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Abstract

Recent years have witnessed an increasing interest in designing algorithms for querying and analyzing streaming
data (i.e., data that is seen only once in a fixed order) with only limited memory. Providing (perhaps approximate)
answers to queries over such continuous data streams is a crucial requirement for many application environments;
examples include large telecom and IP network installations where performance data from different parts of the
network needs to be continuously collected and analyzed.

Randomized techniques, based on computing small “sketch” synopses for each stream, have recently been shown
to be a very effective tool for approximating the result of a single SQL query over streaming data tuples. In this paper,
we investigate the problems arising when data-stream sketches are used tomrdtipiessuch queries concurrently.

We demonstrate that, in the presence of multiple query expressions, intelligently sharing sketches among concurrent
guery evaluations can result in substantial improvements in the utilization of the available sketching space and the
quality of the resulting approximation error guarantees. We provide necessary and sufficient conditions for multi-
query sketch sharing that guarantee the correctness of the result-estimation process. We also investigate the difficult
optimization problem of determining sketch-sharing configurations that are optimal (e.g., under a certain error metric
for a given amount of space). We prove that optimal sketch sharing typically gives ris& thbard questions,

and we propose novel heuristic algorithms for finding good sketch-sharing configurations in practice. Results from
our experimental study with queries from the TPC-H benchmark verify the effectiveness of our approach, clearly
demonstrating the benefits of our sketch-sharing methodology.

1 Introduction

Traditional Database Management Systems (DBMS) software is built on the conqepsistentdata sets, that are
stored reliably in stable storage and queried several times throughout their lifetime. For several emerging application
domains, however, data arrives and needs to be processed continuously, without the benefit of several passes over a
static, persistent data image. Swtntinuous data strean@sise naturally, for example, in the network installations of
large Telecom and Internet service providers where detailed usage information (Call-Detail-Records, SNMP/RMON
packet-flow data, etc.) from different parts of the underlying network needs to be continuously collected and analyzed
for interesting trends. Other applications that generate rapid-rate and massive volumes of stream data include retail-
chain transaction processing, ATM and credit card operations, financial tickers, Web-server activity logging, and so
on. In most such applications, the data stream is actually accumulated and archived in the DBMS of a (perhaps, off-
site) data warehouse, often making access to the archived data prohibitively expensive. Further, the ability to make
decisions and infer interesting pattems-line (i.e., as the data stream arrives) is crucial for several mission-critical
tasks that can have significant dollar value for a large corporation (e.g., telecom fraud detection). As a result, there
has been increasing interest in designing data-processing algorithms that work over continuous data streams, i.e.,
algorithms that provide results to user queries while looking at the relevant datacitdyrmence and in a fixed order
(determined by the stream-arrival pattern).

Given the large diversity of users and/or applications that a generic query-processing environment typically needs
to support, it is evident that any realistic stream-query processor must be capable of effectively hauudtijlg
standing queries over a collection of input data streams. Given a collection of queries to be processed over incoming
streams, two key effectiveness parameters are (1) the amoom@robrymade available to the on-line algorithm, and
(2) the per-item processing timeequired by the query processor. Memory, in particular, constitutes an important
constraint on the design of stream processing algorithms since, in a typical streaming environment, only limited
memory resources are made available to each of the standing queries. In these situations, we need algorithms that



can summarize the data streams involved in coreysepsesthat can be used to providgproximate answert® user

gueries along with some reasonable guarantees on the quality of the approximation. Such approximate, on-line query
answers are particularly well-suited to the exploratory nature of most data-stream processing applications such as, e.g.,
trend analysis and fraud/anomaly detection in telecom-network data, where the goal is to identify generic, interesting
or “out-of-the-ordinary” patterns rather than provide results that are exact to the last decimal.

Prior Work. The recent surge of interest in data-stream computation has led to several (theoretical and practical)
studies proposing novel one-pass algorithms with limited memory requirements for different problems; examples
include: quantile and order-statistics computation [17, 16]; distinct-element counting [4, 14, 13]; frequent itemset
counting [5, 21]; estimating frequency moments, join sizes, and difference norms [1, 2, 10, 20]; data clustering and
decision-tree construction [9, 18]; estimating correlated aggregates [12]; and computing one- or multi-dimensional
histograms or Haar wavelet decompositions [15, 25]. All these papers rely on an approximate query-processing model,
typically based on an appropriate underlying synopsis data structure. (A different approach, explored by the Stanford
STREAM project [3], is to characterize a sub-class of queries that can be congxatettywith bounded memory.)

The synopses of choice for a number of the above-cited papers are based on the kepstealofrandom sketches
which, essentially, can be thought of as simple, randomized linear projections of the underlying data vector(s) [11]. In
fact, the very recent work of Dobra et al. [8] has demonstrated the utility of sketch synopses in computing provably-
accurate approximate answers faiagleSQL query comprising (possibly) multiple join operators.

None of these earlier research efforts has addressed the more general problem of effectively providing accurate
approximate answers toultiple SQL queries over a collection of input streams. Of course, the problemulbfquery
optimization(that is, optimizing multiple queries for concurrent execution in a conventional DBMS) has been around
for some time, and several techniques for extending conventional query optimizers to deal with multiple queries have
been proposed [23, 22]. The cornerstone of all these techniques is the discovery of common query sub-expressions
whose evaluation can be shared among the query-execution plans produced. Very similar ideas have also found
their way in large-scale, continuous-query systems (e.g., NiagaraCQ [6]) that try to optimize the evaluation of large
numbers of trigger conditions. As will become clear later, however, approximate multi-query processing over streams
with limited space gives rise to several novel and difficult optimization issues that are very different from those of
traditional multi-query optimization.

Our Contributions. In this paper, we tackle the problem of efficiently processing multiple (possibly, multi-join)
concurrent aggregate SQL queries over a collection of input data streams. Similar to earlier work on data streaming [1,
8], our approach is based on computing small, pseudo-random sketch synopses of the data. We demonstrate that,
in the presence of multiple query expressions, intelligesitigiring sketcheamong concurrent (approximate) query
evaluations can result in substantial improvements in the utilization of the available sketching space and the quality of
the resulting approximation error guarantees. We provide necessary and sufficient conditions for multi-query sketch
sharing that guarantee the correctness of the resulting sketch-based estimators. We also attack the difficult optimization
problem of determining sketch-sharing configurations that are optimal (e.g., under a certain error metric for a given
amount of space). We prove that optimal sketch sharing typically gives ris&éhard questions, and we propose

novel heuristic algorithms for finding effective sketch-sharing configurations in practice. More concretely, the key
contributions of our work can be summarized as follows.

e Multi-Query Sketch Sharing: Concepts and Conditions. We formally introduce the concept sketch sharing

for efficient, approximate multi-query stream processing. Briefly, the basic idea is to share sketch computation and
sketching space across several queries in the workload that can effectively use the same sketches over (a subset of)
their input streams. Of course, since sketches and sketch-based estimators are probabilistic in nature, we also need to
ensure that this sharing does not degrade the correctness and accuracy of our estimates by causing desirable estimator
properties (e.g., unbiasedness) to be lost. Thus, we present necessary and sufficient conditions (based on the resulting
multi-join graph) that fully characterize such “correct” sketch-sharing configurations for a given query workload.

o Novel Sketch-Sharing Optimization Problems and Algorithms.Given that multiple correct sketch-sharing con-
figurations can exist for a given stream-query workload, our processor should be able to identify configurations that are
optimal or near-optimal; for example, under a certain (aggregate) error metric for the workload and for a given amount
of sketching space. We formulate these sketch-sharing optimization problems for different metrics of interest, and
propose novel algorithmic solutions for the two key sub-problems involved, namelg@pée AllocationDetermine
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Figure 1:Stream Multi-Query Processing Architecture.

the best amount of space to be given to each sketch for a fixed sketch-sharing configuration;Jail G8alescing:
Determine an optimal sketch-sharing plan by deciding which joins in the workload will share sketches. We prove that
most of these optimization problems are actualifP-hard, so we design heuristic approximation algorithms (some-
times with guaranteed bounds on the quality of the approximation) for finding good sketch-sharing configurations in
practice.

e Implementation Results Validating our Sketch-Sharing Techniques.We present the results from an empirical

study of our sketch-sharing schemes with several synthetic data sets and multi-query workloads based on the TPC-H
benchmark. Our results clearly demonstrate the benefits of effective sketch-sharing over realistic query workloads,

showing that significant improvements in answer quality are possible compared to a naive, no-sharing approach.

Specifically, our experiments indicate that sketch sharing can boost accuracy of query answers by factors ranging from
2 to 4 for a wide range of multi-query workloads.

