
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 3, MARCH 2013 381

Escaped Boundary Pins Routing for
High-Speed Boards

Ching-Yu Chin, Chung-Yi Kuan, Tsung-Ying Tsai, Hung-Ming Chen, and
Yoji Kajitani, Life Fellow, IEEE

Abstract—Routing for high-speed boards is still achieved
manually today. There have recently been some related works
to solve this problem; however, a more practical problem has
not been addressed. Usually, the packages or components are
designed with or without the requirement from board designers,
and the boundary pins are usually fixed or advised to follow
when the board design starts. In this paper, we describe this
fixed ordering boundary pin routing problem, and propose a
practical approach to solve it. Not only do we provide a way
to address, we also further plan the wires in a better way to
preserve the precious routing resources in the limited number of
layers on the board, and to effectively deal with obstacles. Our
approach has different features compared with the conventional
shortest-path-based routing paradigm. In addition, we consider
length-matching requirements and wire shape resemblance for
high-speed signal routes on board. Our results show that we
can utilize routing resources very carefully, and can account for
the resemblance of nets in the presence of the obstacles. Our
approach is workable for board buses as well.

Index Terms—Length matching, printed circuit board (PCB),
route.

I. Introduction

TODAY, WE have increasing pin count on the very dense
boards, and current computer-aided design (CAD) tools

for board routing are very few and cannot provide automatic
solutions for board-level routing. There have been many works
addressing this problem, such as [5], [6], [9]–[11], [13]–[17],
[20], [21]. Board-level routing can be separated into two
categories: the escape routing and the area routing. The former
routes inner pins of a component to the boundary of that

Manuscript received October 8, 2011; revised February 7, 2012 and June
8, 2012; accepted August 28, 2012. Date of current version February 14,
2013. This work was supported in part by the National Science Council under
Contracts NSC 101-2220-E-009-040. A portion of this work was published in
IEEE Design, Automation & Test in Europe Conference & Exhibition, 2011
[19]. This paper was recommended by Associate Editor E. Young.

C.-Y. Chin is with the Institute of Electronics Engineering, National Chiao
Tung University, Hsinchu 30010, Taiwan (e-mail: alwaysrain.gr@gmail.com).

C.-Y. Kuan is with ASUSTek Computer, Inc., Hsinchu, Taiwan (e-mail:
aabgdbeaia@gmail.com).

T.-Y. Tsai is with Global Unichip Corporation, Hsinchu, Taiwan (e-mail:
charming91@hotmail.com).

H.-M. Chen is with the Department of Electronics Engineering,
National Chiao Tung University, Hsinchu 30010, Taiwan (e-mail:
hmchen@mail.nctu.edu.tw).

Y. Kajitani is with the Japan Advanced Institute of Science and Technology,
Kanazawa, Japan (e-mail: kajitani@env.kitakyu-u.ac.jp).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2221714

component, while the latter connects those escaped boundary
pins between components.

References [9], [13], [16], [17] address escape routing.
Luo and Wong [9] propose a problem in which there is a
constraint on pin ordering from the requirement of the board
designers, and the others address simultaneous escape routing.
Simultaneous escape routing negotiates both sides of escaping
terminals and explores a larger solution space. Two very recent
works [10] and [11] also focus on this problem. Reference
[11] uses a negotiated congestion based router to achieve the
routing; this technique is widely used in modern academic
global routers. On the other hand, [10] features a new concept
boundary routing to solve the simultaneous escape routing
problem, which achieves a better solution compared to pre-
vious work. The area routing [printed circuit board (PCB)
routing] connects the escaped slots between components or
packages on the board [5], [15], [20].

In the preliminary version of this paper [19], we address a
different yet practical problem: how we route the wires or
buses on the board with the fixed component or packages
boundary pins. Usually, the components or packages are
designed separately with boards; even with few interactions in
codesign, they are shipped with fixed boundary pins. Another
occasion is that those close-to-center pins in the component are
pre-escaped by the provider, such as [21] and [22], and board
designers are advised to use the given order of the escaped
boundary pins. Our work is a two-stage planner. The first stage
is to try to obtain a planar topology for all the connections with
more routing space available in subsequent pin pair routing.
The second stage is to obtain a refined routing with length-
matching constraint awareness and wire shape resemblance.
In addition, our approach is workable for board buses as well,
even with routing obstacles.

In this paper, we first restate the proposed board routing
algorithm. Next, we propose a heuristic approach to handle the
inevitable crossing nets. The approach utilizes Supowit’s chan-
nel route algorithm [18] to find the largest subset of nets that
can be routed on one layer. Furthermore, an integer linear pro-
gramming (ILP) formulation is proposed to adjust net length
within each bus such that the net length differences can match
the length or delay constraints that high-speed boards demand.
Overall, the experimental results show that our approach can
utilize the routing space effectively, and meet wirelength
and shape requirements while taking obstacles into consi-
deration.

0278-0070/$31.00 c© 2013 IEEE



382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 3, MARCH 2013

The remainder of this paper is organized as follows.
Section II describes the board routing issues. Section III
describes the first stage of our routing methodology for
obtaining planar topology considering obstacles. Section IV
illustrates the routing refinement for length constraints and
wire shape resemblance. Section V shows our results followed
by the conclusion in Section VI.

II. Routing Issues for High-Speed Boards

Manual work is adopted in board-level routing due to many
issues and constraints. The first concerning issue is impedance.
Considering the IR drop, crosstalk, and impedance matching,
the net shape and the net length must be controlled based on
certain criteria. Many original ideas have been created to solve
these problems, such as in [2], [7], [14], [15], [20]. Reference
[2] proposes a topological planar routing algorithm. The BSG
router [20] proposes an effective routing method. This method
can match the net length and save a large amount of memory
for data under a given routing topology. However, it consumes
enormous routing area and ignores the shape of nets, creating
a lot of jogged nets (net jogging). These net joggings may
cause signal integrity issues.

