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ABSTRACT
This paper presents first steps toward a large vocabulary

continuous speech recognition system (LVCSR) for conversa-

tional Mandarin-English code-switching (CS) speech. We ap-

plied state-of-the-art techniques such as speaker adaptive and

discriminative training to build the first baseline system on

the SEAME corpus [1] (South East Asia Mandarin-English).

For acoustic modeling, we applied different phone merging

approaches based on the International Phonetic Alphabet

(IPA) and Bhattacharyya distance in combination with dis-

criminative training to improve accuracy. On language model

level, we investigated statistical machine translation (SMT) -

based text generation approaches for building code-switching

language models. Furthermore, we integrated the provided

information from a language identification system (LID) into

the decoding process by using a multi-stream approach. Our

best 2-pass system achieves a Mixed Error Rate (MER) of

36.6% on the SEAME development set.

Index Terms— code-switching, multilingual speech

recognition

1. INTRODUCTION

Code-switching speech is defined as speech which contains

more than one language within an utterance and is a common

phenomenon in many multilingual countries [2]. This pa-

per introduces our first automatic speech recognition system

(ASR) for code-switch conversational speech on the SEAME

corpus [1] (South East Asia Mandarin-English). The task of

building an ASR system on a code-switch corpus imposes

several challenges: Since language model training data at

code-switch points are very scarce it is very difficult to reli-

ably estimate the probability of word sequences where code-

switching appears. Another challenge are co-articulation

effects between phones at code-switches. Additionally, only

a small amount of data for the task of recognizing sponta-

neous conversational code-switching speech was provided.

To address the former challenge, [3] [4] applied class-based

language models using POS information. Further studies

explored the use of translation- and semantic-based LMs [6]

to improve the probability of infrequent and unseen code-

switches. The latter problem was tackled in [3] [4] [5] where

speaker adaptation and phone sharing between languages

were investigated. Additionally, in [7] [8] monolingual

acoustic models were used in combination with language

identification to recognize code-switch sentences. Except

for [3], who experimented on lecture speech, mostly read

speech corpora were examined so far.

To overcome the effect of co-articulation at code-switch

points and to make better use of our limited training re-

sources we investigate two approaches for phone merging

in combination with discriminative training. On language

model level, we apply different SMT-based methods to gen-

erate artificial code-switch texts. Furthermore, we integrate

information from a language identification system (LID) into

the decoding process by using the multi stream approach to

improve the accuracy.

2. SEAME CORPUS

SEAME is a conversational Mandarin-English code-switching

speech corpus recorded from Singaporean and Malaysian

speakers [1]. The corpus is designed for multiple research

purposes which include language boundary detection, lan-

guage identification studies and multilingual LVCSR sys-

tems. Hence, a word-level manual transcription with lan-

guage boundary alignment is provided. To take regional

language variations into account, we collected data from two

countries: Singapore and Malaysia. As the corpus was de-

veloped for spontaneous code-switching speech research, our

recordings consist of interviews and conversations without

prepared transcription. The interview scenario featured two

speakers, an interviewer who asked questions and an inter-

viewee who answered them. Only the interviewees speech

was recorded. Recordings of conversational speech consist

of speech from two speakers. All speech was recorded in

a quiet recording room using close-talk microphones. The

audio was sampled at 16 kHz with a resolution of 16 bit.

Compared to [1], we extended the corpus to about 63 hours
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of audio data. Considering the particular speaking styles in

Singapore and Malaysia, we classify transcribed words into

four categories for language identification research: English

and Mandarin words, Silence, and Others (discourse particle,

other languages, and hesitations). The ratio of Mandarin,

English, Silence and Others is 44%, 26%, 21%, and 7% re-

spectively. The average number of code-switches within each

utterance is 2.6 when counting only switches between Man-

darin and English. The corpus contains 9,210 unique English

and 7,471 unique Mandarin words. The duration of mono-

lingual segments is very short: More than 82% English and

73% Mandarin segments are less than 1 second long while the

average duration of English and Mandarin segments is only

0.67 seconds and 0.81 seconds, respectively. Further details

and analysis on the 25-hrs corpus can be found in [1]. We

divide the corpus into three sets (training, development and

test set) and distribute the data based on several criteria (e.g.

gender, speaking style, ratio of Singaporean and Malaysian

speakers, ratio of the four categories, and the duration in

each set). Table 1 lists the statistics of the SEAME corpus

in these three sets. As performance measure for our systems

we adopted the Mixed Error Rate (MER) which applies word

error rates for English and character error rates for Mandarin.