2 Streams and Random Sketches

2.1 Stream Data-Processing Model

We now briefly describe the key elements of our generic architecture for multi-query processing over continuous
data streams (depicted in Figure 1); similar architectures (for the single-query setting) have been described else-
where (e.g., [8, 15]). Consider a worklo&l= {Q,...,Q,} comprising a collection of arbitrary (complex) SQL
queriesy, ..., Qq over a set of relation®,, . . ., R, (of course, each query typically references a subset of the rela-
tions/attributes in the input). Also, IéR;| denote the total number of tuples®). In contrast to conventional DBMS
guery processors, our stream query-processing engine is allowed to see the data fdples. inRk,. only onceand in
fixed order as they are streaming in from their respective source(s). Backtracking over the data stream and explicit ac-
cess to past data tuples are impossible. Further, the order of tuple arrival for each )asi@nbitrary and duplicate
tuples can occur anywhere over the duration offhestream. (Our techniques can also readily handle tdeletions
in the streams.)

Our stream query-processing engine is also allowed a certain amount of memory, typically significantly smaller
than the total size of the data set(s). This memory is used to maintain a set of cympsesdor each data stream
R;. The key constraints imposed on such synopses are that: (1) they are much smaller than the total number of tuples
in R; (e.g., their size is logarithmic or polylogarithmicliR;|); and, (2) they can be computed quickly, in a single pass
over the data tuples iR; in the (arbitrary) order of their arrival. At any point in time, our query-processing algorithms
can combine the maintained collection of synopses to produce approximate answers to all q@ries in




2.2 Approximating Single-Query Answers with Pseudo-Random Sketch Summaries

The Basic Technique: Binary-Join Size Tracking [1, 2].Consider a simple stream-processing scenario where the
goal is to estimate the size of a binary join of two strea®sand R, on attributesR;.A; and Rs. A5, respectively.

That is, we seek to approximate the result of qu@ry- COUNTR; <Ig, 4,=r,.4, R2) as the tuples oR; and R,

are streaming in. Letom(A) denote the domain of an attribute! and fz(i) be the frequency of attribute valie

in R.A. (Note that, by the definition of the equi-join operator, the two join attributes have identical value domains,
i.e.,dom(A;) = dom(Az).) Thus, we want to produce an estimate for the expresgieny ;. 4,) fr: (1) fr, (4)-

Clearly, estimating this join size exactly requires at léagtiom(A;)|) space, making an exact solution impractical

for a data-stream setting. In their seminal work, Alon et al. [1, 2] propose a randomized technique that can offer
strong probabilistic guarantees on the quality of the resulting join-size estimate while using only logarithmic space in
|dom(A1)].

Briefly, the basic idea of their scheme is to define a random vari&blehat can be easily computed over the
streaming values ak;.4; andR;. A2, such that (1)X, is anunbiased(i.e., correct on expectation) estimator for the
target join size, so thal[X ] = Q; and (2)X’s variance (VafX()) can be appropriately upper-bounded to allow
for probabilistic guarantees on the quality of theestimate. This random variahl& is constructed on-line from the
two data streams as follows:

e Select a family offour-wise independent binary random variablgs : i = 1,...,|dom(A1)|}, where each
& e{-1,+1}andP[¢;, = +1] = P& = —1] = 1/2 (i.e., E[§;] = 0). Informally, the four-wise independence
condition means that for any 4-tuple éf variables and for any 4-tuple df~1,+1} values, the probability
that the values of the variables coincide with those in{thd, +1} 4-tuple is exactlyl /16 (the product of
the equality probabilities for each individugf). The crucial point here is that, by employing known tools
(e.g., orthogonal arrays) for the explicit construction of small sample spaces supporting four-wise independent
random variables, such families can be efficiently constructed on-line using)dhly |dom(A;)|) space [2].

e Define Xy = X; - Xo, whereX;, = ZiEdom(Al)ka (0)&;, for k = 1,2. Note that eachX, is simply a
randomized linear projection (inner product) of the frequency vectdtofl;, with the vector of¢;’s that can
be efficiently generated from the streaming valued pfs follows: Start withX, = 0 and simply add; to X},
whenever the!" value of 4;, is observed in the stream.

The quality of the estimation guarantees can be improved using a stanolasting techniquéhat maintains
several independent identically-distributed (iid) instantiations of the above process, and uses averaging and median-
selection operators over the, estimates to boost accuracy and probabilistic confidence [2]. (Independent instances
can be constructed by simply selecting independent random seeds for generating the families of four-wise independent
&;'s for each instance.) We use the teatomic sketchio describe each randomized linear projection computed over
a data stream. Letting 3Jk = 1,2) denote the self-join size aR;.Ay (i.e., SI = Ziedommk) fr,(1)?), the
following theorem [1] shows how sketching can be applied for estimating binary-join sizes in limited space. (By
standard Chernoff bounds, using median-selection 6\ésg(1/J)) of the averages computed in Theorem 1 allows
the confidence in the estimate to be boostetl tod, for any pre-specified < 1.)

Theorem 1 ([1]) Let the atomic sketcheX; and X, be as defined above. ThéiiXg] = E[X1X,] = @ and

Var(Xg) < 2-SJ - SJ. Thus, averaging th&(, estimates oveO(Scf?]g?;]z) iid instantiations of the basic scheme,
guarantees an estimate that lies within a relative erreffiafm @ with high probability. d

Single Multi-Join Query Answering [8]. In more recent work, Dobra et al. [8] have extended sketch-based tech-
niques to approximate the result of a general, multi-join aggregate SQL query over a collection of $tridanes.
specifically, they focus on approximating a multi-join stream qu@rgf the form: “SELECT COUNT FROR],

R, ..., R, WHERE", where€& represents the conjunction of ofequi-join constraints of the formk;.4; = Ry 4;

lwithout loss of generality, we assume that each attribute dotraifi4) is indexed by the set of integefs, - - - , |dom(A)|},
where|dom(A)| denotes the size of the domain.

2[8] also describes aketch-partitioningtechnique for improving the quality of basic sketching estimates; this technique is
essentially orthogonal to the multi-query sketch-sharing problem considered in this paper, so we do not discuss it further.
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Figure 2:Example Query Join Graph.

(Ri.A; denotes thegi'" attribute of relationR;). (The extension to other aggregate functions, esgIM is fairly
straightforward [8].) Their development also assumes that each attihuty appears ir€ at most once; this re-
guirement can be easily achieved by simply renaming repeating attributes in the query. In what follows, we describe
the key ideas and results from [8] based on the join-graph model of the input @uesince this will allow for a
smoother transition to the multi-query case (Section 3).

Given stream query), we define thgoin graphof @) (denoted by7(Q)), as follows. There is a distinct vertex
in J(Q) for each streanR; referenced inQ (we useR(v) to denote the relation associated with vertgxFor each
equality constrain;.A; = R;.A; in €, we add a distinct undirected edge=< v, w > to J(Q), whereR(v) = R;
and R(w) = Ry; we also label this edge with the triple R;.A;, Ri.A;,Q > that specifies the attributes in the
corresponding equality constraint and the enclosing g@efthe query label is used in the multi-query setting). Given
an edge: =< v,w > with label < R;.A;, R;.A;,Q >, the three components oF label triple can be obtained as
Ay(e), Aw(e) andQ(e). (Clearly, by the definition of equi-joinglom(A,(e)) = dom(A,(e)).) Note that there may
be multiple edges between a pair of vertices in the join graph, but each edge has its own distinct label triple. Finally,
for a vertexv in J (@), we denote the attributes @f(v) that appear in the input query (or, queries)4®); thus,
A(v) = {A,(e) : edgee is incident onv}.

The result of@ is the number of tuples in the cross-producthf, . .., R, that satisfy the equality constraints
in £ over the join attributes. Similar to the basic sketching method [1, 2], the algorithm of Dobra et al. constructs
an unbiased, bounded-variance probabilistic estim&tefor ¢ using atomic sketches built on the vertices of the
join graph7(@). More specifically, for each edge=< v,w > in J(Q), their algorithm defines a family of four-
wise independent random variablgs= {&f : i = 1, ..., |[dom(A4,(e))|}, where eacktf € {—1,+1}. The key
here is that the equi-join attribute palr,(e), A, (e) assouated with edgeshares the sam;efamlly, on the other
hand, distinct edges of (Q) useindependently-generated families (using mutually independent random seeds).
The atomic sketclX, for each vertex in 7(Q) is built as follows. Letey, ..., e, be the edges incident anand,
for i; € dom(Ay(er)),...,ir € dom(A,(er)), let f,(i1,...,i;) denote the number of tuples R(v) that match
valuesiy, ..., i in their join attributes. More formallyf, (i1, ..., i) is the number of tuples € R(v) such that
t[A,(e;)] = 15, for1 < j < k (t[Aj] denotes the value of attributein tuplet). Then, the atomic sketch atis X, =

leedom(A (e1)) T Doinedon(Ay(ex)) Jo(ils- -5 ik) H] , & - Finally, the estimate fo@ is defined as = [T, X,
(thatis, the product of the atomlc sketches for all vertlceﬂ@)) Note that each atomic sketéh, can be efficiently
computed as tuples df( ) are streaming in; more specificalli,, is initialized to 0 and, for each tupten the R(v)

stream, the quantltﬂj 1 ft[A |s added taX,,.

