
boundary of the finite-element domain corresponded to the applied stress at infinity and zero
fluid velocity in the radial direction.

6. Concluding remarks
The coupling of thermo-poroelasto-plastic effects in fluid-saturated porous media continues to
be of interest to many areas in the geosciences and geomechanics. This paper presented a
benchmark problem that gives a comparison of results for the transient response of poroelastic
and poroelasto-plastic geomaterial domains of infinite extent that are bounded internally by
a fluid-filled spherical cavity. The analytical results were derived using a Laplace transform
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technique and analytical results are used to calibrate the results obtained from the two finite-
element codes COMSOL and ABAQUS. The computational results compare favourably with the
analytical solutions.

Analytical solutions are obtained for several loading cases, namely a far-field compressive
radial stress, a sudden pressure change (pulse) applied to the volume of cavity and a sudden
temperature change applied to the cavity. The evolution of the fluid pressure generated in
the cavity, or equivalently at the cavity/geomaterial interface, was studied for each of these
loading cases.

Application of a far-field compressive stress generates a positive pressure inside the cavity
of a magnitude that is initially smaller than the far-field value of the fluid pressure. The fluid
pressure in the cavity then increases with time until it reaches a steady-state value equal to the
far-field fluid pressure. In addition, we note that the circumferential stress created at the cavity
wall for this type of loading is compressive and it reduces or eliminates the plastic strains in the
geomaterial if the pressure pulse and/or temperature increase are applied afterwards.

The pressure pulse in the cavity can be generated by a sudden fluid injection or leakage,
and also by a sudden temperature change if there is a high thermal resistance at the cavity/
geomaterial interface. As the results indicate, the fluid pressure in the cavity when subjected
to the pressure pulse decreases with time. The rate of the pressure dissipation clearly depends
on the permeability of the geomaterial, which allows us to use these results in experiments for
measuring permeability. The displacement of the cavity wall, given in terms of the fluid pressure,
ua = pa/(4GD), enables us to find the volume of the fluid that is currently residing in the cavity.
The results presented in the paper also point out the distinctions that arise in the responses when
full THM coupling is incorporated.

The fluid pressure caused by a sudden temperature increase in the cavity is initially positive,
but as time progresses the fluid pressure reaches zero and becomes negative until it returns to
a steady-state zero value. The time required for the pressure to first reach zero depends on the
permeability of the geomaterial and does not depend on the value of the applied temperature,
if the problem is linear. This fact can also be used in experiments for measuring permeability
of geomaterials. In addition, the expression for the value of the initial pressure in the heated
cavity, derived under the assumption that the cavity is initially undrained, can be used to infer
the value of the shear modulus of the geomaterial (see (3.27)). It is also important to note that,
in the case of temperature increase, the rate of change in the pressure is faster compared with the
case of a ‘pure’ pressure pulse, owing to heat dissipation into the geomaterial. The circumferential
stress at the cavity wall generated by the ‘pure’ pressure pulse and/or by a temperature increase
is tensile, which induces plastic strains in the poroelasto-plastic geomaterial.

For poroelasto-plastic geomaterials, the loading history consisted of the applied compressive
radial stress at infinity and, after 2000 s when a steady state was reached, the application of a
pressure pulse or sudden temperature increase in the cavity. The applied stress at infinity was
chosen to be sufficiently small that it did not induce any plastic strains, but the subsequent
application of a pressure pulse or temperature increase generated plastic strains. The magnitude
of these plastic strains was, however, reduced because of the compressive radial stress applied
at infinity. This can be explained by the fact that the hoop stresses at the cavity wall generated
by the far-field compressive radial stress and by the pressure pulse or temperature increase have
different signs. A comparison of the fluid pressure evolution in the cavity for the poroelastic
and poroelasto-plastic geomaterials suggests that, in general, the fluid pressure in the elasto-
plastic geomaterial is smaller and the rate of change in the fluid pressure is faster. The
results presented are relevant to geomaterials where the skeletal elasto-plastic behaviour can
be modelled by the modified Cam-Clay plasticity model. The procedures can be extended to
include other plasticity models appropriate for soft geomaterials and heavily overconsolidated
argillaceous geomaterials.