The second problem is bus planning. The bus router handles
a set of nets and routes these nets in parallel. An automatic
bus planner is proposed in [5], which provides good results
in bus planning. It is based on a good escaped pin assign-
ment; therefore, the bus planning can be automated. However,
we observed in the results that the buses are planned in
a bunch, which seems unfriendly to obstacles and routing
resources.

Therefore, the consequent problem is routing resources in
board routing. Due to manufacturing costs, we should keep
the number of layers minimal, which generates the constraint
of planar routing for board-level planning. Most of the routing
algorithms are based on the concept of a shortest path. This
kind of router cannot take the whole set of nets into account;
in each step, only the present net will be considered and
routed. Since the routing of the present net may block the
routing path (splitting the routing space) in a sequential
routing framework and planar requirement, the routing of the
following net or other nets is not favored due to an early
routing decision. Since the shortest path algorithm usually
causes the failure in such sequential routing, we are forced
to go back to the previous step and reroute the net. Refer-
ence [3] provides a good framework for topological routing;
however, it must use partitioning and Delaunay triangulation
for applications, and it also has a net ordering problem. A
very recent study [10] showed that boundary routing is a very
good concept, but it may be limited by only several escape
patterns.

Considering the fixed-boundary pin planar routing, our
approach will try to mitigate the aforementioned effects. In
order to not spoil the routing space for the remaining nets
and to avoid the net crossing during board wire planning, our
first stage routing will optimize the routing order to eliminate
the conflicts of net routing and to better utilize the routing
resource, which is very different from the traditional integrated

Fig. 1. Illustration of pin-sequence generation of a component for PCB
routing. Pin A is chosen as the first pin. By walking along the component
boundary counterclockwise, the other pins are listed as the pin sequence in
order.

circuit global router.1 During the second stage refinement,
we propose a length-constraint ILP formulation to achieve
min-max length bounds of nets, and take care of wire shape
resemblance.

III. Routing Under Fixed-Ordering Pin Locations

In general, most of the routing algorithms are based on
the concept of shortest path, which is usually referred to as
maze routing. This kind of router cannot take the whole set
of nets into account; in each step, only the present net will
be considered and routed. Without the consideration in future
routing, the shortest-path algorithm usually causes the failure
or much longer detour in routing the next net since the routing
space has been split (due to the planar routing constraint), and
we are forced to go back to the previous step and reroute the
net.

In this paper, we propose our solution of routing under
fixed-ordering boundary pins, which takes the whole routing
plane into account when routing a single net. First, we decide
the net ordering statically by dynamic pin sequence (DPS) to
avoid the net crossing in one-layer planar routing. Second,
we perform the topological routing under the aforementioned
net order. We develop an against-the-wall routing for better
preservation of routing resources for consequent routings.2

Finally, we describe how we handle the inevitable crossing
nets.

For the rest of the presentation, a bus is defined as all
common nets between a certain pair of components. The nets
in this context are all two-pin nets. It is reasonable since most
of the board-level connections are two pin nets.

A. Static Net Ordering With a Dynamic Pin Sequence

Before we present the routing algorithms, we first describe
the approach for net ordering determination. Given the place-
ment of the components on the board, routing space is formed

1A similar work [2] also targets topological planar routing. However, the
proposed strategy of generating planar routing in a general routing region is
different from this paper.

2B-escape [10] is a very recent work with very good results in solving
the simultaneous pin assignment and routing problem. However, we make
the following observations. First, our concept of against-the-wall routing is
somewhat similar to the boundary routing but different. Second, our approach
has no limit on monotonic routing, and has few detours.



CHIN et al.: ESCAPED BOUNDARY PINS ROUTING FOR HIGH-SPEED BOARDS 383

Fig. 2. Illustration of a CCP, which can be seen as the first connection among
all nets in components. Pin C is set to be the CCP and is connected to the
corresponding component.

with boundary pins on the periphery of the components. The
pins are either fixed by package providers or escaped using
methods, such as those used in [21] and [22]. We use a
number sequence to represent the relative position of pins on
one component. In order to include these pins in a number
sequence, we randomly select a pin among the pins on one
component as the start point of the sequence. From this start
point, other pins of this component are inserted into the
sequence one by one in a counterclockwise fashion. We apply
the same process to the other components and get a series
of pin sequences. The main idea is to use a series of pin
sequences to represent the locations of pins. As Fig. 1 shows,
this component contains five pins; we choose pin A as the start
point and make a pin sequence in a counterclockwise fashion,
and the sequence is ABCDE.

With components transforming to pin sequences, we will
concatenate those sequences into one sequence; we name it
DPS. The idea is to decide one pin sequence among all pin
sequences as a basis sequence, and then we put other pin
sequences into this basis by finding a common pin in the
two sequences that are going to be concatenated. The selected
common pin is referred to as component connecting point
(CCP). As illustrated in Fig. 2, pin C is treated as a CCP, and
we can concatenate two sequences as one. In this example,
the pin sequence of component C1 is ABCDE and the pin se-
quence of component C2 is BADEC. After merging with CCP
pin C, the concatenated sequence becomes ABBADECCDE

when choosing the former sequence as a basis sequence (base
DPS). There are many ways or combinations for sequence
concatenation; we choose a greedy way. By applying the
longest pin sequence (the component with a largest number
of pins) as a basis, we then integrate the second longest pin
sequence that contains common pin(s) with the basis into the
basis, and then the third-longest one, and so forth.3

Two consequent problems remain: how do we use this
concatenated DPS for net ordering, and which position or pin
location is the best? We will first describe how we process
the DPS for the first question, then we will present how we
choose the CCP for sequences concatenation. Using Fig. 2
as an example, we use the pin sequence of C1 as base
DPS, and pin C is chosen as the CCP for the concatenation
of two sequences. The resultant DPS is ABBADECCDE.

3It is possible to have more than one DPS since there are many components
that connect to different components. Larger components (containing more
pins) get to form other DPSs.

Fig. 3. Example of the first pin set CGI for routing. The underlined and
repeated symbols in final DPS II, GG, and CC will be erased and routed
first. The remaining DPS is KHHKJBEFFDDEABA, and we then connect
the adjacent pins according to the DPS and perform the consequent routing.