Example 2.1 Consider query) = SELECT COUNT FROM, R,, R3 WHERER,;.A; = Ry.A; ANDRy. Ay =
R3.As. The join graph7(Q) is depicted in Figure 2, with verticas, v2, andvz corresponding to stream;,
Ry, and R3, respectively. Similarly, edges, and e, correspond to the equi-join constrainky.A; = Rs.A;
and R,.As = Rs.A,, respectively. (Just to illustrate our notatiaR(v,) = Ri, A,,(e1) = Re.A; and A(ve) =
{R3.41, Ry.A3}.) The sketch construction defines two families of four-wise independent random families (one for
each edge){¢;" } and{¢;* }. The three atomic sketché§,,, X,,, andX,, (one for each vertex) are defined as;, =

Ziedom(Rl.Al) fvl (i)gfl’ X’U2 : Eiedom(Rz.Al) Zjedol_ﬂ(Rz.Az) fUz (i’j)gielgjzj andXUB = Eyedom(Rg As) fUa( )5;3
The value of the random variableg = X, X,, X,, gives the sketching estimate for the resultofl]

Dobra et al. [8] demonstrate that the random variakilg constructed above is an unbiased estimatoror
and prove the following theorem which generalizes the earlier result of Alon et al. to multi-join querigs=(SJ

D i caon(Au(er)) " Qipcdon(Ay(er)) Jo(i1s- - ,ir)? is the self-join size of?(v).)

Theorem 2.2 Let@ be aCOUNTjuery withn equi-join predicates such thaf(Q) contains no cycles of length 2.
Then,E[X ] = @ and using sketching space@(w) itis possible to approximat@ to within a relative
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Figure 3:Example Workload with Sketch-Sharing Potential.

error of e with probability at leastl — 6, whereVar[X] < 22" ], SJ,. O

3 Sketch Sharing: Basic Concepts and Problem Formulation

In this section, we turn our attention to sketch-based processimgutiiple aggregate SQL queries over streams.

We introduce the basic idea of sketch sharing and demonstrate how it can improve the effectiveness of the available
sketching space and the quality of the resulting approximate answers. We also characterize the class of correct sketch-
sharing configurations and formulate the optimization problem of identifying an effective sketch-sharing plan for a
given query workload.

3.1 Sketch Sharing

Consider the problem of using sketch synopses for the effective processing of a query w@kdodd):, ..., Q,}
comprising multiple (multi-join)COUNTRggregate queries. As in [8], we focusG@UNTEince the extension to other
aggregate functions is relatively straightforward; we also assume an attribute-renaming step that ensures that each
stream attribute is referenced only once in each of@fie (of course, the same attribute can be used multiple times
across the queries i@).

An obvious solution to our multi-query processing problem is to build disjoint join grapleg;) for each query
Q; € Q, and construct independent atomic sketches for the vertices of 86@h). The atomic sketches for each
vertex of 7(Q;) can then be combined to compute an approximate answé};fas described in [8] (Section 2.2). A
key drawback of such a naive solution is that it ignores the fact that a rel&tiaray appear in multiple queries @.
Thus, it should be possible to reduce the overall space requiremeshsitiggatomic-sketch computations among the
vertices for streank; in the join graphs for the queries in our workload. We illustrate this in the following example.

Example 3.1 Consider querie§); = SELECT COUNT FRQOR4, Ry, R3 WHERHER;.A; = Ry.A; ANDRy. Ay =
R3.As and@,; = SELECT COUNT FROR}, R3 WHERER;.A; = R3.A5. The naive processing algorithm de-
scribed above would maintain two disjoint join graphs (Figure 3) and, to compute a sing{&pairXo,) of sketch-
based estimates, it would use three families of random variagflest(z, and<¢3), and a total of five atomic sketches
(Xo,, kE=1,...,5).

Instead, suppose that we decide to re-use the atomic sR&fctior v; also forv,, both of which essentially
correspond to the same attribute of the same stré&m¥(;). Since for each € dom(R;.A41), fu, (i) = fu, (¢), we get
Xy =Xy, = Ziedom(Rl_Al) fus (9)€*. Of course, in order to correctly compute a probabilistic estima@.0fwe
also need to use the same famgly in the computation of{,,;; that is, Xo, = 3~ cion(r,.a,) fos ()& ILis easy
to see that both final estimateg;, = X, X,, X,, andXg, = X,, X,, satisfy all the premises of the sketch-based
estimation results in [8]. Thus, by simply sharing the atomic sketcheas fandv,, we have reduced the total number
of random families used in our multi-query processing algorithm to o &nd£©2) and the total number of atomic
sketches maintained to fourl

Let 7(Q) denote the collection of all join graphs in worklo& i.e., all 7(Q;) for Q; € Q. Sharing sketches
between the vertices gf (Q) can be seen as a transformation&fQ) that essentiallgoalescedn vertices belonging
to different join graphs in7(Q). (We also use7 (Q) to denote the transformed multi-query join graph.) Of course,
as shown in Example 3.1, verticess 7 (Q;) andw € J(Q;) can be coalesced in this manmely if R(v) = R(w)
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Figure 4:Multi-Query Join Graphsy (Q) for Example 3.1.

(i.e., they correspond to the same data stream)4(nd = A(w) (i.e., bothQ; and@; use exactly the same attributes
of that stream). Such vertex coalescing implies that a vertex7 (Q) can have edges from multiple different queries
incident on it; we denote the set of all these querie@@s, i.e.,Q(v) = {Q(e) : edgee is incident onv}. Figure 4(a)
pictorially depicts the coalescing of verticesandv, as discussed in Example 3.1. Note that, by our coalescing rule,
for each vertew, all queries inQ(v) are guaranteed to use exactly the same set of attributB$0f namely.A(v);
furthermore, by our attribute-renaming step, each quefy(in uses each attribute id(v) exactly once. This makes

it possible to share an atomic sketch built for the coalesced vettiaesoss all queries i@ (v).

Estimation with Sketch Sharing. Consider a multi-query join grapi(Q), possibly containing coalesced vertices (as
described above), and a quépye Q. Let V(Q) denote the (sub)set of verticesjf( Q) attached to a join-predicate
edge corresponding t@; that is,V(Q) = {v : edgee is incident orv and@(e) = Q}. Our goal is to construct an
unbiased probabilistic estimal&, for ) using the atomic sketches built for verticeSiiQ)).

The atomic sketch for a vertexof 7(Q) is constructed as follows. As before, each edge 7 (Q) is associated
with a family £¢ of four-wise independenf—1, +1} random variables. The difference here, however, is that edges
attached to node for the same attributeof R(v) share thesame¢ family; this, of course, implies that the number of
distinct¢ families for all edges incident omis exactly|.A(v)| (each family corresponding to a distinct used attribute of
R(v)). Furthermore, all distincg families in 7(Q) are generated independently (using mutually independent seeds).
For example, in Figure 4(a), sinek,, (e1) = Ay, (e3) = R1.A;, edges; andes share the samgfamily (i.e., £ =
£°1); on the other hand;** and¢®2 are distinct and independent. Assumidg= { A1, ..., A;} and letting¢?!, . .., ¢F
denote thek corresponding distingg families attached t@, the atomic sketchX,, for nodewv is simply defined as
Xo =26 imeAr Ay Jolit oo ik) Hle gfj The final sketch-based estimate for quéyis the product of
the atomic sketches over all verticeslii{@), i.e., Xqg = H,UGV(Q) X,. For instance, in Example 3.1/Figure 4(a),
Xo, = X4, Xo, Xo, andXg, = Xy, Xy
Correctness of Sketch-Sharing Configurations.The X estimate construction described above can be viewed as
simply “extracting” the join (sub)grapty (Q) for query @ from the multi-query graply7(Q), and constructing a
sketch-based estimate f@ras described in Section 2.2. This is because, if we were to only retaitid) vertices
and edges associated with then the resulting subgraph is identical fd@). Furthermore, our vertex coalescing
(which completely determines the sketches to be shared) guaranteésrifarences exactly the attributegv) of
R(v) for eachv € V(Q), so the atomic sketck,, can be utilized.

There is, however, an important complication that our vertex-coalescing rule still needs to address, to ensure that
the atomic sketches for vertices gf(Q) provide unbiased query estimates with variance bounded as described in
Theorem 2.2. Given an estimalé, for query@ (constructed as above), unbiasedness and the bounds [ofigVar
given in Theorem 2.2 depend crucially on the assumption thag theilies used for the edges ifi(Q) are distinct
and independent. This means that simply coalescing verticgq @) that use the same set of stream attributes is
insufficient. The problem here is that the constraint that all edges for the same attribute incident on a skaiex
the same family may (by transitivity) force edges for the same quéryo share identicaf families. The following
example illustrates this situation.

Example 3.2 Consider the multi-query join grapli(Q) in Figure 3.2(b) for querie§); and Q- in Example 3.2.
(J(Q) is obtained as a result of coalescing vertex pairs4 andvs, vs in Figure 3.) Sinced,, (e1) = Ay, (e3) =
R1.A; and A, (ea) = Ay, (e3) = R3.As, we get the constraints’s = ¢ and¢®s = £°2. By transitivity, we have



£ = g2 = ¢°s l.e., all three edges of the multi-query graph share the safaily. This, in turn, implies that the
same¢ family is used on both edges of queiy ; that is, instead of being independent, the pseudo-random families
used on the two edges @f; are perfectly correlated! It is not hard to see that, in this situation, the expectation and
variance derivations foX o, will fail to produce the results of Theorem 2.2, since many of the zero cross-product
terms in the analysis of [1, 8] will fail to vanish.

