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Abstract

Recent years have witnessed an increasing interest in designing algorithms for querying and analyzing streaming
data (i.e., data that is seen only once in a fixed order) with only limited memory. Providing (perhaps approximate)
answers to queries over such continuous data streams is a crucial requirement for many application environments;
examples include large telecom and IP network installations where performance data from different parts of the
network needs to be continuously collected and analyzed.

Randomized techniques, based on computing small “sketch” synopses for each stream, have recently been shown
to be a very effective tool for approximating the result of a single SQL query over streaming data tuples. In this paper,
we investigate the problems arising when data-stream sketches are used to processmultiplesuch queries concurrently.
We demonstrate that, in the presence of multiple query expressions, intelligently sharing sketches among concurrent
query evaluations can result in substantial improvements in the utilization of the available sketching space and the
quality of the resulting approximation error guarantees. We provide necessary and sufficient conditions for multi-
query sketch sharing that guarantee the correctness of the result-estimation process. We also investigate the difficult
optimization problem of determining sketch-sharing configurations that are optimal (e.g., under a certain error metric
for a given amount of space). We prove that optimal sketch sharing typically gives rise toNP-hard questions,
and we propose novel heuristic algorithms for finding good sketch-sharing configurations in practice. Results from
our experimental study with queries from the TPC-H benchmark verify the effectiveness of our approach, clearly
demonstrating the benefits of our sketch-sharing methodology.

1 Introduction

Traditional Database Management Systems (DBMS) software is built on the concept ofpersistentdata sets, that are
stored reliably in stable storage and queried several times throughout their lifetime. For several emerging application
domains, however, data arrives and needs to be processed continuously, without the benefit of several passes over a
static, persistent data image. Suchcontinuous data streamsarise naturally, for example, in the network installations of
large Telecom and Internet service providers where detailed usage information (Call-Detail-Records, SNMP/RMON
packet-flow data, etc.) from different parts of the underlying network needs to be continuously collected and analyzed
for interesting trends. Other applications that generate rapid-rate and massive volumes of stream data include retail-
chain transaction processing, ATM and credit card operations, financial tickers, Web-server activity logging, and so
on. In most such applications, the data stream is actually accumulated and archived in the DBMS of a (perhaps, off-
site) data warehouse, often making access to the archived data prohibitively expensive. Further, the ability to make
decisions and infer interesting patternson-line (i.e., as the data stream arrives) is crucial for several mission-critical
tasks that can have significant dollar value for a large corporation (e.g., telecom fraud detection). As a result, there
has been increasing interest in designing data-processing algorithms that work over continuous data streams, i.e.,
algorithms that provide results to user queries while looking at the relevant data itemsonly once and in a fixed order
(determined by the stream-arrival pattern).

Given the large diversity of users and/or applications that a generic query-processing environment typically needs
to support, it is evident that any realistic stream-query processor must be capable of effectively handlingmultiple
standing queries over a collection of input data streams. Given a collection of queries to be processed over incoming
streams, two key effectiveness parameters are (1) the amount ofmemorymade available to the on-line algorithm, and
(2) the per-item processing timerequired by the query processor. Memory, in particular, constitutes an important
constraint on the design of stream processing algorithms since, in a typical streaming environment, only limited
memory resources are made available to each of the standing queries. In these situations, we need algorithms that
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can summarize the data streams involved in concisesynopsesthat can be used to provideapproximate answersto user
queries along with some reasonable guarantees on the quality of the approximation. Such approximate, on-line query
answers are particularly well-suited to the exploratory nature of most data-stream processing applications such as, e.g.,
trend analysis and fraud/anomaly detection in telecom-network data, where the goal is to identify generic, interesting
or “out-of-the-ordinary” patterns rather than provide results that are exact to the last decimal.

Prior Work. The recent surge of interest in data-stream computation has led to several (theoretical and practical)
studies proposing novel one-pass algorithms with limited memory requirements for different problems; examples
include: quantile and order-statistics computation [17, 16]; distinct-element counting [4, 14, 13]; frequent itemset
counting [5, 21]; estimating frequency moments, join sizes, and difference norms [1, 2, 10, 20]; data clustering and
decision-tree construction [9, 18]; estimating correlated aggregates [12]; and computing one- or multi-dimensional
histograms or Haar wavelet decompositions [15, 25]. All these papers rely on an approximate query-processing model,
typically based on an appropriate underlying synopsis data structure. (A different approach, explored by the Stanford
STREAM project [3], is to characterize a sub-class of queries that can be computedexactlywith bounded memory.)
The synopses of choice for a number of the above-cited papers are based on the key idea ofpseudo-random sketches
which, essentially, can be thought of as simple, randomized linear projections of the underlying data vector(s) [11]. In
fact, the very recent work of Dobra et al. [8] has demonstrated the utility of sketch synopses in computing provably-
accurate approximate answers for asingleSQL query comprising (possibly) multiple join operators.