We observe that symbol C (CCP) is repeated due to the
concatenation; this means we can have the routing connection
of the two pins of net C in the netlist. We then erase these
two symbols in the sequences and the sequence becomes
ABBADEDE; this means that net B can be connected without
crossing. After erasing B, A is the next repeated symbol, and
finally the DPS become DEDE without any repeated symbol.

The first erasure net C acts as the start point of topological
routing, and the remaining symbol erasure suggests us a
routing order that produces a routing result without pin/net
blocking. By following the symbol erasure order, prerouted
paths will not block unrouted pins if each net is routed
along the previous paths, forming a centralized bus, which
is called the against-the-wall routing that is introduced in the
next subsection. In addition, the interleaving symbols in the
remaining DPS, DEDE, represent that there exists inevitable
net crossing when routing on a single layer.

When multiple components on a board, the generation of
DPS will start with a base DPS, and then concatenate each
pin sequence into the base DPS according to the selected
CCPs one by one until all pin sequences are combined into
one final DPS. Fig. 3 illustrates CCP connections of a PCB
with three components and four board boundary pins. Pins
C, G, and I are selected as CCPs, and the resultant DPS is
KHHKJIIJBEFGGFDDEACCBA.

We can, in fact, choose any position or pin location as
our CCP during each concatenation; however, the choice
itself will produce different configurations and then different
ordering. This will possibly cause the crossing in some nets
that could have been avoided. In the preliminary version,
we use a greedy-based approach to minimize crossings for
topological routing. For each concatenation, we evaluate each
pin in the smaller pin sequence (being concatenated) to check
the number of erasures that can be performed. For example,
in Fig. 3, after the erasure of the repeated symbols II, we
can continue to erase JJ and HH . Therefore, the topological
routing for this subset can be performed without crossing. We
then choose this pin with a largest number of erasures to be the
CCP. In Section III-C, we present a new approach that replaces
this greedy erasure process to further improve performance.

The advantages of this static net ordering are as follows.
First, through the steps of pin-sequence concatenation, we



384 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 3, MARCH 2013

Fig. 4. Routing result of against-the-wall routing. All nets are connected in
order and routed against the walls. The results show that the nets will be close
to the wires of the connection of the CCPs and have resembled wire shape
for bus requirement.

can decide the backbone of the topological routing. Second,
we use this ordering to preserve the routing space so that it
will not be split into many small and broken pieces, avoiding
the possible crossing during sequential routing, especially if
the shortest path or mazing routing is used. Third, we have a
considerably good static order for routing nets, compared with
blind ordering.

The advantage of deciding the backbone includes preserving
routing resources for unrouted nets and improving signal
integrity due to similar routes for signal propagation. If routing
paths of a bus are not grouped as a bunch, there must exist an
unrouted area that is surrounded by routed paths or obstacles
and can no longer be routed. Note that although the term bus
used here indicates common nets between two components,
the static ordering can be adapted on other user-defined sets
of nets. The limitation of this static ordering is that it does
not take routing capacity into consideration; therefore, it may
fail to complete the routing of nets in the DPS. In this case,
the unrouted nets will be assigned into another routing layer.
In our testcases, which are based on real designs, the capacity
issue does not affect the routability of the proposed approach.

B. Against-the-Wall Topological Routing

The DPS in Fig. 3 shows the first routing set (a collection of
CCPs) in this example: CGI. Here, we perform the routing to
connect those pins. A* algorithm [4], [8] is used in our router
to complete the connections. A* algorithm connects the net by
calculating the path cost. In the beginning of the A* algorithm,
we look for the lowest cost point near the start point. We refer
the lowest cost point as the current point. For each of the four
points (directions) adjacent to this current point, we find the
lowest cost point and link this point to the current point. We
can find the target point by doing this in a repeated manner.
Fig. 3 shows the result of the CCP connections.

In order to fulfill the requirement of high-speed board signal
routing, we intend to route them as close as possible and
consider the length difference constraints. Given the routing
shown in Fig. 3, the three paths of CCP connections become
the first three boundaries or walls on the routing space.
By using the previously routed nets as boundaries or walls,

we route the following nets against-the-wall. Following the
previous discussion, the erasure of symbol pairs in the DPS
will produce the next sets of routing. We repeat this process
until no symbol pairs existed in the DPS. The final against-
the-wall routing is shown in Fig. 4. From another point of
view, we can treat the first routed nets as gravity centers, and
the remaining nets are attracted to be placed besides them. We
will discuss how we handle the rest of the DPS in the next
subsection.

We describe the against-the-wall routing as follows. By
using routed nets as a boundary of routing space, the routes
walk against the wall or boundary. We follow the order that
we described previously to route the remaining nets, each
route has a fixed direction toward the destination pin. If there
exist blockages (or previously routed nets), the direction will
be modified to walk around. The aforementioned routing is
achieved by applying A* algorithm with carefully adjusting
grid costs. Routing grids closer to the wall or boundary are
assigned with lower costs, while grids in the center of an
empty region are assigned with higher costs. This strategy
allows us to route net individually such that the bus will not
be blocked by obstacles due to insufficient capacity between
two obstacles. Paths within a bus are still centralized as a
bunch when there exist enough routing resources.

C. Improvement on Routability and Layer Assignment of Nets

It is possible that the design may not be routable in one
layer. We can, in fact, arrange some routes to be routed
in other layers; it is also mentioned in [6]. In the previous
subsection, we introduce the concept of DPS. By transforming
pin locations of a board design into its DPS, we can easily
figure out whether a design is routable within one layer
or not. We also mention that different selections of CCPs
result in different DPS, which affects routability. In fact, not
only the CCP selections, but the concatenation order of pin
sequences and the layer assignment of nets under given DPS
will affect the routability of topological routing as well. In
this subsection, we will discuss the net crossing problems,
and propose our new approach of routability improvement and
layer assignment. The approach described here is an improved
method of our preliminary version that will produce better
performance.