As is clear from the above example, the key problem is that constraints reqgifamgilies for certain edges
incident on each vertex of (Q) to be identical, can transitively ripple through the graph forcing much larger sets
of edges to share the saddamily. We formalize this fact using the following notion of (transitidequivalence
among edges of a multi-query graph( Q).

Definition 3.3 Two edgese; andey in J(Q) are said to be&-equivalent if either (1y; ande, are incident on a
common vertex, and A, (e1) = A, (e2); or (2) there exists an edgg such that; andes are{-equivalent, ana,
andes are¢-equivalent. |

Intuitively, the classes of theequivalence relation represent exactly the sets of edges in the multi-query join graph
J(Q) that need to share the safidamily; that is, for any pair of-equivalent edges; ande,, it is the case that
£ = £°2. Since, for estimate correctness, we require that all the edges associated with a query have distinct and
independent families, our sketch-sharing algorithms only consider multi-query join graphs thatedkformed as
defined below.

Definition 3.4 A multi-query join graph7(Q) is well-formediff, for every pair of-equivalent edges; andes in
J(Q), the queries containing ande, are distinct, i.e.Q(e1) # Q(e2). O

It is not hard to prove that the well-formedness condition described above is actually necessary and sufficient for
individual sketch-based query estimates that are unbiased and obey the variance bounds of Theorem 2.2. Thus, our
shared-sketch estimation process over well-formed multi-query graphs can readily apply the single-query results of
[1, 8] for each individual query in our workload.

3.2 Problem Formulation

Given a large workload of complex queries, there can obviously be a large number of well-formed join graphs for
Q, and all of them can potentially be used to provide approximate sketch-based answers to q@rigstie same
time, since the key resource constraint in a data-streaming environment is imposed by the amount of memory available
to the query processor, our objective is to compute approximate answers to quéligmirare as accurate as possible
given a fixed amount of memord/ for the sketch synopses. Thus, in the remainder of this paper, we focus on the
problem of computing (1) a well-formed join gragh(Q) for Q, and (2) an allotment of th&/ units of space to the
vertices of 7(Q) (for maintaining iid copies of atomic sketches), such that an appropriate aggregate error metric (e.g.,
average or maximum error) for all queriesahis minimized.

More formally, letm,, denote the sketching space (i.e., number of iid copies) allocated to ve(iex, number
of iid copies ofX,). Also, let Mg denote the number of iid copies built for the query estiméite SinceXgy =
[Tev ) Xv. itis easy to see thatlq is actually constrained by thinimumnumber of iid atomic sketches con-
structed for each of the nodes n(Q); that is, Mgy = min,cy (g){m.}. By Theorem 2.2, this implies that the

(square) error for querg) is equal toWg /Mg, whereWy = 8;/?)2[5]39] is a constant for each que€y (assuming a

fixed confidence paramet&). Our sketch-sharing optimization problem can then be formally stated as follows.

Problem Statement.Given a query workloa® = {@, ..., Q,} and an amount of sketching memary, compute
a multi-query graply7 (Q) and a space allotmefitn,, : for each node in 7(Q)} such that one of the following two
error metrics is minimized:

e Average query errorim => . o

Wao
Mg

e Maximum query error i@ = maxQEQ{]VV[;—g}.



subject to the constraints: (J(Q) is well-formed; (2)}°, m, < M (i.e., the space constraint is satisfied); and, (3)
For all verticesv in 7 (Q), for all queriesQ € Q(v), Mg < m,. O

The above problem statement assumes that the “weldlat'for each queny) € Q is known. Clearly, if coarse
statistics in the form of histograms for the stream relations are available (e.g., based on historical information or
coarse a-priori knowledge of data distributions), then estimateB/[f&;] and VafX ] (and, consequently¥g) can
be obtained by estimating join and self-join sizes using these histograms [8]. In the event that no prior information
is available, we can simply set eabli, = 1; unfortunately, even for this simple case, our optimization problem is
intractable (see Section 4).

In the following section, we first consider the sub-problem of optimally allocating sketching space (such that
query errors are minimized) to the vertices afisen well-formed join graph7(Q). Subsequently, in Section 5, we
consider the general optimization problem where we also seek to determine the best well-formed multi-query graph for
the given workload?®. Since most of these questions turn out to\58-hard, we propose novel heuristic algorithms
for determining good solutions in practice. Our algorithm for the overall problem (Section 5) is actually an iterative
procedure that uses the space-allocation algorithms of Section 4 as subroutines.

4 Space Allocation Problem

In this section, we consider the problem of allocating space optimally given a well-formed join graply (Q).
We first examine the problem of minimizing the average error in Section 4.1, and then the problem of minimizing the
maximum error in Section 4.2.

4.1 Minimizing the Average Error

We address the following more geneaaferage-error integer convex optimization problenthis subsection, for an
arbitrary convex strictly decreasing functién

min Y~ Wo®(My) @)
QeQ
VQ e Q: Mg>0 (2)
Yo e JVQ € Qv) : Mg < m, 3)
veJ

In the above formulation, variable®/ andm, correspond to the space allocated to qu@ne Q and vertex
v € J, respectively, and if we wish to minimize the average (square) errordibgfy) = 1/Mg.

Theorem 4.1 If & is convex and strictly decreasing with a singularity in O, then solving the average-error convex
optimization problem igv’P-complete. This is true evenlify = 1 forall Q € Q. O

Proof: We show a reduction from k-clique. A k-clique is a fully connected subgraph containimades. This
problem is known to be NP-hard (Garey and Johnson).(Let (V, E) be an instance of the k-clique problem. For
every vertexw € V we introduce a relatio®, with a single attributed. For every edge = (v1,v2) € E we introduce

a queryQ. that is the size of the join with join constraift,, . A = R,,.A. Thus, the se@(v) = {Qcle = (v,-) € E}.
Furthermore, we sé¥/. the weight corresponding to que. to 1 and the total memory = n + k with n = |V]|.

We now show that there exists a clique of sizim G iff there exists a memory allocation strategy for the constructed
problem with cost at mosB = (|E| — K)®(1) + K(®(1) — ®(2)) wherek = X1,

Since®(x) is oo in 0 we have to allocate at least one memory word for every vertex. If we have a k-clique in
the graphG then by allocating the remainirlgmemory words the decrease in the optimization functioA'B(2)
thus the final value ig3. Conversely if we can decrease the value of the criterion ffBif®(1) to at leastB by
allocating k more memory words té@ vertices it has to be the case thidtedges (joins) use two memory words
instead of one, thus thieedges form a k-clique. To see this observe that sinee is convex and strictly decreasing



p(®(1)—®(2)) > ®(1)—P(p+1) so by allocating more than one extra memory word to some vertices we decrease the
value of the criterion less than linearly per edge and we decrease the number of edges quadratically so it is impossible
to reduce the value of the criterion By(®(1) — ®(2)) (in order to meet bound) if we allocate more than one extra
memory word fork of the vertices.

O

Since this problem i&/P-hard, let us first examine itontinuous relaxatioyi.e., we allow memory to be allocated
continuously although in reality we can only allocate memory in integer chunks. Thus, we alld#fseandm,,’s
to be continuous instead of requiring them to be integers. We call this probleavéin@ge-error continuous convex
optimization problemln this case, we have a specialized convex optimization problem, and in the following, we show
how we can use results from the theory of convex optimization to find an optimal continuous sofutitia.then
present a method to derive a near-optimal integer solution by rounding down (to integers) the optimal codtipuous
andm, values.

A Roadmap. Before we delve into the technical details of our solution for the above continuous convex optimiza-
tion problem, let us give a high-level overview of our approach. We use a standard technique from convex optimization
theory called the Kuhn-Tucker optimality conditions (or KT conditions for short) to characterize the optimal solution
through a set of equations that do not contain any objective function to optimize. Given the KT conditions, Lemma 2
helps to shed light on the structure of the optimal solution: it characterizes the sets of vertices and queries that have
the same memory allocation in the optimal solution, but without a constructive algorithm to compute these sets. We
address this by presenting Algorithm 1 that computes a feasible solution to the KT conditions, and prove its correctness
with respect to computing the optimal solution, based on properties of the algorithm stated in Lemma 4.