None of these earlier research efforts has addressed the more general problem of effectively providing accurate
approximate answers tomultipleSQL queries over a collection of input streams. Of course, the problem ofmulti-query
optimization(that is, optimizing multiple queries for concurrent execution in a conventional DBMS) has been around
for some time, and several techniques for extending conventional query optimizers to deal with multiple queries have
been proposed [23, 22]. The cornerstone of all these techniques is the discovery of common query sub-expressions
whose evaluation can be shared among the query-execution plans produced. Very similar ideas have also found
their way in large-scale, continuous-query systems (e.g., NiagaraCQ [6]) that try to optimize the evaluation of large
numbers of trigger conditions. As will become clear later, however, approximate multi-query processing over streams
with limited space gives rise to several novel and difficult optimization issues that are very different from those of
traditional multi-query optimization.

Our Contributions. In this paper, we tackle the problem of efficiently processing multiple (possibly, multi-join)
concurrent aggregate SQL queries over a collection of input data streams. Similar to earlier work on data streaming [1,
8], our approach is based on computing small, pseudo-random sketch synopses of the data. We demonstrate that,
in the presence of multiple query expressions, intelligentlysharing sketchesamong concurrent (approximate) query
evaluations can result in substantial improvements in the utilization of the available sketching space and the quality of
the resulting approximation error guarantees. We provide necessary and sufficient conditions for multi-query sketch
sharing that guarantee the correctness of the resulting sketch-based estimators. We also attack the difficult optimization
problem of determining sketch-sharing configurations that are optimal (e.g., under a certain error metric for a given
amount of space). We prove that optimal sketch sharing typically gives rise toNP-hard questions, and we propose
novel heuristic algorithms for finding effective sketch-sharing configurations in practice. More concretely, the key
contributions of our work can be summarized as follows.

• Multi-Query Sketch Sharing: Concepts and Conditions. We formally introduce the concept ofsketch sharing
for efficient, approximate multi-query stream processing. Briefly, the basic idea is to share sketch computation and
sketching space across several queries in the workload that can effectively use the same sketches over (a subset of)
their input streams. Of course, since sketches and sketch-based estimators are probabilistic in nature, we also need to
ensure that this sharing does not degrade the correctness and accuracy of our estimates by causing desirable estimator
properties (e.g., unbiasedness) to be lost. Thus, we present necessary and sufficient conditions (based on the resulting
multi-join graph) that fully characterize such “correct” sketch-sharing configurations for a given query workload.

• Novel Sketch-Sharing Optimization Problems and Algorithms.Given that multiple correct sketch-sharing con-
figurations can exist for a given stream-query workload, our processor should be able to identify configurations that are
optimal or near-optimal; for example, under a certain (aggregate) error metric for the workload and for a given amount
of sketching space. We formulate these sketch-sharing optimization problems for different metrics of interest, and
propose novel algorithmic solutions for the two key sub-problems involved, namely: (1)Space Allocation:Determine
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Figure 1:Stream Multi-Query Processing Architecture.

the best amount of space to be given to each sketch for a fixed sketch-sharing configuration; and, (2)Join Coalescing:
Determine an optimal sketch-sharing plan by deciding which joins in the workload will share sketches. We prove that
most of these optimization problems are actuallyNP-hard, so we design heuristic approximation algorithms (some-
times with guaranteed bounds on the quality of the approximation) for finding good sketch-sharing configurations in
practice.

• Implementation Results Validating our Sketch-Sharing Techniques.We present the results from an empirical
study of our sketch-sharing schemes with several synthetic data sets and multi-query workloads based on the TPC-H
benchmark. Our results clearly demonstrate the benefits of effective sketch-sharing over realistic query workloads,
showing that significant improvements in answer quality are possible compared to a naive, no-sharing approach.
Specifically, our experiments indicate that sketch sharing can boost accuracy of query answers by factors ranging from
2 to 4 for a wide range of multi-query workloads.

2 Streams and Random Sketches

2.1 Stream Data-Processing Model

We now briefly describe the key elements of our generic architecture for multi-query processing over continuous
data streams (depicted in Figure 1); similar architectures (for the single-query setting) have been described else-
where (e.g., [8, 15]). Consider a workloadQ = {Q1, . . . , Qq} comprising a collection of arbitrary (complex) SQL
queriesQ1, . . . , Qq over a set of relationsR1, . . . , Rr (of course, each query typically references a subset of the rela-
tions/attributes in the input). Also, let|Ri| denote the total number of tuples inRi. In contrast to conventional DBMS
query processors, our stream query-processing engine is allowed to see the data tuples inR1, . . . , Rr only onceand in
fixed order as they are streaming in from their respective source(s). Backtracking over the data stream and explicit ac-
cess to past data tuples are impossible. Further, the order of tuple arrival for each relationRi is arbitrary and duplicate
tuples can occur anywhere over the duration of theRi stream. (Our techniques can also readily handle tupledeletions
in the streams.)