The problem is divided into two sequential stages: 1) the
CCP selection and DPS generation, and 2) layer assignment
of nets and routing order determination. At the end of this
subsection, we conclude our new method with a flowchart.

1) CCP Selection and DPS Generation: A greedy-based
CCP selection method is used in the preliminary version. For
each component pair, the approach chooses CCP that produces
the largest erasure number. However, this strategy has two
weak points: 1) it focuses on only the target bus and does
not take other nets into consideration, and 2) it has difficulty
in tackling designs with a large number of components and
complex connections. Since CCP connections are done by A*
algorithm following the order of sequence concatenation, as
described in Section III-B, the order of concatenation affects
the routing result. In Fig. 5, seven nets belong to two buses.
For bus ABC, even if we choose net A, B, or C to be CCP, the



CHIN et al.: ESCAPED BOUNDARY PINS ROUTING FOR HIGH-SPEED BOARDS 385

Fig. 5. Illustration of drawback in the CCP selection method of our prelimi-
nary version. The CCP connections in (a) result in worse routability compared
to (b) a more efficient method. However, our preliminary selection method
cannot distinguish the difference.

Fig. 6. Illustration of CCP candidate sets of a design with three components
connected to each other.

Fig. 7. Generation of a maximum weight spanning tree. The component
with the largest connectivity is chosen to be the base DPS. According to
the spanning tree, the concatenating process is from the boundary pins →
C2 → C3.

number of routable nets is two. But when we take the other
bus, VWXYZ, into consideration, we find that CCP connection
shown in Fig. 5(a) has worse routability than in Fig. 5(b).
In Fig. 5(a), the routing of bus VWXYZ has more detours
and consumes more routing resources than in Fig. 5(b). To
avoid this situation, the DPS concatenation order should be
arranged carefully, i.e., if the bus with a large number of nets
is concatenated into DPS first, the resultant CCP connections
may produce better routability.

Another common problem of CCP selection is illustrated
in Fig. 6. Three components C1, C2, and C3 are connected
with each other, and three different sets of nets (three buses),
in which nets ABC connect C1 and C2, nets DEF connect
C2 and C3, and nets GHI connect C1 and C3, are going to
be routed. Although there are three buses, only two CCPs
should be selected to form the final DPS. The CCP connections
cannot form any cycle on the routing plane; otherwise, the DPS
generation would fail.

Fig. 8. Example illustrating the whole process of DPS generation of case
shown in Fig. 7. All pins are concatenated into a single sequence (final DPS)
after K, D, and G are selected as CCPs.

For better performance, we propose a new DPS genera-
tion strategy to produce DPS with better routability. For a
given board, the component with the largest connectivity with
other components is selected to be the base DPS. The CCP
selection and sequence concatenation then begin from the
base DPS. In order to decide the order of concatenation (and
to avoid cycles produced by CCP connections), we define
a vertex set V = {v : v ∈ components}, and an edge set
E = {e(u, v) : comp. u and comp. v have common net(s)}, in
which edge weight w(e(u, v)) equals the number of nets
between components u and v. A maximum weight spanning
tree Tmax of G(V, E) is then generated by Prim’s algorithm
with the vertex(component) representing base DPS as the start
point. The concatenation order of DPS is set to the same
order of the tree expanding order in Prim’s algorithm. Fig. 7
illustrates the MST generated by the original board design with
three components and a set of board boundary pins. Because
a tree structure produces no cycles, the DPS generation can
be processed successfully.

After the determination of a merging order, each pin se-
quence (except base DPS) is reversed and duplicated to form
a sequence with double length (denoted as PS*), e.g., pin
sequence ABC becomes CBACBA. The longest common
subsequence [12] is then applied to the base DPS and the first
PS* to be connected, which is the reversed and duplicated
pin sequence of the first visited component when growing
Tmax. This is to find the longest common net ordering in a
cyclic manner. Fig. 8 illustrates the generation of DPS: the first
matched symbol K is considered the CCP between boundary
pins and component C1. Once the CCP is decided, the base
DPS then becomes HIJGFDCBAKKJIH . The current DPS
can then be concatenated with PS* of component C2 (in this
case, C2 and C3 have the same priority since the number
of nets connecting C1 and C2 equals the number of nets
connecting C1 and C3). The merging process continues until
all edges in tree Tmax are processed.

Despite the similarity to topological routing in [2], the major
difference is that our approach is bus oriented. The proposed
approach intends to route nets within a bus in a bunch in one
layer by our CCP selection method, instead of taking net as
an individual as [2] did. Under this premise, we generate DPS
heuristically rather than exhaustively searching, as in [2].



386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 3, MARCH 2013

Fig. 9. Example of inevitable crossing situation.

Fig. 10. (a) Transforming chords of a circle to the corresponding circle
graph. (b) Illustration of routing net selection calculation by Supowit’s channel
route algorithm.

Fig. 11. Routing result using the modified net ordering of against-the-wall
routing.

2) Layer Assignment and Routing Order Determination:
Given a DPS, it is not obvious to determine which net(s)
should be routed to maximize routability in the current layer,
or to minimize the overall layer number. For example, the nets
in Fig. 9 cannot be routed in one layer. By erasing the repeated
symbols in DPS, we have sequence DEDXE left, in which X

is a net belonging to component C2 but not C1. If we route net
D, then nets E and X are blocked and thus unroutable. On the
other hand, if we route net E, although net D is unroutable,
net X is not blocked. The selection of net to be routed is not
straightforward in this situation.

Fortunately, the problem is similar to channel routing with
dogleg paths. Through CCP connections, DPS is actually a
geometric shape changing of channel routing. Here, Supowit’s
algorithm [18] is applied to find the maximum number of nets
that can be routed on one layer.