The KT Conditions. First, observe that if we sét/g = m, = M/|J|, we have a solution to the average-error
continuous optimization problem; this solution may not be optimal, but it satisfies Equations (2) to (4). In addition,
since® is strictly convex and the set of feasible solutions is convex, the problem has a single global optimum which
we refer to as theptimal solution

We can characterize the optimal solution completely through the KT conditions [19]. The Lagrangian has the
following form:

L(pg\) = Y Wo®(Mg)
Qeo

=Y > heqlme—Mg) =AM = m,)

veJ QEQ(v)

This results in the following set of KT conditions:

dL
VQ e Q: Wod' (Mg)+ Y =0 (solve—— =0)
@ Mq

dL
Y = v = =
velJ > g+ A=0 (solvecm 0)
QEQ(v)
VQe Q,Ywed: g (my—Mg)=0

> my =M

VQ e Q,Vwed: lyg=>0,A>0

3We are not aware of any prior work on a specialized solution for this particular convex optimization problem. General solutions for convex
optimization problems, e.g. interior point methods [24], tend to be slow in practice.
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Since) > 0 we can rewrite the KT conditions as follows (substitutiigg for 1, /\):

VQEQ: —Wod(Mg)=X- > iwe ()
veV(Q)
Voeld: Y fwg=1 (6)
QeQ(v)

VQe Q,Yweld: fyg-(my—Mg)=0 @)
Sy = M (®)
veJ

VQ e QW e fing >0 9)

Note that the above KT conditions are necessary and sufficient, that is, a solution for our continuous convex optimiza-
tion problem is optimal if and only if it satisfies the KT conditions.

Characterizing the Optimal Solution. The KT conditions enable us to identify structural properties of the optimal
solution. Let us first introduce some notation. cAmponent' is a subset o U J. For a componen€, define
VIC)={v:ve(CnNnJ)}LQAC)={Q: Q€ (CNA}, EC)={vQ):veV(C),Q €Q(C)nQv)}, and
defineW (C) = ZQEQ(C) Wgo. We consider a special set of components determined by the optimal solution that we
call =-components. We define a relatisnbetweerv € J andQ € Q as follows:v = Q iff (m, = Mg AQ € Q(v))
in the optimal solution. If we take the symmetric transitive closuresoive obtain an equivalence relation that
partitionsJ U Q into a set of componentd = {C1,...,C.} which we call=-components Each=-component
C € C has an associated memory allocatief{C'), i.e., sinceC' is a=-componentyv € V(C), m, = M(C) and
vVQ € Q(C), Mg = M(C).

Lemma 2 The seC of =-components has the following properties:
(@) LetC,C" € CandC # C'. Thenvv € V(C),¥Q € Q(C"), itis the case thati,. g = 0A M(C) > M(C").
(b) For any=-component’,

v(C
VQ € Q(C): Wo- |W(( C)) = Y g (10)
veV(C)
Yo e V(C): Y e=1 (11)
QEQ(MNQ(C)

(c) The memory allocation for the-components satisfies the following two equations:
VC eC: —W(C)®'(M(C)) =NV (CO)| (12)
> M(C)-[V(O) =M (13)
cec
. iff W(C) w(c’)
(d) vC,C"eC: M(C) < M(C) iff o < Wio]

Proof: (a) Suppose that, for € V(C) and@ € Q(C’), Equations (5) to (9) have a solution with, o > 0.

Equation (7) implies that:, = Mg which in turn implies that = @, and as a result;’ = C’ by the definition of
a=-component. This leads to a contradiction, and thug = 0. Further, suppose that/(C) < M (C"), which
implies thatm,, < Mg. However, we again have a contradiction becadse Q(v), and as a resulii/y < m,, inthe
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optimal solution (due to Equation 3).
(b) Consider a=-component’. Due to part (a), we can rewrite Equations (5) and (6) as follows:

VQ € Q(C) - —WQW = Y o (14)
veV(Q)NC
VoeV(C): Y fng=1 (15)
QeQ(w)NC

If we sum Equation (14) over af) € Q(C), and we sum Equation (15) over alle V' (C), we obtain the following
two equations:

—W(C)——=2 M = > > (16)

QREeQ(C)vev(Q)NC

Z Y. Hwe=IV(O) (17)

veV(C) Qe (v)NC

Now we immediately have- 224(€) _

proof.

(c) For agiverC' € C, we sum Equation (5) over &} € Q(C). We then use the result from Equation (17) and obtain
Equation (12). Since for &-componentC we know thatvv € V(C), m, = M(C), Equation (8) can be rewritten as
Equation (13).

(d) First, note that- ———+—~+ q),(M(C)) is proportional to— =+ \V C)l by Equation (12). Since funcuo@’ is negauve and strictly
decreasing;- 37 IS positive and strictly increasing. Thig(C') < M (C’) implies — <I>’(JW( 5y < —Fr (C, which
gives the result. a

'V((C)‘ which when substituted into Equations (14) and (15) completes the

Once we have identified the sétof =-components (for the optimal solution), then part (c) of Lemma 2 tells
us how to allocate memory optimally to the various componénts C, and also, its vertices and queries since
m, = Mg = M(C) forallv € V(C) and@ € Q(C). Thus, we simply need to compute the §eaind parts (a), (b),
and (d) of Lemma 2 guide us in identifying this set. We now give a result that allows us to efficiently check whether
Part (b) in Lemma 2 is true for a candidatecomponent; this result is Lemma 3. Note that the other parts can be
checked in a straightforward way. Before we state Lemma 3, let us introduce some notation.

Let us define thdlow graph F' of a component” as follows: F(C') is a directed graph with capacities on the
edges. The vertices @f(C) are the elements @ plus two designated verticesand¢. F'(C) contains the following
edges: (1yv € V(C), edge(s, v) with capacityl, (2) Vv € V(C),VQ € Q(v) N Q(C), edge(v, Q) with capacity
oo, and (3VQ € Q(C), edge(Q, t) with capacitylWy, - W(( ))‘

Now, a flow froms to ¢ assigns a positive real value to each edgé'{d’) such that (1) the flow value for each
edge does not exceed the edge’s capacity, and (2) for each vertex, the flow is conserved, that is, the sum of the flows
along incoming edges is equal to the sum of the flows along outgoing edges. The maximum flow is one for which the
flow out of s is maximum (note that due to flow conservation, this is also the flowtintGiven a flow, we refer to
a vertexv € V(C) assaturatedif the flow enteringv is equal to the capacity of edde, v), which is 1. Similarly,
vertex@ € Q(C) is said to be saturated if the flow out @fequals the capacity @f), ¢), which isW, - 'V(C)l . We
call vertices that are not saturated as simpigaturatedertices.

Lemma 3 Let C be a component, and I€(C) be its flow graph. Equations (10) and (11) have a solution if and
only if there is a flow betweenandt of size|V (C')]|.

Proof: First, observe that in order the the flow fronto ¢ to have sizéV'(C)|, all verticesv € V(C) and@ € Q(C)
have to be saturated. Since Equations (10) and (11) are exactly the flow conservation equations whenever the flow
from s to t is exactly|V (C)|, the equations have a solution if and only if the maximum flow frotm ¢ is [V (C)|. O
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Algorithm 1 : ComputeSpadd, M)
Require: J is ajoin graphM is available memory.
Ensure: vector ofm’s, associated error.

L V=JUQ@
22 E={(v,Q):veJQeQ)}
3 C=0

4: repeat

5. C’ = FindConnectedCompone(ts E)
6: forall C €(C’ do

7 E’ = SelectEdges”)

8

9

E=FE\FE
if B/ =
10: V=V\C
11: c=CcucC
12: endif
13:  end for

14: until (V = 0)
15: return ComputeMemory&Erro€, M)

Algorithm 2 : SelectEdge¥”)
Require: C'is a component.
Ensure: Returns the set of edges to be deleted fldm
1: MF = Maxflow(F(C))
2: Sp = Forward-Mark(C, M F)
3: Sp = Backward-Mark(, M F)
4 return{(v,Q) : v e V(CYAQ e QIC)N Q)N ((Q e SpAv g Sp)V(Q & SgAveSg))}

Note that we can implement the check in Lemma 3 efficiently with any max-flow algorithm, for example the
Ford-Fulkerson Algorithm [7].

Algorithm For Finding Optimal Solution. We are now in a position to present our algorithm for determining
the setC of =-components that characterize the optimal solution, and which can then be used to compute the optimal
values forMg andm, using Lemma 2(c). At a very high level, our optimal space computation procedure (see
Algorithm 1) starts with the initial componenit = J U Q and the set of edge® = E(C). In each iteration of the
outermost loop, it deletes frod' a subsetE’ of edges between pairs of distiretcomponents, until the final set
of =-components is extracted intb The procedur&electEdges computes the set of edgés deleted in each
iteration, and in the final ste, is used to compute the optimal memory allocatidly (by solving Equations (12)
and (13)) that minimizes the errdr , Wo®(Mgq).

Algorithm 3 : Forward-MarKC, M ')

Require: C'is a component) F' is a max-flow solution of'(C).
Ensure: All vertices in components frord_.
:S={v:veV(C)NMF(s,v) <1}

[Eny

2: repeat

33 S=8

4 S=SU{v:QeSArveV(IC)NV(Q)ANMF(v,Q) >0}
5 S=SU{Q:veSAQeQ(C)NQW)}

6: until (S'=25)

7: returnS
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Algorithm 4 : Backward-MarKC, M F')

Require: C'is a component)/ F' is a max-flow solution oF'(C).
Ensure: All vertices in components frors, .