The presented MER is the weighted average over all English

and Mandarin portions of the speech recognition output. By

applying character based error rates for Mandarin, the perfor-

mance does not dependent on the applied word segmentation

algorithm for Mandarin and thus performance can be com-

pared across different segmentations, giving more flexibility

for future investigations.

Table 1. Statistics of the SEAME corpus
Train set Dev set Eval set Total

# Speakers 139 8 10 157

Duration(hours) 58.4 2.1 2.3 62.8

# Utterances 48,040 1,943 2,162 52,245

3. BASELINE CODE-SWITCH SYSTEM

3.1. Bilingual Pronunciation Dictionary

The CMU English [9] and the Mandarin pronunciation dic-

tionary [10] is merged into one bilingual pronunciation dic-

tionary - the number of English and Mandarin entries in the

lexicon is 135K and 130k respectively. Due to large differ-

ences between American English and Singaporean/Malayan

English, we applied some rules for extending the CMU dic-

tionary to adapt to the Singaporean/Malayan English. In [11],

Chen et al. introduced 21 rules based on linguistic knowledge

to adapt the Cambridge pronunciation dictionary for Singa-

porian accent. Due to rapid growth of the dictionary which

leads to a higher confusion of words during decoding, we only

applied three rules, in which a phone is deleted or switched

with another phone. We experienced a deterioration in per-

formance if the forced alignment for acoustic model training

was done without these pronunciation variations. The follow-

ing rules were used [11]:

• Syllable-final voiceless plosive omitted if preceded by

another consonant: /p/, /t/, /k/ might be deleted

• Word-final /t/, /d/ omitted if preceded by another con-

sonant: /t/, /d/ might be deleted

• Word-final metathesis from ’sp’ to ’ps’

3.2. Bilingual Language Model

With the help of the SRI Language Modeling Toolkit [17],

we built trigram language models (LMs) from the SEAME

training transcriptions (Training TRL) containing the full

16k-vocabulary of the transcriptions. Those models were

interpolated with two monolingual language models. Both

monolingual language models were created from 350k En-

glish sentences from NIST (EN-mono) and 400k Mandarin

sentences from the GALE project (CH-mono) which had been

collected from online newspapers. The interpolation weights

were tuned on the transcriptions of the SEAME development

set by minimizing the perplexity of the model. Supplemental

vocabulary was selected from CH-mono and EN-mono by

selecting frequent words which are not in the transcriptions.

In total, the vocabulary size is 30k words. The resulting

model was used as our baseline language model for the de-

coding (Baseline LM) which has a perplexity of 489.4 and

an out-of-vocabulary (OOV) rate of 1.21% on the SEAME

development set.

3.3. Baseline Recognition Performance

Based on the SEAME corpus, we developed an initial base-

line speech recognition system. The preprocessing consists

of feature extraction applying a Hamming window of 16ms

length with a window overlap of 10ms. A 143 dimensional

feature vector was extracted by stacking 11 adjacent frames

with 13 MFCC coefficients each. An LDA transformation

reduced this to 42 dimensions. The acoustic model uses a

fully-continuous 3-state left-to-right HMM. The emission

probabilities are modeled by Gaussian Mixtures with diag-

onal covariances. The phone set contains all English and

Mandarin phones with +noise+, +breath+ and +laugh+ to

model continuous speech. Since particles are very often used

in Singaporean and Malayan language, the phone +particle+

was added to the phone set. For context dependent acoustic

modeling, we stopped the decision tree splitting process at

3,500 quintphones. We then applied merge&split training

with a maximum of 64 mixtures per state and a global Semi-

Tied Covariance (STC) matrix [13] to all the acoustic models

followed by three iterations of Viterbi training. Our baseline

speech recognition system is a 2-pass system which consists

of two different acoustic models. The first acoustic model

AM1 is speaker-independent. The second AM2 is trained
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by applying Speaker Adaptive Training (SAT) with Feature