Our stream query-processing engine is also allowed a certain amount of memory, typically significantly smaller
than the total size of the data set(s). This memory is used to maintain a set of concisesynopsesfor each data stream
Ri. The key constraints imposed on such synopses are that: (1) they are much smaller than the total number of tuples
in Ri (e.g., their size is logarithmic or polylogarithmic in|Ri|); and, (2) they can be computed quickly, in a single pass
over the data tuples inRi in the (arbitrary) order of their arrival. At any point in time, our query-processing algorithms
can combine the maintained collection of synopses to produce approximate answers to all queries inQ.
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2.2 Approximating Single-Query Answers with Pseudo-Random Sketch Summaries

The Basic Technique: Binary-Join Size Tracking [1, 2].Consider a simple stream-processing scenario where the
goal is to estimate the size of a binary join of two streamsR1 andR2 on attributesR1.A1 andR2.A2, respectively.
That is, we seek to approximate the result of queryQ = COUNT(R1 ./R1.A1=R2.A2 R2) as the tuples ofR1 andR2

are streaming in. Letdom(A) denote the domain of an attributeA 1 andfR(i) be the frequency of attribute valuei
in R.A. (Note that, by the definition of the equi-join operator, the two join attributes have identical value domains,
i.e.,dom(A1) = dom(A2).) Thus, we want to produce an estimate for the expressionQ =

∑
i∈dom(A1)

fR1(i)fR2(i).
Clearly, estimating this join size exactly requires at leastΩ(|dom(A1)|) space, making an exact solution impractical
for a data-stream setting. In their seminal work, Alon et al. [1, 2] propose a randomized technique that can offer
strong probabilistic guarantees on the quality of the resulting join-size estimate while using only logarithmic space in
|dom(A1)|.

Briefly, the basic idea of their scheme is to define a random variableXQ that can be easily computed over the
streaming values ofR1.A1 andR2.A2, such that (1)XQ is anunbiased(i.e., correct on expectation) estimator for the
target join size, so thatE[XQ] = Q; and (2)XQ’s variance (Var(XQ)) can be appropriately upper-bounded to allow
for probabilistic guarantees on the quality of theQ estimate. This random variableXQ is constructed on-line from the
two data streams as follows:

• Select a family offour-wise independent binary random variables{ξi : i = 1, . . . , |dom(A1)|}, where each
ξi ∈ {−1,+1} andP [ξi = +1] = P [ξi = −1] = 1/2 (i.e.,E[ξi] = 0). Informally, the four-wise independence
condition means that for any 4-tuple ofξi variables and for any 4-tuple of{−1,+1} values, the probability
that the values of the variables coincide with those in the{−1,+1} 4-tuple is exactly1/16 (the product of
the equality probabilities for each individualξi). The crucial point here is that, by employing known tools
(e.g., orthogonal arrays) for the explicit construction of small sample spaces supporting four-wise independent
random variables, such families can be efficiently constructed on-line using onlyO(log |dom(A1)|) space [2].

• Define XQ = X1 · X2, whereXk =
∑

i∈dom(A1)
fRk

(i)ξi, for k = 1, 2. Note that eachXk is simply a
randomized linear projection (inner product) of the frequency vector ofRk.Ak with the vector ofξi’s that can
be efficiently generated from the streaming values ofAk as follows: Start withXk = 0 and simply addξi to Xk

whenever theith value ofAk is observed in the stream.

The quality of the estimation guarantees can be improved using a standardboosting techniquethat maintains
several independent identically-distributed (iid) instantiations of the above process, and uses averaging and median-
selection operators over theXQ estimates to boost accuracy and probabilistic confidence [2]. (Independent instances
can be constructed by simply selecting independent random seeds for generating the families of four-wise independent
ξi’s for each instance.) We use the termatomic sketchto describe each randomized linear projection computed over
a data stream. Letting SJk (k = 1, 2) denote the self-join size ofRk.Ak (i.e., SJk =

∑
i∈dom(Ak) fRk

(i)2), the
following theorem [1] shows how sketching can be applied for estimating binary-join sizes in limited space. (By
standard Chernoff bounds, using median-selection overO(log(1/δ)) of the averages computed in Theorem 1 allows
the confidence in the estimate to be boosted to1− δ, for any pre-specifiedδ < 1.)

Theorem 1 ([1]) Let the atomic sketchesX1 andX2 be as defined above. ThenE[XQ] = E[X1X2] = Q and

Var(XQ) ≤ 2 · SJ1 · SJ2. Thus, averaging theXQ estimates overO(SJ1SJ2
Q2ε2 ) iid instantiations of the basic scheme,

guarantees an estimate that lies within a relative error ofε from Q with high probability. �

Single Multi-Join Query Answering [8]. In more recent work, Dobra et al. [8] have extended sketch-based tech-
niques to approximate the result of a general, multi-join aggregate SQL query over a collection of streams.2 More
specifically, they focus on approximating a multi-join stream queryQ of the form: “SELECT COUNT FROMR1,
R2, . . . , Rr WHEREE”, whereE represents the conjunction of ofn equi-join constraints of the formRi.Aj = Rk.Al

1Without loss of generality, we assume that each attribute domaindom(A) is indexed by the set of integers{1, · · · , |dom(A)|},
where|dom(A)| denotes the size of the domain.