S={Q:Q € Q(C) A MF(Q,t) < Wo i@}

2: repeat

3 S=S

4 S=5U{v:QeSAveV(C)NV(Q)}

5

6

7

=

S=5U{Q:veSAQeQ(C)NQ)ANMF(v,Q) >0}
until (87 =9)
: returnS

We now turn our focus to AlgorithrBelectEdges , which uses Lemmas 2 and 3, to identify the edges between
=-components irC' that should be deleted. In the algoritht, F" is a max-flow solution of the flow grapR(C)
of C, andSr andSp are the sets of vertices reachablelirfrom unsaturatedy and @ vertices, respectively. Note
that when computing the vertex s&t(Sg), an edgg(v, Q) is traversed in the direction from to v (v to @) only
if MF(v,Q) > 0. In Lemma 4 below, we shown that all edges returne®blectEdges in Step 4 are between
=-components.

LetCy,...,C; be the=-components irC'. Note thatC' is connected with respect #6(C'), and since, as we show
below,
SelectEdges only returns edges betweerrcomponents(’ contains only entires-components. Let us define two

different sets7. and7~. of =-components that contain ai-components”; in C' for which Wc ))I < \V((g)l’ and

|W((C))‘ > R’,((g‘ respectively. Further, lef’ = {(v,Q) : v € V(C)AQ € QIC)N QW) A (Q € T- Nv &

TH)V(QET- NveT))}

Lemma 4 Consider an invocation of Algorithi8electEdges with componentC. Then the following properties
hold.

(a) If E' = @, thenC contains exactly ones-component.

(b) The following is true for set§r and.Sg computed in the body of the algorithm.

UC¢ET< C; =Sk (18)
Uc,ero Cs = SB (19)

(c) AlgorithmSelectEdges returns exactly the sef’.

Proof: (a) If E/ = (), then for every=-componentC; in C, W(C;)/|V(C;)| = W(C)/V(C). Thus, due to
Lemma 2(c), allM (C;) are equal in the optimal solution, and sin€ds connected with respect #8(C), it follows
that all vertices irC' belong to a singles-component.

(b) We prove Equation (18) in part (b) in 4 steps. (The proof of Equation (19) is similar). In the following, we use the
symbolsv and@ generically to refer to vertices ivi(C') andQ(C), respectively.

(Step 1) There cannot be an edge() in the flow graphF'(C) such that € 7. and@ ¢ 7. This is because, due
to Lemma 2(d), we would get, < Mg in the optimal solution, which is not feasible.

(Step 2) AllQ € 7 and allv ¢ 7. are saturated, and for every edge@) in F/(C) such that ¢ 7 andQ@ € 7,

MF(v,Q) = 0 in the max-flow solution. Consider any componéhtin 7. We know thatlv“,/((g ))I < ‘V‘[,/((g))| and

so for eachy vertex inC;, the capacity,, %&%’ of edges(Q, t) in F(C) is less thariV,, 'V((C ))‘ Note that from
[V(C; )|

Lemma 3, we know that witQ,t) edge capacities set @ 4(en , all @ vertices in7. can be saturated with
the incoming flow into7.. Thus, due to Step 1 above, since there is no flow odfgf(with smaller(Q,t) edge
capacities) we get that il F' all ) vertices in7_ are saturated, arifl. contains at least one unsaturategertex. By
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a symmetric argument, for evety; not in 7, since ‘V“//((g?))l > |V‘[//((g))‘, we can show that all the incoming flow into

verticesv ¢ 7. can be pushed out @) vertices not in7.. Thus, in the max-flow solutiod/ F, there cannot be any
flow along edgdv, @), wherev ¢ 7. and@ € 7., since pushing any such flow out ofiavertex not in7. would
increase the total flow fromito ¢t beyondM F'. Thus, it follows that inM F, all v vertices not i/ are saturated.

(Step 3) Now let us consider the sgt computed byrorward-Mark . Clearly, since onlyZ7. contains unsaturated
v vertices, there are no outedges from a vertex7_ (due to Step 1), and incoming edges into a vefex 7_ have

a flow of 0 (due to Step 2), vertices that do not belon@towill not be added t&5». Thus, we only need to show that
all the vertices i/ will be added taSr. We do this in the next step.

(Step 4) Suppose thdt. is the subset of and( vertices inT that do not belong t&'». Clearly, all thev vertices
in S must be saturated (since otherwise, they would have been added.t8imilarly, we can show that there is no
flow out of S in the max-flowM F'. We show that there must be an edge int@ @ertex inS%, from av vertex inSg;
but this would cause th@ vertex to be added t6, and thus lead to a contradiction. Suppose that there {$,©)
edge fromSg to S%. Then, this would imply that if the capacity of eaf, ¢) edge forQ € S} were increased, it
would not be possible to saturate all thevertices inS7. with the incoming flow intaZ-, and this violates Lemma 3.
The reason for not being able to saturatecaltertices inS% is that every vertex inS’% is already saturated, there is
no outgoing flow fromS%. in M F', and there are no incoming edges istp from Sr. Thus,Sr contains all vertices
in7..

(c) Part (c) follows directly from Part (b) above and the set0f)) edges returned in Step 4 8&lectEdges . O

Theorem 5 Algorithm ComputeSpace computes the optimal solution to the average-error continuous convex opti-
mization problem in at mog?(min{|Q|, |J|} - (|Q| + |J|)?) steps.

Proof: There can be at mostin{|Q|, |J|} =-components i€, and by Lemma 4(c), each call 8electEdges

with component causes the=-components iff . and7-. to become disconnected. Th&electEdges is invoked

at most2 min{|Q|, |J|} times, and since the time complexity of each invocation is dominate@(®yQ| + |.7])?),

the number of steps required to compute the max-flow for components containing abhest/| vertices, the time
complexity of ComputeSpace is O(min{|Q|,|J|} - (|Q| + |J])?). By Lemma 4(a)computeSpace terminates

only if C contains individuale-components. Thus, solving the equations in Lemma 2(c), we can compute the optimal
solution and its error. O

In the following example, we trace the execution of
ComputeSpace for a join graph/.

Example 6 Consider a join graph/ with verticesvy, ..., vs. LetQ = {Q1, @2, Q3} and letV(Q1) = {v1,v2,v4},
V(Q2) = {v2,v3} andV(Q3) = {va,v5}. Also, letWg, = Wy, = 3 andWy, = 9. The flow graph?'(C) for
the initial connected compone@twith whichSelectEdges invoked (in the first iteration oc€omputeSpace ) is
depicted in Figure 5(a). Each edge in the figure is labeled with its capacity and the max-flow that can be pushed along

the edge. For instance, the capacity for the edge o ofs W, ‘V‘[/,((CC))| = 3% = 1, whereas the the capacity for
V(O]

the outgoing edge fror@; is equal tolWg, Wo) = 9% = 3. Also, all vertices except far; and )3 are saturated.
Further, the setsSr = {v1, v2, v3, @1, Q2} (reachable fromvs, but not traversing O-flow edges frontavertex to a

v vertex) andSp = {v4, v5, @3} (reachable fron)s, but not traversing O-flow edges fronvavertex to aQ vertex).
Thus, since); € Sr andvy, € Sp, edge(v4, Q) is returned bySelectEdges and deleted from the edge set
E. In the second iteratiorComputeSpace invokesSelectEdges with the following two connected components:
Cy = {v1,v2,v3, Q1,Q2} andCy = {uvy4, v5, Q3}. The edge capacities and max-flows for each component is shown in

Figure 5(b). For instance, the capacity for the edge ouefis W, ‘X}&%‘ = 33 = 3/2, whereas the the capacity for
V(C2)| _

the outgoing edge fromf; is equal tOWng = 9% = 2. Since there are no unsaturated vertic8s,= S = ()
andSelectEdges returns no edges, thus causi@gmputeSpace to terminate and return the space allocation for
C = {C1,Cs}. Solving Equations (12) and (13), we g&t(Q1) = M (Q2) = my, = My, = My, = M(Ca) = M/6
and M (Qs) = my, =m,, = M(Cy) = M/4.0
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Figure 5: Example trace of Algorithil@omputeSpace .

The final remaining step is to go from the optimal continuous solution to a near-optimal integer solution, by
rounding down each/y returned by AlgorithmComputeSpace . Clearly, by rounding down eachi( to the
biggest integer less than or equalit,, our near-optimal solution still satisfies Equations (2) td.(#) addition, we
can show that the average-error for the rounded down solution is not too far from the average-error for the optimal
integral solution.
Theorem 7 The average-error of the rounded optimal continuous solution is no more (thap %f') times the
average-error of the optimal integral solution. (Note that for optimizing average-error, we cliedde) ) = 1/M¢.)