Space Adaptation (FSA). In addition, we performed boosted

Maximum Mutual Information Estimation (bMMIE) [14] to

improve performance. The column “Baseline” in Table 2

shows the results of this baseline system on the SEAME

development set.

4. CODE-SWITCH ACOUSTIC MODELS

Due to the fact that we have Mandarin and English data spo-

ken by the same speaker we expect the Mandarin and En-

glish phones to share some characteristics which hopefully

may lead to an improved acoustic model. In the following

section we describe our approaches to phone merging, results

are given in Table 2.

4.1. Knowledge-based phone merging

Our knowledge-based approach uses the IPA [15] to iden-

tify phones common to both languages. In total, there are

21 symbols in the IPA tables which occur in both Mandarin

and English. Hence, we merged their corresponding models

and reduced the phone set to 60. All the phones in English

and Mandarin which were merged in our bilingual acoustic

model are vowel ( 6 i oU eI @ u) and consonant (n l h f w k
ô j b p N d ě m s t). In comparison to the baseline system,

the improvement of MER from the SAT system is very small.

For pure English and Mandarin sentences, we consistently got

slight improvements, but an increased MER for code switch

sentences.We assume that this is due to the fact that phone

merging results in a higher confusion between words of dif-

ferent languages during decoding. Hence, code switches are

harder to detect. Discriminative training (DT) is a convenient

approach to compensate this effect. As shown in Table 2, af-

ter applying DT on top of the SAT system we achieved 37.1%

MER on the development set.

4.2. Data-driven phone merging

While in the knowledge-based approach we only merged

those phones which are represented by the same IPA sym-

bol, the data-driven phone merging approach exclusively

combines phones based on their phonetic similarity. First,

we applied the Bhattacharyya distance [16] to compute the

distance between all phone models in our set. Second, we it-

eratively merged the two clusters with minimal distance until

there is only one cluster left. For phone merging, we only

used clusters consisting of two phones. We observed three

different categories of similar phone models, within English

and Mandarin and across languages. Therefore, we trained

three different speaker adaptive training systems by apply the

following merging methods: 1) merge only phone across lan-

guages, 2) merge phones across languages and phones within

English and 3) merge all of them. The best performing system

merged phones across languages plus phones within English.

On top of this system we applied discriminative training to

improve the accuracy. The final MER is 37.2% i.e. the best

system applying data driven phone merging could not outper-

form the straight-forward IPA-based phone merging. Table 2

summarizes all the results of our phone merging approaches.

Table 2. System Performance [MER] on the SEAME dev set
System Baseline IPA-based Data-driven

Speaker Adaptive (SA) 39.7 39.6 39.6

SAT + bMMIE 37.3 37.1 37.2

5. SMT-BASED TEXT GENERATION FOR CS
LANGUAGE MODELS

The SEAME corpus provides only little text data to reliably

compute n-grams. Therefore, we applied different SMT-

based methods to generate artificial code-switch texts. For

our SMT-based text generation, we analyzed characteristics

of code-switching from the SEAME training transcriptions.

Based on this knowledge, we extracted monolingual English

segments from the SEAME training transcriptions, translated

them to Mandarin and searched the translations in a large

monolingual Mandarin text. If the translations were found,

we replaced them with their English counterparts. We build

texts based on a large monolingual English text analogously.

For the translation, we used the Moses Statistical Machine

Translation Toolkit [18]. We started with a simple search-

and-replace approach (S&R). To improve the probability

distribution of S&R, we limited the replacements to segments

which occur at least twice in the training text (MinThres2).