2[8] also describes asketch-partitioningtechnique for improving the quality of basic sketching estimates; this technique is
essentially orthogonal to the multi-query sketch-sharing problem considered in this paper, so we do not discuss it further.
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Figure 2:Example Query Join Graph.

(Ri.Aj denotes thejth attribute of relationRi). (The extension to other aggregate functions, e.g.,SUM, is fairly
straightforward [8].) Their development also assumes that each attributeRi.Aj appears inE at most once; this re-
quirement can be easily achieved by simply renaming repeating attributes in the query. In what follows, we describe
the key ideas and results from [8] based on the join-graph model of the input queryQ, since this will allow for a
smoother transition to the multi-query case (Section 3).

Given stream queryQ, we define thejoin graphof Q (denoted byJ (Q)), as follows. There is a distinct vertexv
in J (Q) for each streamRi referenced inQ (we useR(v) to denote the relation associated with vertexv). For each
equality constraintRi.Aj = Rk.Al in E , we add a distinct undirected edgee =< v, w > toJ (Q), whereR(v) = Ri

andR(w) = Rk; we also label this edge with the triple< Ri.Aj , Rk.Al, Q > that specifies the attributes in the
corresponding equality constraint and the enclosing queryQ (the query label is used in the multi-query setting). Given
an edgee =< v, w > with label< Ri.Aj , Rk.Al, Q >, the three components ofe’s label triple can be obtained as
Av(e), Aw(e) andQ(e). (Clearly, by the definition of equi-joins,dom(Av(e)) = dom(Aw(e)).) Note that there may
be multiple edges between a pair of vertices in the join graph, but each edge has its own distinct label triple. Finally,
for a vertexv in J (Q), we denote the attributes ofR(v) that appear in the input query (or, queries) asA(v); thus,
A(v) = {Av(e) : edgee is incident onv}.

The result ofQ is the number of tuples in the cross-product ofR1, . . . , Rr that satisfy the equality constraints
in E over the join attributes. Similar to the basic sketching method [1, 2], the algorithm of Dobra et al. constructs
an unbiased, bounded-variance probabilistic estimateXQ for Q using atomic sketches built on the vertices of the
join graphJ (Q). More specifically, for each edgee =< v,w > in J (Q), their algorithm defines a family of four-
wise independent random variablesξe = {ξe

i : i = 1, . . . , |dom(Av(e))|}, where eachξe
i ∈ {−1,+1}. The key

here is that the equi-join attribute pairAv(e), Aw(e) associated with edgee shares the sameξ family; on the other
hand, distinct edges ofJ (Q) use independently-generatedξ families (using mutually independent random seeds).
The atomic sketchXv for each vertexv in J (Q) is built as follows. Lete1, . . . , ek be the edges incident onv and,
for i1 ∈ dom(Av(e1)), . . . , ik ∈ dom(Av(ek)), let fv(i1, . . . , ik) denote the number of tuples inR(v) that match
valuesi1, . . . , ik in their join attributes. More formally,fv(i1, . . . , ik) is the number of tuplest ∈ R(v) such that
t[Av(ej)] = ij , for 1 ≤ j ≤ k (t[Aj] denotes the value of attributeA in tuplet). Then, the atomic sketch atv is Xv =∑

i1∈dom(Av(e1))
· · ·

∑
ik∈dom(Av(ek)) fv(i1, . . . , ik)

∏k
j=1 ξ

ej

ij
. Finally, the estimate forQ is defined asXQ =

∏
v Xv

(that is, the product of the atomic sketches for all vertices inJ (Q)). Note that each atomic sketchXv can be efficiently
computed as tuples ofR(v) are streaming in; more specifically,Xv is initialized to 0 and, for each tuplet in theR(v)
stream, the quantity

∏k
j=1 ξ

ej

t[Av(ej)]
is added toXv.

Example 2.1 Consider queryQ = SELECT COUNT FROMR1, R2, R3 WHERER1.A1 = R2.A1 ANDR2.A2 =
R3.A2. The join graphJ (Q) is depicted in Figure 2, with verticesv1, v2, andv3 corresponding to streamsR1,
R2, and R3, respectively. Similarly, edgese1 and e2 correspond to the equi-join constraintsR1.A1 = R2.A1

andR2.A2 = R3.A2, respectively. (Just to illustrate our notation,R(v1) = R1, Av2(e1) = R2.A1 andA(v2) =
{R2.A1, R2.A2}.) The sketch construction defines two families of four-wise independent random families (one for
each edge):{ξe1

i } and{ξe2
j }. The three atomic sketchesXv1 , Xv2 , andXv3 (one for each vertex) are defined as:Xv1 =∑

i∈dom(R1.A1)
fv1(i)ξ

e1
i , Xv2 =

∑
i∈dom(R2.A1)

∑
j∈dom(R2.A2)

fv2(i, j)ξ
e1
i ξe2

j , andXv3 =
∑

j∈dom(R3.A2)
fv3(j)ξ

e3
j .