Supowit’s algorithm is originally developed to solve the
dogleg-path channel route problem. Given N two-pin nets
in a channel, the algorithm finds the largest subset that
can be routed on one layer in O(N2) time. We describe
the algorithm here. Given a set C of N chords of a

Fig. 12. Overall flow of topological routing.

circle, as shown in Fig. 10(a), number the endpoints of
these chords from 0 to 2N − 1 clockwise around the
circle. A circle graph G can be constructed by a ver-
tex set V =

{
vab : a < b and ab ∈ C

}
and an edge set

E = {(vab, vcd) : a < c < b < d or c < a < d < b}. By obser-
vation, we can find that a maximum independent set, MIS, of
circle graph G corresponds to a maximum set of crossing-free
chords in the original chord set, which equals the largest subset
of routable nets on one layer. Although finding MIS in a gen-
eral graph is NP-hard, Supowit proposed an O(N2) algorithm
for this special circle graph. Defining Gi,j as the subgraph
of G induced by vertex set Vij = {vab ∈ V : i ≤ a, b ≤ j}, the
maximum independent set of graph Gi,j , denoted as MIS(i, j),
can be calculated by a simple-recursive formula as follows:

Initial condition

MIS(i, i) = φ.

Recursive formula

MIS(i, j) =

⎧⎪⎨
⎪⎩

MIS(i, k − 1) ∪ vkj ∪ MIS(k + 1, j)
, if (1) holds

MIS(i, j − 1)
, else

where (1) goes to

∃ i ≤ k < j s.t. kj ∈ C and

|MIS(i, k − 1)| + |MIS(k + 1, j − 1)| + 1 > |MIS(i, j − 1)| .

The MIS of graph G can thus be calculated by MIS(0, 2N−
1) due to G = G(0, 2N − 1).

For our board routing problem, we have shown that if two
identical symbols can be erased through the erasure process,
the corresponding net can be routed without net crossing. By
arranging symbols around a circle, we can easily find that the
erasure process is actually a simplified version of Supowit’s
algorithm, in which inevitable crossing nets correspond to
crossing chords in the circle. Fig. 10(b) illustrates the result of
applying Supowit’s algorithm on the DPS generated in Fig. 8.
Symbols connected with solid lines correspond to nets that
are selected to be routed on the current layer with no crossing
occurs between each other, and dotted lines indicate nets that
are not selected to be routed on the current layer. Fig. 11
shows the routing result with Supowit’s algorithm; only net B

is unroutable.



CHIN et al.: ESCAPED BOUNDARY PINS ROUTING FOR HIGH-SPEED BOARDS 387

3) Overall Flow of the Proposed Topological Routing: In
this paper, we propose a new algorithm to handle the topolog-
ical routing problem, which utilizes the concept of dynamic
pin sequence in the preliminary work, but with a different
approach. Fig. 12 shows the complete steps to perform the
global topological routing. Given component placement and
netlist, we first generate the DPS of the design using the new
algorithm. Next, according to the DPS, which nets should be
routed and a static net order are both produced by Supowit’s
channel route algorithm. Third, we perform our against-the-
wall routing to generate a topological routing result of the
first layer. If there is any unrouted net left, a new routing
layer is needed, and the whole procedure is repeated again
with respect to the remaining nets. The procedure will repeat
until no unrouted net is left.

IV. Length-Constraint-Aware

Routing Refinement

After against-the-wall routing, our router produces a series
of bus nets. In this stage, we adjust the routing without chang-
ing the completed interconnection to match the length con-
straints on the board to resemble the net shape and to shorten
(sometimes lengthen) the wirelength for longer (shorter) nets.
Recall that during the process of the against-the-wall routing,
a central (backbone) net is generated and the other nets are
routed close to the central net, and thus more unused area
can be reserved for later use. This unused area is useful for
net length adjusting, in which the length differences should be
adjusted to meet the min-max length constraint of the design.

In this section, we propose an ILP formulation to adjust the
net length. Due to obstacles or the location of components, the
edge shifting used in the preliminary version sometimes fails
to find a feasible solution. Compared with the edge shifting
technique, our new proposed ILP approach expands more
solution space in finding paths.

A. ILP Formulation for General Length-Matching Problem

We observe that, once all nets in a bus are merged as a
bunch, the length differences within the bus are relatively
small. As shown in Fig. 13(a), the separated pin locations
contribute most of the length mismatch. To compensate length
differences caused by pin locations while maintaining net
shape for signal integrity, we adjust routing paths inside a cer-
tain region, referred to as the adjust region. The adjust region
is a ring-shaped area around a component, as shown in Fig. 14.
Outside the adjust region, routing paths remain the same as
in against-the-wall routing. Inside the adjust region, prerouted
paths will be removed and rearranged by the proposed ILP
length-matching algorithm. The position where paths pass
through the boundary of adjust region is called the cut point.
The objective of length matching is to rearrange paths inside
the adjust region with each net, from its pin to the cut point,
having equal length (or satisfying the min–max constraint).

Each adjust region is split into routing tracks, and each track
of the region is considered a 1-D virtual axis, as illustrated in
Fig. 14. Pin locations (or any point inside adjust region) are
transformed into coordinates on the corresponding axis. Any

Fig. 13. (a) Pin locations contribute most of the length mismatch.
(b) Example of length adjusting.

Fig. 14. Transforming 2-D length-matching problem into 1-D coordinate
determination. The four pins are mapped to four coordinates on the virtual
axis, respectively, for length adjusting. The ILP length adjusting will be
performed within the adjust region.

path inside the adjust region can be represented by a series of
coordinates on each axis (tracks). Through this transformation,
the 2-D length matching is reduced to a 1-D problem.

Fig. 13(b) illustrates the idea of our net adjusting strategy.
Four nets are demanded to adjust their length inside the
adjust region. We divide the problem into small subproblems.
First, consider only nets Y and Z, the path equalization
can be done by using track 1 and track 2. The paths of
the two nets are merged at point MYZ with equal length
length(Y, MYZ) = length(Z, MYZ). After merging, nets are
demanded to route as a bunch. Similarly, nets W and X are
merged at MWX. However, due to the fixed location of Pcut ,
wirelengths of W and X need to be adjusted by detoured paths
such that their total wirelengths can be the same as Y and Z.
This adjusting makes net W have a U-turn shape path turning
at UW , and net X turns at UX as well. UW and UX are called
the turning points. Turning points are used to adjust net length
when paths go from track 1 to track 2. Now, starting from
MWX and MYZ, the merged (or grouped) nets WX and YZ are
merged at Pcut with all four nets having equal length.