Further we used context information: Found segments are

only replaced if the word preceding the segment is a trigger

word (TriggerWords) or a trigger part-of-speech tag (Trigger-
POS) to limit the replacements of the segments. A trigger

is a token found in the training text before a code-switch.

Additionally, we investigated a probability improvement ap-

proach which sets a maximum number of replacements per

segment, based on the segment frequency in the SEAME

training text (FreqAlign). Finally, we analyzed a combi-

nation of the last approach with the part-of-speech trigger

approach (FreqAlign+TriggerPOS). Their perplexities, out-

of-vocabulary (OOV) rates and n-gram coverages on the

SEAME development set transcriptions are illustrated in Ta-

ble 3. Due to lower perplexities and higher n-gram coverages

than the baseline language model, we used the FreqAlign
and FreqAlign+TriggerPOS LMs to decode the development

set. The FreqAlign LM shows most improvement with 36.9%

MER.

6. INTEGRATE LID INFORMATION INTO
DECODING

The proposed LID framework for code-switching speech

includes feature extraction, voice activity detection, GMM-

based classification and a post processing procedure. The

LID framework outputs the language identity along with a
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Table 3. Quality of Language Models based on Artificial CS Texts (Vocabulary size: 30k, OOV rate: 1.21%)
Baseline LM S&R LM MinThres2 TriggerWords TriggerPOS FreqAlign FreqAlign+TriggerPOS

Perplexity 489.4 507.6 500.4 503.1 492.1 483.9 485.3

1-gram coverage (%) 98.87 98.87 98.87 98.87 98.87 98.87 98.87

2-gram coverage (%) 77.89 78.01 78.90 78.28 79.80 79.77 79.40

3-gram coverage (%) 29.43 25.90 27.18 25.93 28.98 29.87 29.89

confidence score on a frame-by-frame basis. We used the

same features as in the ASR. An HMM-based voice activity

detector is used to separate speech and non-speech segments

in each utterance. The speech segments are then evaluated by

two GMM acoustic-based LID classifiers to produce two log

likelihood scores for each speech frame. The post process-

ing eliminates too rapid language changes as the language

identity classification is done at frame level. In the post pro-

cessing module, we decide the language identity of the i-th
frame by averaging the log likelihood scores generated from

the Mandarin GMM and English GMM from the (i − w)-
th frame to the (i + w)-th frame, where w is the length of

the window. We used Hamming windows to emphasize the

weighting of a current frame over the log likelihood scores.

The frame error rate for voice activity detection and language

identification on the development set is 5.88% and 70.64%,

respectively. The LID suffers from the fact that the language

segments are very short and the changes between languages

are very quick and smooth.

Our multi-stream approach operates on the acoustic level,

where we apply the linear interpolation approach to combine

the acoustic models score, and the LID scores. The decoding

process determines the current language through an LID deci-

sion tree, choses the appropriate LID score, and then produces

a linear combination of the acoustic model score and the LID

score with the weight 0.9 and 0.1 respectively. The decoding

then proceeds as usual, using the combination score instead

of just the AM score. Since the LID performance is not ac-

curate enough, the best MER with adding LID information is

36.6% (0.3% absolute improvement).

7. CONCLUSION AND FUTURE WORK

In this paper we have presented our first steps toward an

LVCSR system for spontaneous conversational code-switching

speech. State-of-the-art techniques such as speaker adap-

tive and discriminative training enhanced our first baseline

system. For acoustic modeling, we applied two phone merg-

ing approaches based on IPA and Bhattacharyya distance in

combination with discriminative training to improve accu-

racy. On language model level, we investigated statistical

machine translation-based text generation approaches for

enhancing code-switching language models and improved

the MER by 0.2% absolute. Furthermore, we integrated the

provided information from a language identification system

(LID) into the decoding process by using a multi-stream ap-

proach, which gave 0.3% absolute improvement. Our best

2-pass system achieves a MER of 36.6% on the SEAME

development set.
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