The value of the random variableXQ = Xv1Xv2Xv3 gives the sketching estimate for the result ofQ. �

Dobra et al. [8] demonstrate that the random variableXQ constructed above is an unbiased estimator forQ,
and prove the following theorem which generalizes the earlier result of Alon et al. to multi-join queries. (SJv =∑

i1∈dom(Av(e1))
· · ·

∑
ik∈dom(Av(ek)) fv(i1, . . . , ik)2 is the self-join size ofR(v).)

Theorem 2.2 LetQ be aCOUNTquery withn equi-join predicates such thatJ (Q) contains no cycles of length> 2.

Then,E[XQ] = Q and using sketching space ofO(Var[XQ]·log(1/δ)
Q2·ε2 ), it is possible to approximateQ to within a relative
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Figure 3:Example Workload with Sketch-Sharing Potential.

error of ε with probability at least1− δ, whereVar[XQ] ≤ 22n
∏

v SJv. �

3 Sketch Sharing: Basic Concepts and Problem Formulation

In this section, we turn our attention to sketch-based processing ofmultiple aggregate SQL queries over streams.
We introduce the basic idea of sketch sharing and demonstrate how it can improve the effectiveness of the available
sketching space and the quality of the resulting approximate answers. We also characterize the class of correct sketch-
sharing configurations and formulate the optimization problem of identifying an effective sketch-sharing plan for a
given query workload.

3.1 Sketch Sharing

Consider the problem of using sketch synopses for the effective processing of a query workloadQ = {Q1, . . . , Qq}
comprising multiple (multi-join)COUNTaggregate queries. As in [8], we focus onCOUNTsince the extension to other
aggregate functions is relatively straightforward; we also assume an attribute-renaming step that ensures that each
stream attribute is referenced only once in each of theQi’s (of course, the same attribute can be used multiple times
across the queries inQ).

An obvious solution to our multi-query processing problem is to build disjoint join graphsJ (Qi) for each query
Qi ∈ Q, and construct independent atomic sketches for the vertices of eachJ (Qi). The atomic sketches for each
vertex ofJ (Qi) can then be combined to compute an approximate answer forQi as described in [8] (Section 2.2). A
key drawback of such a naive solution is that it ignores the fact that a relationRi may appear in multiple queries inQ.
Thus, it should be possible to reduce the overall space requirements bysharingatomic-sketch computations among the
vertices for streamRi in the join graphs for the queries in our workload. We illustrate this in the following example.

Example 3.1 Consider queriesQ1 = SELECT COUNT FROMR1, R2, R3 WHERER1.A1 = R2.A1 ANDR2.A2 =
R3.A2 andQ2 = SELECT COUNT FROMR1, R3 WHERER1.A1 = R3.A2. The naive processing algorithm de-
scribed above would maintain two disjoint join graphs (Figure 3) and, to compute a single pair(XQ1 , XQ2) of sketch-
based estimates, it would use three families of random variables (ξe1 , ξe2 , andξe3), and a total of five atomic sketches
(Xvk

, k = 1, . . . , 5).
Instead, suppose that we decide to re-use the atomic sketchXv1 for v1 also for v4, both of which essentially

correspond to the same attribute of the same stream (R1.A1). Since for eachi ∈ dom(R1.A1), fv4(i) = fv1(i), we get
Xv4 = Xv1 =

∑
i∈dom(R1.A1)

fv4(i)ξ
e1
i . Of course, in order to correctly compute a probabilistic estimate ofQ2, we

also need to use the same familyξe1 in the computation ofXv5 ; that is,Xv5 =
∑

i∈dom(R1.A1)
fv5(i)ξ

e1
i . It is easy

to see that both final estimatesXQ1 = Xv1Xv2Xv3 andXQ1 = Xv1Xv5 satisfy all the premises of the sketch-based
estimation results in [8]. Thus, by simply sharing the atomic sketches forv1 andv4, we have reduced the total number
of random families used in our multi-query processing algorithm to two (ξe1 andξe2) and the total number of atomic
sketches maintained to four.�

Let J (Q) denote the collection of all join graphs in workloadQ, i.e., allJ (Qi) for Qi ∈ Q. Sharing sketches
between the vertices ofJ (Q) can be seen as a transformation ofJ (Q) that essentiallycoalescesin vertices belonging
to different join graphs inJ (Q). (We also useJ (Q) to denote the transformed multi-query join graph.) Of course,
as shown in Example 3.1, verticesv ∈ J (Qi) andw ∈ J (Qj) can be coalesced in this manneronly if R(v) = R(w)
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Figure 4:Multi-Query Join GraphsJ (Q) for Example 3.1.