In general cases, this hierarchical merging and length
adjusting is obtained through steps, as shown in Fig. 15.
A binary merge tree is first constructed to determine the
merging pair of nets, and the number of merging points is
then decided by a tree height. If the number of nets in a
bus, N, equals 2k, a k-level tree is constructed with each leaf
node representing a net. Otherwise, a �log2(N)�-level tree
is constructed with some leaves being empty. In Fig. 15(a),
the six-net bus is transformed into a three-level tree rooted



388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 3, MARCH 2013

Fig. 15. (a) Routing results of the against-the-wall routing. (b) Merging tree
of (a). (c) Length-matching routing results.

at Pcut , as shown in Fig. 15(b) with six merging points.
Fig. 15(c) shows the length-matching routing results produced
based on the merging tree.

We formulate the binary merge style length-matching
problem into an ILP. Given pin set = {P1, P2, ..., PN} and
their routing paths (generated by the against-the-wall routing),
the objective of the ILP is to find the positions of merging
points that satisfy length constraints while minimizing the
total wirelength.

The notation used in the ILP formulation is as follows:
1) N: number of nets in a bus;
2) L: number of merging levels, L = �log2(N)�;
3) h: number of tracks needed to merge all nets, 2L−1 ≤

h ≤ 2L;
4) Pcut: the coordinate of the cut point of the bus;
5) Pi: the coordinate of the ith pin with Pi < Pi+1, 1 ≤ i ≤

N;
6) Ui: the coordinate that the ith pin goes from track 1 to

track 2, 1 ≤ i ≤ N;
7) Mlv,j: the coordinate of the jth merging point in level

lv, 1 ≤ lv ≤ L and 1 ≤ j ≤ 2L−lv;
8) len(u, v): the total path length from point u to point v.

Here, N, L, h, Pcut , and Pi are fixed numbers,4 and Ui and
Mlv,j are variables in ILP formulation, except ML,1, which is
equal to Pcut and therefore it is a fixed number.

To make the formula more meaningful and easy to explain,
we use an example to represent the following constraints.
Using Fig. 13(b) as an example, pins W , X, Y , and Z map
to parameters P1, P2, P3, and P4, respectively. Then, M1,1

represents the merging point of W and Y , and M1,2 represents
the merging point of Y and Z. In order to have the same
wire length, the following path-equivalent constraints should
be satisfied:

M1,1 − 2U1 + P1 = −(M1,1 − 2U2 + P2) (1)

M1,2 − 2U3 + P3 = −(M1,2 − 2U4 + P4) (2)

Pcut − 2M1,1 + 2U1 − P1 = −(Pcut − 2M1,2 + 2U3 − P3). (3)

Equation (1) ensures that paths from P1 and P2 to merge
point M1 have equal length, and (2) ensures that paths from

4Pcut will be set to movable variable when the proposed ILP fails to find a
feasible solution; this does not happen in our testcases.

P3 and P4 to M2 have equal length. Equation (3) ensures that
all paths from pins to cut points have the same length.

Locations of merging points and turning points have to
be constrained to avoid illegal solutions, such as overlaps of
routes produced by ILP. These position constraints restrict
values of Mi and Ui in a certain range

Ui < Ui+1 , 1 ≤ i < N (4)

Pi−1 < Ui < Pi+1 , 1 < i < N (5)

Mlv,j < Mlv,j+1 , 1 ≤ j ≤ 2L−lv.

Inequalities (4) and (5) ensure feasible locations of turning
points. Inequality (6) ensures feasible locations of merging
points.

Therefore, the net or bus adjusting problem can be formu-
lated as follows:

minimize
∑

N
i=1len(Pi, Pcut)

subject to

path-equivalent constraints

position constraints.

The objective function is to minimize the total wire length.
However, minimizing total wire length is equivalent to mini-
mizing length of an arbitrary path. Without loss of generality,
we simplify the objective function to minimizing the path
length of P1 to Pcut .

For a bus of N nets, there are 2(N − 1) variables and
N−1 constraint equations when there is no obstacles or block-
age inside the adjust region. To handle obstacles, additional
constraints are needed to ensure that the result is available.
For example, if a small device locates near the component,
resulting track 1 unrouted from coordinates u to v. Then,
for each Ui, an extra constraint will be added to the ILP
formula

Ui < u, if Pi < u

Ui > v, if Pi < v. (6)

The inequalities in (6) are the obstacle-avoid constraints.
The ILP formulation thus becomes

minimize len(P1, Pcut)

subject to

path-equivalent constraints

position constraints

obstacle-avoid constraints.

Reference [14] also proposed a length-matching algorithm
on single-layer routing, which finds an optimal solution under
a maximum-length constraint without obstacles inside the
routing region. The proposed ILP approach, on the other hand,
deals with obstacles when adjusting net length. Net shape
is also taken into account for signal integrity issues, which
improves the quality of the routing solution.

However, the proposed length matching may fail to find
a solution even though there exists one due to its binary



CHIN et al.: ESCAPED BOUNDARY PINS ROUTING FOR HIGH-SPEED BOARDS 389

Fig. 16. Illustration of a situation in which the proposed ILP fails to find a
solution. (a) ILP fails to find a valid position for a merging point of pin C

and MAB due to the obstacle. (b) Length matched solution produced by hand.

merging constitution. The ILP may fail when: 1) the locations
of obstacles occupy part of the adjust region such that no
available space for merging points, and 2) there does not
exist enough space between pins such that ILP cannot satisfy
position constraints. Fig. 16 shows the situation that ILP fail
to find the location for merging points of C and MAB, while
there exists a feasible solution as shown in Fig. 16(b).