Proof: Suppose tha€ = {C4,...,C.} is the set of=-components. Then, solving Equations (12) and (13), we

) — M W (C,) . . i
get that eachV/ (C;) = s v V Ve Thus, the average error for the continuous optimal solu

. . . . A/ ). 5 2 . .
tion is given by}, % =2 X‘;Egﬁ - W(f\}) VD™ Now, the error for the rounded down solution is
2+M(C5)

>0 ngj =>_; J&Egﬁj Since LM(IC’j)J < Sicc,r» We can derive the following (after substituting fdf (C;)):

W, 2|J| W, : : :
2.0 U\TZJ < 1+ 35020 ﬁ. Thus, the theorem follows since the average error for the optimal continuous

solution cannot be more than the average error for the optimal integral solution. O

4.2 Minimizing the Maximum Error

We now turn our attention to the problem of allocating space to the verticdst@iminimize the maximum query

error; that is, we seek to minimize the quantiﬁyixQeg{%}, subject to the constraints: (}), m, < M, and (2)

Mg = min, ey (g){m.}. Fortunately, this turns out to be a much simpler problem than the average-error case —we can
actually solve it optimally using a simple algorithm that relies on fairly standard discrete-optimization techniques [19].

4f Mg < 1, then we can avoid/q from being rounded down to O by pre-allocating 1 unit of memory to e¢ery Q and
v € J. Thus, we would then choogg( M) to bel/(1 + Mg) instead ofl /Mg, and the available memory to Be — | J|.
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To see this, we first perform a simple transformation of our objective to obtain an equivalent max-min problem.
Clearly, our problem is equivalent tnaximizingminQeQ{%—g} subject to the same constraints faf,, m,. Since,
Mg = min,ey(g){m.}, Some simple rewriting of the objective function gives:

. MQ o . minvEV(Q){mv}
Bt = sty
in{ . 1
= min{m, min —
v QeQ(v) Wq

. { my
= mmny—
v maxgeqv) Wo

Sincemaxgeq ) We is a constant for a given vertex the above transformation shows that our maximum-error
problem is basically equivalent to a linear max-min optimization which can be solved optimally using standard tech-
niques [19]. A simple (optimal) algorithm is to first compute the optimal continuous solution (wherenea@h

simply proportional tamaxgeq(») W), round down eachn, component to the nearest integer, and then take the
remaining space < |.J| and allocate one extra unit of space to each of the nodes witkh gmeallest values for

my/ maxgeq(v) Weo. The complexity of this procedure 3(|.J| log |./|) and a proof of its optimality can be found in
[19].

5 Computing a Well-formed Join Graph

In the previous section, we showed that fogiaen well-formed join graph7(Q), computing the optimal space
allocation to the vertices of (Q) such that the average error is minimized, isAd#®-hard problem (Theorem 4.1).

The optimization problem we are interested in solving is actually more general, and involves finding a join graph that
is both well-formed and for which the query error is minimum. Unfortunately, this problem is tougher than the space
allocation problem that we tackled in the previous section, and isAfishard for the average error case. Further,
even though we optimally solved the space allocation problem for the maximum error case (see previous section), the
joint problem of finding a well-formed graph for which the maximum query error is minimizet;&shard. In fact,

even for the simple case whé¥i, = 1 for all queries, the joint problem i P-hard. The reason for this is that when

all queries have the same weight, then the maximum error is minimized aefor all queries in7(Q) are equal.

This implies that, in the optimal solution, the memd is distributed equally among vertices of the join graph, and

the joint problem reduces to that of finding a well-formed join grgff@) with the minimum number of vertices —

this problem is\P-hard due to the following theorem.

Theorem 8 The problem of finding a well-formed join graph(Q) with the minimum number of vertices A§P-
complete.

Proof: We show a reduction from the vertex cover problem, an instance of which seeks to find vertex covekof size
for a given graplG = (V, E). For an instance of the vertex cover problem, we construct an instance of our problem of
finding the smallest well-formed join graph ii(Q) as follows. For each vertexe V, there is a relatioi?,, and for
every edge: = (u,v) in E, there are three relatiorf%., R. ., andR. ,,. Our query seQ contains the following three
queries per edge = (u,v) in E: Q. =SELECT COUNT FRQR), R, WHERER,,.A; = R,.A1, Qe =SELECT
COUNT FROW,, R., R. , WHERER,,.A; = R..As A R..A3 = R.,.As, andQ., =SELECT COUNT FROM
Ry, R, Re, WHERRR,.A; = R..A3 AN R..As = R, ,.A>. Figure 6(a) depicts the join subgraph for the three queries
Qec, Qe andQ. ,, corresponding to edge= (u, v). In the figure, all vertices for the same relation are coalesced in
the join graphs7(Q.), J(Qe,») and 7 (Q.,), and each vertex is labeled with its corresponding relation. Each edge
is labeled with its corresponding triple, and edges for different queries are represented using different types of lines.
Observe that for an edge= (u,v) € E, relationR,. only appears in querieg. ,, andQ. ,, and for a vertex € V,
relation R, appears in querieQ, and(q). , for every edge: incident onw in G.

The key observation we make is that the join subgraph for edgé&igure 6(a) is not well-formed. The reason for
this is that due to the common attribut®s. A, R,.A1, R..A; andR..As, all edges are forced to share the same
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Figure 6:Join subgraph for edgein G

family. Consequently, thg¢ families for the edges belonging to quer@s., and(). ., are identical. Now consider one
of the relations®,, or R,,, sayR,,. Suppose we don't coalesce the verticesRptin 7 (Q).) and.J (Q.,»), causing the
resulting join subgraph far to be well-formed, as shown in Figure 6(b). The reason for this is that only theily
for the edge pair incident oR. and associated with attribufe.. A5 (or alternatelyR..A3) are forced to be the same,
and these belong different queri@s ,, and(. ... In the following, we show thatr has a vertex cover of sizeif and
only if there exists a well-formed join graph containing no more that 3| E| + & vertices.

Suppose thal’’ is a vertex cover fot7 of sizek. Then we construct the well-formed join graghby coalescing
vertices inJ (Q.), J(Q.,.) and J(Q. ) for all e € E as follows. For each edgec E, coalesce all vertices for
relation R, in .J, and for every vertex ¢ V', coalesce all vertices for relatioR, in J. For each vertex € V’,
coalesce all vertices faR, and belonging to querigg. into one vertex, and coalesce the remaining verticegfor
(and belonging to querieg. ,) into a separate vertex. Since for each edge (u,v) € E, one ofu orvisin V’,
(saywv), the resulting join subgraph for edgen J is as shown in Figure 6(b). Thus, as we argued earlier, edges for
queriesq). ., andQ. ,, are not forced to share the sagiamily. Also, J contains at mog/| + 3| E| + & vertices:3| E|
vertices for relations., R. ., andR. ., |V| — k vertices for relations?,,, v € V — V', and2k vertices for relations
R,,veV'.

On the other hand, suppose there exists a well-formed join gfapbntaining no more thafV’| + 3|F| + k
vertices. Then, clearly, for each= (u,v) in E, there must be two vertices for one Bf, or R,, since otherwise/
would contain the subjoin graph in Figure 6(b), and thus cannot be well-formed (note that while it is possilfle that
contains two vertices foR,., the same effect can be achieved by two vertices#por R,). Thus, if we defind/’ to
be the set of vertices il such that/ contains more than one vertex f&r,, thenV”’ is a vertex cover fofi. Further,
|V'| < k sinceJ contains a total ofV| + 3|E| + k vertices, and inJ there are3|E| vertices per edge € E (for
Re, Re u, Re ), and at least one vertex for eacte V. O

In Algorithm 5, we present a greedy heuristic for computing a well-formed join graph with small error. Algorithm
CoalesceJoinGraphs , in each iteration of the outermost while loop, merges the pair of verticéghat causes
the error to be minimum, until the error cannot be reduced any further by coalescing vertices. AlgiitiputeSpace ,
is used to compute the average (Section 4.1) or maximum error (Section 4.2) for a join graph. Also, in order to ensure
that graphJ always stays well-formed] is initially set to be equal to the set of all the individual join graphs for
gueries inQ. In each subsequent iteration, only vertices for identical relations that have the same attribute sets and
preserve the well-formedness #fare coalesced. Note that checking whether grépis well-formed in Step 10 of
the algorithm can be carried out very efficiently, in time proportional to the number of edgés\ivell-formedness
testing essentially involves partitioning the edgegointo equivalence classes, each class consistiggenfuivalent
edges, and then verifying that no equivalence class contains multiple edges from the same join query. Also, observe
that CoalesceJoinGraphs makes at mosO(N?3) calls to ComputeSpace , where N is the total number of
vertices in all the join graphg' (@) for the queries, and this determines its time complexity.
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Algorithm 5 : CoalesceJoinGraphg, M)
Require: Q is query workload ) is available memory.
Ensure: Returns a well-formed join grapfi(Q).