(i.e., they correspond to the same data stream) andA(v) = A(w) (i.e., bothQi andQj use exactly the same attributes
of that stream). Such vertex coalescing implies that a vertexv in J (Q) can have edges from multiple different queries
incident on it; we denote the set of all these queries asQ(v), i.e.,Q(v) = {Q(e) : edgee is incident onv}. Figure 4(a)
pictorially depicts the coalescing of verticesv1 andv4 as discussed in Example 3.1. Note that, by our coalescing rule,
for each vertexv, all queries inQ(v) are guaranteed to use exactly the same set of attributes ofR(v), namelyA(v);
furthermore, by our attribute-renaming step, each query inQ(v) uses each attribute inA(v) exactly once. This makes
it possible to share an atomic sketch built for the coalesced verticesv across all queries inQ(v).
Estimation with Sketch Sharing. Consider a multi-query join graphJ (Q), possibly containing coalesced vertices (as
described above), and a queryQ ∈ Q. Let V (Q) denote the (sub)set of vertices inJ (Q) attached to a join-predicate
edge corresponding toQ; that is,V (Q) = {v : edgee is incident onv andQ(e) = Q}. Our goal is to construct an
unbiased probabilistic estimateXQ for Q using the atomic sketches built for vertices inV (Q).

The atomic sketch for a vertexv of J (Q) is constructed as follows. As before, each edgee ∈ J (Q) is associated
with a family ξe of four-wise independent{−1,+1} random variables. The difference here, however, is that edges
attached to nodev for thesame attributeof R(v) share thesameξ family; this, of course, implies that the number of
distinctξ families for all edges incident onv is exactly|A(v)| (each family corresponding to a distinct used attribute of
R(v)). Furthermore, all distinctξ families inJ (Q) are generated independently (using mutually independent seeds).
For example, in Figure 4(a), sinceAv1(e1) = Av1(e3) = R1.A1, edgese1 ande3 share the sameξ family (i.e.,ξe3 =
ξe1); on the other hand,ξe1 andξe2 are distinct and independent. AssumingA = {A1, . . . , Ak} and lettingξ1, . . . , ξk

denote thek corresponding distinctξ families attached tov, the atomic sketchXv for nodev is simply defined as
Xv =

∑
(i1,...,ik)∈A1×···×Ak

fv(i1, . . . , ik)
∏k

j=1 ξj
ij

The final sketch-based estimate for queryQ is the product of
the atomic sketches over all vertices inV (Q), i.e., XQ =

∏
v∈V (Q) Xv. For instance, in Example 3.1/Figure 4(a),

XQ1 = Xv1Xv2Xv3 andXQ2 = Xv1Xv5 .

Correctness of Sketch-Sharing Configurations.TheXQ estimate construction described above can be viewed as
simply “extracting” the join (sub)graphJ (Q) for queryQ from the multi-query graphJ (Q), and constructing a
sketch-based estimate forQ as described in Section 2.2. This is because, if we were to only retain inJ (Q) vertices
and edges associated withQ, then the resulting subgraph is identical toJ (Q). Furthermore, our vertex coalescing
(which completely determines the sketches to be shared) guarantees thatQ references exactly the attributesA(v) of
R(v) for eachv ∈ V (Q), so the atomic sketchXv can be utilized.

There is, however, an important complication that our vertex-coalescing rule still needs to address, to ensure that
the atomic sketches for vertices ofJ (Q) provide unbiased query estimates with variance bounded as described in
Theorem 2.2. Given an estimateXQ for queryQ (constructed as above), unbiasedness and the bounds on Var[XQ]
given in Theorem 2.2 depend crucially on the assumption that theξ families used for the edges inJ (Q) are distinct
and independent. This means that simply coalescing vertices inJ (Q) that use the same set of stream attributes is
insufficient. The problem here is that the constraint that all edges for the same attribute incident on a vertexv share
the sameξ family may (by transitivity) force edges for the same queryQ to share identicalξ families. The following
example illustrates this situation.

Example 3.2 Consider the multi-query join graphJ (Q) in Figure 3.2(b) for queriesQ1 andQ2 in Example 3.2.
(J (Q) is obtained as a result of coalescing vertex pairsv1, v4 andv3, v5 in Figure 3.) SinceAv1(e1) = Av1(e3) =
R1.A1 andAv3(e2) = Av3(e3) = R3.A2, we get the constraintsξe3 = ξe1 andξe3 = ξe2 . By transitivity, we have
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ξe1 = ξe2 = ξe3 , i.e., all three edges of the multi-query graph share the sameξ family. This, in turn, implies that the
sameξ family is used on both edges of queryQ1; that is, instead of being independent, the pseudo-random families
used on the two edges ofQ1 are perfectly correlated! It is not hard to see that, in this situation, the expectation and
variance derivations forXQ1 will fail to produce the results of Theorem 2.2, since many of the zero cross-product
terms in the analysis of [1, 8] will fail to vanish.

As is clear from the above example, the key problem is that constraints requiringξ families for certain edges
incident on each vertex ofJ (Q) to be identical, can transitively ripple through the graph forcing much larger sets
of edges to share the sameξ family. We formalize this fact using the following notion of (transitive)ξ-equivalence
among edges of a multi-query graphJ (Q).