B. ILP Formulation Under Mismatch on Backbone of Bus

The aforementioned ILP constraints are based on a premise
that the length differences between nets within a bus are
small and thus can be ignored. However, there are small
devices such as capacitors, resistors, and other components
on boards that may block routing area. Although the proposed
against-the-wall routing can handle the above situations and
produce feasible results, the length differences between nets
may become too large to ignore. In this case, the proposed
ILP formulation can still maintain the routing quality with
only a small modification by adding a constant number to
the corresponding path-equivalent constraint. For example, in
Fig. 13(b), if net W is one unit longer than net X outside the
adjust region, (1) will become

M1 − 2U1 + P1 = −(M1 − 2U2 + P2) + 1. (7)

The additional +1 term compensates the original length dif-
ference between W and X. In addition, the length differences
caused by against-the-wall routing can be compensated for by
the two adjust regions of the bus (around the two components
the bus connects), which means the length differences are
shared out of the two adjust regions. As a result, the length
matching inside each adjust region will produce little detours.

Solving an ILP problem is often time consuming. To ac-
celerate the execution time, we solve the problem by an open
source LP solver lp solve 55, and round up the outputs to the
nearest integer. Although the round-up process may produce
length errors between nets, it is tolerable if all net lengths
conform to the min–max length constraints. The min–max
length constraints are easy to meet because the length error
produced by roundup is relatively small compared to the scale
of length bounds.

V. Routing Results

We implemented our methodology in C++ and the platform
is on Intel(R) Xeon(R) Linux workstation 2.5 GHz with 16-
GB memory. We constructed the test cases that are based on
cases shown in recent works and references (test cases I and II
resemble the cases shown in [20] since the cases in [20] are not

TABLE I

Summary of Test Cases and Experimental Results

#Nets #Comp. #Layers Grid Size Total Time
Test Case I 17 2 1 250 × 250 <1 s
Test Case II 17 4 1 300 × 230 <1 s
Test Case III 57 5 1 300 × 230 <1 s
Test Case IV 81 8 1 640 × 560 1 s
Test Case V 104 9 1 900 × 900 1 s
Test Case VI 81 8 2 640 × 560 1 s

Fig. 17. Routing result of test case IV. The result shows that the routing
nets are centralized as buses and the routing area is better utilized.

available, test cases III–V are from [1], provided from design
houses). Table I shows the test cases and routing efficiency
for our router. Nets and Comp. indicate the number of nets
and components in test cases. Layers reports the number of
routing layers used in test case. Grid size shows the size
(the number of grid cells on the PCB board)5 of the routing
problem, Total Time includes the time for building the routing
grid and the runtime spent by our router. All cases are finished
within 1 s.

Fig. 17 shows the test case IV that has eight components.
The results show that almost all nets are routed in a certain
region and the routing area is better utilized. Fig. 18 is the
enlarged left-top view of Fig. 17. The result shows that our
router can adjust net paths in a certain region to meet the
length constraints. Test case VI is modified from test case IV,
where some pin locations are alternated such that it is not
routable on one layer. Fig. 19 shows routing results of test
case VI, which uses two routing layers.

Fig. 20 shows test case III that has five components on
boards. The net distribution between each component is similar
to the result of bus routing. Our router can also detour the
nets to avoid crossing and confirm with the length constraints.
Even when the components are not face to face, our router can

5The grid sizes of the test cases in this paper are larger than the BSG grid
sizes in [20], which shows the granularity of our approach.



390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 3, MARCH 2013

Fig. 18. Enlarged view of length adjusting result of test case IV.

Fig. 19. Enlarged view of test case VI. Two layers are used to resolve net
crossings. (a) Layer 1. (b) Layer 2.

Fig. 20. Routing result of test case III.

still find a good solution. Fig. 21 (test case IV with obstacles)
shows that our approach is effective in handling obstacles and
the length constraints can still be confirmed.

VI. Conclusion

In this paper, we proposed an efficient obstacle-aware PCB
router that can better utilize the routing resource and consider
the length-matching issue. The static net ordering using DPS

Fig. 21. Routing result of test case IV with obstacles. The length constraints
are conformed.

and Supowit’s algorithm generates a good routing order in
a topological routing step. The against-the-wall routing was
then applied to obtain the actual routing path of nets with a
resembled shape. The ILP length adjusting approach is used
to meet the min–max length constraints. Our methodology not
only overcomes the PCB area-routing problem effectively, but
also provides a prediction of routing feasibility. Unlike the
conventional router, which applies the shortest path concept,
our router can better utilize the routing space and consider the
wire length and shape requirements. The experimental results
showed that we can preserve routing space in sequential
planar routing under the given boundary pin assignment and
conform to the length constraints even when many obstacles
occupy the routing area.

References

[1] Taiwan MOE IC/CAD Contest, 2009. [Online]. Available: http://cad
contest.cs.nctu.edu.tw/cad11/

[2] J. Cong, M. Hossain, and N. A. Sherwani, “A provably good multilayer
topological planar routing algorithm in IC layout designs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 12, no. 1, pp. 70–78,
Jan. 1993.

[3] W.-M. Dai, T. Dayan, and D. Staepelaere, “Topological routing in SURF:
Generating a rubber-band sketch,” in Proc. ACM/IEEE Design Autom.
Conf., Jun. 1991, pp. 39–44.

[4] Z. Dong and M. Li, “A routing method of ad hoc networks based on A-
star algorithm,” in Proc. Int. Conf. Networks Security Wireless Commun.
Trusted Comput., 2009, pp. 623–626.

[5] H. Kong, T. Yan, and D.-F. Wong, “Automatic bus planner for dense
PCBs,” in Proc. ACM/IEEE Design Autom. Conf., Jul. 2009, pp. 326–
331.

[6] H. Kong, T. Yan, and D.-F. Wong, “Optimal simultaneous pin assignment
and escape routing for dense PCBs,” in Proc. IEEE Asia South Pacific
Design Autom. Conf., Jan. 2010, pp. 275–280.

[7] Y. Kubo, H. Miyashita, Y. Kajitani, and K. Tateishi, “Equidistance
routing in high-speed VLSI layout design,” in Proc. Great Lakes Symp.
VLSI, 2005, pp. 439–449.