Disclaimer. The use of the computational codes COMSOL and ABAQUS is purely for demonstration purposes
only. The authors do not advocate or recommend the use of these codes without conducting suitable
validation procedures that test their accuracy in a rigorous fashion.
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Appendix A
Here, we derive the boundary condition (3.101) at the cavity wall R = a. It can be derived using
the divergence theorem; however, it is more instructive to derive it directly from the system of
differential equations for a porous material applied to the fluid cavity. In fact, the fluid cavity can
be treated as a porous material with porosity ϕ = 1, Biot coefficient α = 1, the small elastic moduli
of the skeleton KD, GD → 0, large permeability K → ∞ and zero thermal expansion of the solid
phase αs. For this special case of a porous material, M−1 = 1/Kf.

Differential equations (3.1) applied to the case of such a cavity become(
KD + 4

3
GD

)
(u,RR + 2R−1u,R − 2R−2u) − p,R = 0

and
1

R2
∂

∂R
(R2vf ) + ε̇V + 1

Kf
ṗ = 3αf Ṫ, εV = u,R + 2R−1u,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 1)

where vf is the radial fluid velocity in the cavity. As the elastic moduli are small, the equilibrium
equation implies that p,R is equal to zero, i.e. the fluid pressure p is uniform, and thus only a
function of time. Assume that the fluid velocity and the displacement in the cavity are linear
functions of the radius R, i.e.

vf = R
vfa

a
, u = R

ua

a
, (A 2)

where vfa is the fluid velocity at R = a and ua is the displacement of the cavity wall, R = a.
Then, the volumetric strain in the cavity becomes

εV = 3u
R

= 3ua

a
(A 3)

and is, therefore, uniform. Substituting expressions for the fluid velocity (A 2) and the volumetric
strain (A 3) into (A 1) gives

3vfa

a
+ 3u̇a

a
+ ṗ

Kf
= 3αfṪ. (A 4)

The fluid velocity at the cavity wall is given by

vfa = −K
η

∂p
∂R

, R = a. (A 5)

Thus,
3
a

K
η

∂p
∂R

|R=a − 3u̇a

a
− ṗ

Kf
= −3αfṪ. (A 6)

We note that this equation cannot be satisfied exactly because, on the left-hand side, we only have
a function of time, but on the right-hand side of the equation we have a function of time and
radial position, i.e. T(R, t). However, we can satisfy this equation in a weak sense, i.e. considering
the average of the temperatures in the cavity, i.e.

3
a

K
η

∂p
∂R

|R=a − 3u̇a

a
− ṗ

Kf
= −3αfṪA, (A 7)

where

TA = 3
a3

∫ a

0
R2T(R, t)dR. (A 8)

This completes the derivation of boundary condition (3.101). Boundary condition (A 6), but
without a temperature contribution, also appears in De Josselin de Jong [62].

 on August 14, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


21

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130634

...................................................

Appendix B
Instead of heating the fluid already resident in the cavity, we can initially pressurize the cavity
by injecting preheated fluid into the empty cavity. If the temperature rise is equal to T0, the

volume of the heated fluid that must be injected can be evaluated as Vinject
f = V0(1 + 3αfT0), where

V0 = 4/3πa3 is the volume of the fluid at the reference temperature state, equal to the cavity
volume. From (4.3), it follows that the resulting pressure in the cavity will be equal to

p0 = αfT0

1/(3Kf) + 1/(4GD)
. (B 1)

Eliminating the thermal expansion coefficient from these two expressions, we obtain

p0 = Vinject
f /V0 − 1

1/Kf + 1/(4/3GD)
. (B 2)

Therefore, the volume of the fluid that must be injected into the empty cavity is

Vinject
f
V0

= 1 + p0

(
1
Kf

+ 1
4/3GD

)
. (B 3)
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