1 J=UgeoJ(Q)
2: (m, err) = ComputeSpacd( M)

3: flag=true

4. while (flag = true) do

5. Curerr=oco

6. flag=false

7. for all pairs of vertices);, v; in J such thatR(v;) = R(v;) and A(v;) = A(v;) do
8: Let J’ be the join graph after; andv; are coalesced i
o: (m', err’) = ComputeSpacd(, M)
10: if (err’ < cur_err and J' is well-formed)then
11 cur_err =err’

12: curJ=J'

13: end if

14:  end for

15:  if (cur_err < err) then

16: err = cur_err

17: J=curd

18: flag = true

19:  endif
20: end while

21: return ¢/, ComputeSpacéd( M))

6 Experimental Study

In this section, we present the results of an experimental study of our sketch-sharing algorithms for processing multiple
COUNTqueries in a streaming environment. Our experiments consider a wide radgeUfi Tqueries based on the

TPC-H benchmark, and with synthetically generated data sets. The reason we use synthetic data sets is that these
enable us to measure the effectiveness of our sketch sharing techniques for a variety of different data distributions and
parameter settings. The main findings of our study can be summarized as follows.

o Effectiveness of Sketch Sharing.Our experiments with the TPC-H query workload indicate that, in practice,
sharing sketches among queries can significantly reduce the number of sketches needed to compute estimates. This,
in turn, results in better utilization of the available memory, and much higher accuracy for returned query answers.
For instance, for the TPC-H query set, the number of vertices in the final coalesced join graph returned by our sketch-
sharing algorithms decreases from 34 (with no sharing) to 16. Further, everiifgith= 1 (for all queries@),

compared to naive solutions which involve no sketch sharing, our sketch-sharing solutions deliver improvements in
accuracy ranging from a factor of 2 to 4 for a wide range of multi-query workloads.

o Benefits of Intelligent Space Allocation. The errors in the approximate query answers computed by our sketch-

sharing algorithms are smaller if approximate weight information = 8;/?)5[})2(] for queries is available. Even with

weight estimates based on coarse statistics on the underlying data distribution (e.g., histograms), accuracy improve-
ments of upto a factor of 2 can be obtained compared with using uniform weights for all queries.

Thus, our experimental results validate the thesis of this paper that sketch sharing can significantly improve the
accuracy of aggregate queries over data streams, and that a careful allocation of available space to sketches is important
in practice.
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Q1 1,2 Qo 1 Qir 8,9 | Qs 2,7
Q2 4,5 Qo 6,7 Qs 59| Q2 1,6
Qs 3,4,5 Quu 58| Qo 6,8]| Qr 3,8
Qs 4,5,8 Q2 10 | Q2 7,8 | Q2 1,2,3
Qs 4,5,8,9 | Q3 4 Q21 8 Q2 2,3,4
Qs 2 Qua 3 Q2 6

Q7 5 Qs 3,4 | Qs 7

Qs 9 Qe 5,8 | Qa 2,3

Table 1: Workload Queries.

6.1 Experimental Testbed and Methodology

Algorithms for Answering Multiple Aggregate Queries. We compare the error performance of the following two
sketching methods for evaluating query answers.

e No sketch sharingThis is the naive sketching technique from Section 2.2 in which we maintain separate sketches
for each individual query join graplf (Q). Thus, there is no sharing of sketching space between the queries in the
workload, and independent atomic sketches are constructed for each relation, query pair such that the relation appears
in the query.

e Sketch sharing.In this case, atomic sketches for relations are reused as much as possible across queries in the
workload for the purpose of computing approximate answers. Algorithms described in Sections 4 and 5 are used to
compute the well-formed join graph for the query set and sketching space allocation to vertices of the join graph (and
gueries) such that either the average-error or maximume-error metric is optimized. There are two solutions that we
explore in our study, based on whether prior (approximate) information on join and self-join sizes is available to our
algorithms to make more informed decisions on memory allocation for sketches.

¢ No prior information. The weights for all join queries in the workload are set to 1, and this is the input to our
sketch-sharing algorithms.

e Prior information is available. The rati Vf‘)’((fzf)) is estimated for each workload query, and is used as the query

weight when determining the memory to be allocated to each query. We use coarse one-dimensional histograms
for each relational attribute to estimate join and self-join sizes required for weight computation. Each histogram
is given 200 buckets, and the frequency distribution for multi-attribute relations is approximated from the indi-
vidual attribute histograms by applying the attribute value independence assumption.

Query Workload. The query workloads used to evaluate the effectiveness of sketch sharing consist of collections of
JOIN-COUNT queries from the TPC-H benchmark. Figure 7 depicts a subset of the tables in the TPC-H schema, and
the edges represent the attribute equi-join relationships between the tables. We did not consider the tables NATION and
REGION since the domain sizes for both are very small (25 and 5, respectively). We consider three query workloads,
each consisting of a subset of queries shown in Figure 6.1. In the figure, each query is described in terms of the equi-
join constraints it contains; further, except for equi-join constraints, we omit all other selection conditions/constraints
from the query WHERE clause. The first workload consists of quéliethrough@:-, which are the standard TPC-H
benchmark join queries (restricted to only contain equi-join constraints). In order to get a feel for the benefits of sketch
sharing as the degree of sharing is increased, we consider a second query workload containing all th@ gteeries

(Q29. Observe that workload 2 contains a larger number of queries over the same relations, and so we expect to see
better improvements from sketch sharing for workload 2 compared to workload 1. Finally, workload 3 contains queries
Qs 10 Q12 and@Q 2. We use this workload to demonstrate the accuracy gains obtained as a result of using non-uniform
query weights. In our experiments, we did not realize much benefit from taking into account approximate query
weights for workloads 1 and 2. This is because both workloads contain queries with large weights that are distributed
across all the relations. These heavy queries determine the amount of sketching space allotted to the underlying
relations, and the results become very similar to those for uniform query weights.
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Figure 7: Relations, join attributes and equi-join constraints for TPC-H schema.

Data Set. We used the synthetic data generator from [26] to generate the relations shown in Figure 7. The data
generator works by populating uniformly distributed rectangular regions in the multi-dimensional attribute space of
each relation. Tuples are distributed across regions and within regions using a Zipfian distribution withxyalues

and z;.+rq, respectively. We set the parameters of the data generator to the following default values: size of each
domain=1024, number of regions=10, volume of each region=1000-2000, skew across regiens1.0, skew

within each region4;,,;...) =0.0—0.5 and number of tuples in each relation = 10,000,000.

Answer-Quality Metrics. In our experiments we use the square of the absolute relative &%W) in

the aggregate value as a measure of the accuracy of the approximate answer for a single query. For a given query
workload, we consider both the average-error and maximum-error metrics, which correspond to averaging over all
the query errors and taking the maximum from among the query errors, respectively. We repeat each experiment 100

times, and use the average value for the errors across the iterations as the final error in our plots.

6.2 Experimental Results

Results: Sketch Sharing.Figures 8 through 11 depict the average and maximum errors for query workloads 1 and

2 as the sketching space is increased from 2K to 20K words. From the graphs, it is clear that with sketch sharing,
the accuracy of query estimates improves. For instance, with workload 1, errors are generally a factor of two smaller
with sketch sharing. The improvements due to sketch sharing are even greater for workload 2 where due to the
larger number of queries, the degree of sharing is higher. The improvements can be attributed to our sketch-sharing
algorithms which drive down the number of join graph vertices from 34 (with no sharing) to 16 for workload 1, and
from 82 to 25 for workload 2. Consequently, more sketching space can be allocated to each vertex, and hence the
accuracy is better with sketch sharing compared to no sharing. Further, observe that in most cases, errors are less
than 10% for sketch sharing, and as would be expected, the accuracy of estimates gets better as more space is made
available to store sketches.

Results: Intelligent Space Allocation. We plot in Figures 12 and 13, the average and maximum error graphs for

two versions of our sketch-sharing algorithms, one that is supplied uniform query weights, and another with estimated
weights computed using coarse histogram statistics. We considered query workload 3 for this experiment since work-
loads 2 and 3 have queries with large weights that access all the underlying relations. These queries tend to dominate in
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the space allocation procedures, causing the final result to be very similar to the uniform query weights case. But with
workload 3, query)sg has a considerably larger weight than other queries in the workload (since it has 3 equi-joins),
and so our space allocation algorithms are more effective and allocate more s@ageTaus, with intelligent space
allocation, even with coarse statistics on the data distribution, we are able to get accuracy improvements of upto a
factor of 2 by using query weight information.

7 Concluding Remarks

In this paper, we investigated the problems that arise when data-stream sketches are used tmpltijglesggre-

gate SQL queries concurrently. We provided necessary and sufficient conditions for multi-query sketch sharing that
guarantee the correctness of the result-estimation process, and we developed solutions to the optimization problem
of determining sketch-sharing configurations that are optimal under average and maximum error metrics for a given
amount of space. We proved that the problem of optimally allocating space to sketches such that query estimation
errors are minimized i8/P-hard. As a result, for a given multi-query workload, we developed a mix of near-optimal
solutions (for space allocation) and heuristics to compute the final set of sketches that result in small errors. We
conducted an experimental study with query workloads from the TPC-H benchmark; our findings indicate that (1)
Compared to a naive solution that does not share sketches among queries, our sketch-sharing solutions deliver im-
provements in accuracy ranging from a factor of 2 to 4, and (2) The use of prior information about queries (e.g.,
obtained from coarse histograms), increases the effectiveness of our memory allocation algorithms, and can cause
errors to decrease by factors of up to 2.
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