[8] P. Lester. (2005, Jul.). A* Pathfinding for Beginners [Online]. Available:
(http://www.gamedev.net/reference/articles/article2003.asp)

[9] L. Luo and M. Wong. “Ordered escape routing based on Boolean
satisfiability,” in Proc. IEEE Asia South Pacific Design Autom. Conf.,
Jan. 2008, pp. 244–249.



CHIN et al.: ESCAPED BOUNDARY PINS ROUTING FOR HIGH-SPEED BOARDS 391

[10] L. Luo, T. Yan, Q. Ma, D.-F. Wong, and T. Shibuya, “B-Escape: A
simultaneous escape routing algorithm based on boundary routing,” in
Proc. ACM Int. Symp. Phys. Design, 2010, pp. 19–25.

[11] Q. Ma, T. Yan, and M. Wong. “A negotiated congestion based router
for simultaneous escape routing,” in Proc. Int. Symp. Quality Electron.
Design, 2010, pp. 606–610.

[12] D. Maier, “The complexity of some problems on subsequences and
supersequences,” J. Assocmtton Comput. Mach., vol. 25, pp. 322–336,
Apr. 1978.

[13] M.-M. Ozdal and D.-F. Wong. “Simultaneous escape routing and layer
assignment for dense PCBs,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design, Nov. 2004, pp. 822–829.

[14] M.-M. Ozdal and D.-F. Wong. “Algorithmic study of single-layer bus
routing for high-speed boards,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 3, pp. 490–503, Mar. 2006.

[15] M.-M. Ozdal and D.-F. Wong. “Two-layer bus routing for high-speed
printed circuit boards,” ACM Trans. Design Autom. Electron. Syst., vol.
11, pp. 213–227, Jan. 2006.

[16] M.-M. Ozdal, D.-F. Wong, and P.-S. Honsinger, “An escape routing
framework for dense boards with high-speed design constraints,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2005, pp. 759–766.

[17] M.-M. Ozdal, D.-F. Wong, and P.-S. Honsinger, “Simultaneous escape-
routing algorithms for via minimization of high-speed boards,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp.
84–95, Jan. 2008.

[18] K. J. Supowit, “Finding a maximum planar subset of a set of nets in a
channel,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
6, no. 1, pp. 93–94, Jan. 1987.

[19] T.-Y. Tsai, R.-J. Lee, C.-Y. Chin, C.-Y. Kuan, H.-M. Chen, and Y.
Kajitani, “On routing fixed escaped boundary pins for high speed
boards,” in Proc. Design Autom. Test Eur., 2011, pp. 1–6.

[20] T. Yan and D.-F. Wong, “BSG-route: A length-matching router for
general topology,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
Nov. 2008, pp. 499–505.

[21] T. Yan and D.-F. Wong, “A correct network flow model for escape
routing,” in Proc. ACM/IEEE Design Autom. Conf., Jul. 2009, pp. 332–
335.

[22] M.-F. Yu and W.-M. Dai. “Single-layer fanout routing and routability
analysis for ball grid arrays,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design, Nov. 1995, pp. 581–586.

Ching-Yu Chin received the B.S. degree in elec-
tronics engineering from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, in 2008, where she is
currently pursuing the Ph.D. degree with the Institute
of Electronics Engineering.

Her current research interests include physical
design automation, on-chip and off-chip routing al-
gorithms, and very large scale integration testing.

Chung-Yi Kuan received the B.S. and M.S. degrees
in electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2009 and 2011,
respectively.

He is currently an Engineer with ASUSTek Com-
puter, Inc., Taiwan. His current research interests
include board-level routing and beyond-die integra-
tion.

Tsung-Ying Tsai received the B.S. and M.S. degrees
in electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2007 and 2009,
respectively.

He is currently an Engineer with Global Unichip
Corporation, Hsinchu. His current research interests
include physical design automation and board-level
routing.

Hung-Ming Chen received the B.S. degree in
computer science and information engineering from
National Chiao Tung University, Hsinchu, Taiwan, in
1993, and the M.S. and Ph.D. degrees in computer
science from the University of Texas, Austin, in
1998 and 2003, respectively.

He is currently an Associate Professor with the
Department of Electronics Engineering, National
Chiao Tung University. His current research inter-
ests include physical design automation in digital
and analog circuits, beyond-die integration (off-chip

electronic design automation), and 3-D integrated circuit design methodology.
Dr. Chen has served as a Technical Program Committee Member on

ACM/IEEE ASP-DAC, IEEE SOCC, VLSI-DAT, and ACM ISPD.

Yoji Kajitani (F’92) received the Ph.D. in electrical
engineering from the Tokyo Institute of Technology,
Tokyo, Japan, in 1969.

He has been a Senior Professor with the Japan
Advanced Institute of Science and Technology,
Kanazawa, Japan, since April 2012 after his re-
tirement as a Professor from the University of Ki-
takyushu, Kitakyushu, Japan, and the Tokyo Insti-
tute of Technology, Tokyo, Japan. He was a Guest
Professor with the Department of Electronics Engi-
neering, National Chiao Tung University, Hsinchu,

Taiwan, from November 2011 to January 2012. He started his academic
career on graph theory for electrical networks. One of his major contributions
involved finding the innate structure of the graph by the name of principal
partition, which is based on edge density over nodes. With this concept, he has
solved several longstanding problems, including minimization of the variables
in an electrical network and Shannon switching game. Since the 1980s, his
research interests have included placement and routing. Major contributions
are in formulation of via-number minimization problem and invention of
placement code named BSG and its equivalent sequence pair (SP). The paper
on SP was listed as one of the best papers by the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) in its history of 20 years.

Dr. Kajitani received the IEEE 2009 Circuits and Systems Society Technical
Achievement Award, the IEEE 1999 CAS Golden Jubilee Medal, and the
Best Paper Award three times from the Institute of Electrical, Information,
and Computer Engineers of Japan, in 1982, 1985, and 1988. He received the
IEEE fellowship for his contribution to the development of graph theory and
its applications in 1992.