Definition 3.3 Two edgese1 ande2 in J (Q) are said to beξ-equivalent if either (1)e1 ande2 are incident on a
common vertexv, andAv(e1) = Av(e2); or (2) there exists an edgee3 such thate1 ande3 areξ-equivalent, ande2

ande3 areξ-equivalent. �

Intuitively, the classes of theξ-equivalence relation represent exactly the sets of edges in the multi-query join graph
J (Q) that need to share the sameξ family; that is, for any pair ofξ-equivalent edgese1 ande2, it is the case that
ξe1 = ξe2 . Since, for estimate correctness, we require that all the edges associated with a query have distinct and
independentξ families, our sketch-sharing algorithms only consider multi-query join graphs that arewell-formed, as
defined below.

Definition 3.4 A multi-query join graphJ (Q) is well-formediff, for every pair ofξ-equivalent edgese1 ande2 in
J (Q), the queries containinge1 ande2 are distinct, i.e.,Q(e1) 6= Q(e2). �

It is not hard to prove that the well-formedness condition described above is actually necessary and sufficient for
individual sketch-based query estimates that are unbiased and obey the variance bounds of Theorem 2.2. Thus, our
shared-sketch estimation process over well-formed multi-query graphs can readily apply the single-query results of
[1, 8] for each individual query in our workload.

3.2 Problem Formulation

Given a large workloadQ of complex queries, there can obviously be a large number of well-formed join graphs for
Q, and all of them can potentially be used to provide approximate sketch-based answers to queries inQ. At the same
time, since the key resource constraint in a data-streaming environment is imposed by the amount of memory available
to the query processor, our objective is to compute approximate answers to queries inQ that are as accurate as possible
given a fixed amount of memoryM for the sketch synopses. Thus, in the remainder of this paper, we focus on the
problem of computing (1) a well-formed join graphJ (Q) for Q, and (2) an allotment of theM units of space to the
vertices ofJ (Q) (for maintaining iid copies of atomic sketches), such that an appropriate aggregate error metric (e.g.,
average or maximum error) for all queries inQ is minimized.

More formally, letmv denote the sketching space (i.e., number of iid copies) allocated to vertexv (i.e., number
of iid copies ofXv). Also, letMQ denote the number of iid copies built for the query estimateXQ. SinceXQ =∏

v∈V (Q) Xv, it is easy to see thatMQ is actually constrained by theminimumnumber of iid atomic sketches con-
structed for each of the nodes inV (Q); that is,MQ = minv∈V (Q){mv}. By Theorem 2.2, this implies that the

(square) error for queryQ is equal toWQ/MQ, whereWQ = 8Var[XQ]
E[XQ]2 is a constant for each queryQ (assuming a

fixed confidence parameterδ). Our sketch-sharing optimization problem can then be formally stated as follows.

Problem Statement.Given a query workloadQ = {Q1, . . . , Qq} and an amount of sketching memoryM , compute
a multi-query graphJ (Q) and a space allotment{mv : for each nodev in J (Q)} such that one of the following two
error metrics is minimized:

• Average query error inQ =
∑

Q∈Q
WQ

MQ
.

• Maximum query error inQ = maxQ∈Q{WQ

MQ
}.
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subject to the constraints: (1)J (Q) is well-formed; (2)
∑

v mv ≤ M (i.e., the space constraint is satisfied); and, (3)
For all verticesv in J (Q), for all queriesQ ∈ Q(v), MQ ≤ mv. �

The above problem statement assumes that the “weight”WQ for each queryQ ∈ Q is known. Clearly, if coarse
statistics in the form of histograms for the stream relations are available (e.g., based on historical information or
coarse a-priori knowledge of data distributions), then estimates forE[XQ] and Var[XQ] (and, consequently,WQ) can
be obtained by estimating join and self-join sizes using these histograms [8]. In the event that no prior information
is available, we can simply set eachWQ = 1; unfortunately, even for this simple case, our optimization problem is
intractable (see Section 4).

In the following section, we first consider the sub-problem of optimally allocating sketching space (such that
query errors are minimized) to the vertices of agiven, well-formed join graphJ (Q). Subsequently, in Section 5, we
consider the general optimization problem where we also seek to determine the best well-formed multi-query graph for
the given workloadQ. Since most of these questions turn out to beNP-hard, we propose novel heuristic algorithms
for determining good solutions in practice. Our algorithm for the overall problem (Section 5) is actually an iterative
procedure that uses the space-allocation algorithms of Section 4 as subroutines.

4 Space Allocation Problem

In this section, we consider the problem of allocating space optimally given a well-formed join graphJ = J (Q).
We first examine the problem of minimizing the average error in Section 4.1, and then the problem of minimizing the
maximum error in Section 4.2.

4.1 Minimizing the Average Error

We address the following more generalaverage-error integer convex optimization problemin this subsection, for an
arbitrary convex strictly decreasing functionΦ:

min
∑
Q∈Q

WQΦ(MQ) (1)

∀Q ∈ Q : MQ > 0 (2)

∀v ∈ J,∀Q ∈ Q(v) : MQ ≤ mv (3)∑
v∈J

mv = M (4)

In the above formulation, variablesMQ andmv correspond to the space allocated to queryQ ∈ Q and vertex
v ∈ J , respectively, and if we wish to minimize the average (square) error, thenΦ(MQ) = 1/MQ.

Theorem 4.1 If Φ is convex and strictly decreasing with a singularity in 0, then solving the average-error convex
optimization problem isNP-complete. This is true even ifWQ = 1 for all Q ∈ Q. �

Proof: We show a reduction from k-clique. A k-clique is a fully connected subgraph containingk nodes. This
problem is known to be NP-hard (Garey and Johnson). LetG = (V,E) be an instance of the k-clique problem. For
every vertexv ∈ V we introduce a relationRv with a single attributeA. For every edgee = (v1, v2) ∈ E we introduce
a queryQe that is the size of the join with join constraintRv1 .A = Rv2 .A. Thus, the setQ(v) = {Qe|e = (v, ·) ∈ E}.
Furthermore, we setWe the weight corresponding to queryQe to 1 and the total memoryM = n + k with n = |V |.
We now show that there exists a clique of sizek in G iff there exists a memory allocation strategy for the constructed
problem with cost at mostB = (|E| −K)Φ(1) + K(Φ(1)− Φ(2)) whereK = k(k−1)

2 .
SinceΦ(x) is ∞ in 0 we have to allocate at least one memory word for every vertex. If we have a k-clique in

the graphG then by allocating the remainingk memory words the decrease in the optimization function isKΦ(2)
thus the final value isB. Conversely if we can decrease the value of the criterion from|E|Φ(1) to at leastB by
allocatingk more memory words tok vertices it has to be the case thatK edges (joins) use two memory words
instead of one, thus thek edges form a k-clique. To see this observe that sinceΦ(x) is convex and strictly decreasing
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p(Φ(1)−Φ(2)) > Φ(1)−Φ(p+1) so by allocating more than one extra memory word to some vertices we decrease the
value of the criterion less than linearly per edge and we decrease the number of edges quadratically so it is impossible
to reduce the value of the criterion byK(Φ(1)−Φ(2)) (in order to meet boundB) if we allocate more than one extra
memory word fork of the vertices.

�

Since this problem isNP-hard, let us first examine itscontinuous relaxation, i.e., we allow memory to be allocated
continuously although in reality we can only allocate memory in integer chunks. Thus, we allow theMQ’s andmv ’s
to be continuous instead of requiring them to be integers. We call this problem theaverage-error continuous convex
optimization problem.In this case, we have a specialized convex optimization problem, and in the following, we show
how we can use results from the theory of convex optimization to find an optimal continuous solution.3 We then
present a method to derive a near-optimal integer solution by rounding down (to integers) the optimal continuousMQ

andmv values.
A Roadmap. Before we delve into the technical details of our solution for the above continuous convex optimiza-

tion problem, let us give a high-level overview of our approach. We use a standard technique from convex optimization
theory called the Kuhn-Tucker optimality conditions (or KT conditions for short) to characterize the optimal solution
through a set of equations that do not contain any objective function to optimize. Given the KT conditions, Lemma 2
helps to shed light on the structure of the optimal solution: it characterizes the sets of vertices and queries that have
the same memory allocation in the optimal solution, but without a constructive algorithm to compute these sets. We
address this by presenting Algorithm 1 that computes a feasible solution to the KT conditions, and prove its correctness
with respect to computing the optimal solution, based on properties of the algorithm stated in Lemma 4.

The KT Conditions. First, observe that if we setMQ = mv = M/|J |, we have a solution to the average-error
continuous optimization problem; this solution may not be optimal, but it satisfies Equations (2) to (4). In addition,
sinceΦ is strictly convex and the set of feasible solutions is convex, the problem has a single global optimum which
we refer to as theoptimal solution.

We can characterize the optimal solution completely through the KT conditions [19]. The Lagrangian has the
following form:

L(µv,Q,λ) =
∑
Q∈Q

WQΦ(MQ)

−
∑
v∈J

∑
Q∈Q(v)

µv,Q(mv −MQ)− λ(M −
∑

mv)

This results in the following set of KT conditions:

∀Q ∈ Q : WQΦ′(MQ) +
∑

v∈V (Q)

µv,Q = 0 (solve
dL

dMQ
= 0)

∀v ∈ J : −
∑

Q∈Q(v)

µv,Q + λ = 0 (solve
dL

dmv
= 0)

∀Q ∈ Q,∀v ∈ J : µv,Q · (mv −MQ) = 0∑
v∈J

mv = M

∀Q ∈ Q,∀v ∈ J : µv,Q ≥ 0, λ > 0

3We are not aware of any prior work on a specialized solution for this particular convex optimization problem. General solutions for convex
optimization problems, e.g. interior point methods [24], tend to be slow in practice.
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Sinceλ > 0 we can rewrite the KT conditions as follows (substitutingµ̄v,Q for µv,Q/λ):

∀Q ∈ Q : −WQΦ′(MQ) = λ ·
∑

v∈V (Q)

µ̄v,Q (5)

∀v ∈ J :
∑

Q∈Q(v)

µ̄v,Q = 1 (6)

∀Q ∈ Q,∀v ∈ J : µ̄v,Q · (mv −MQ) = 0 (7)∑
v∈J

mv = M (8)

∀Q ∈ Q,∀v ∈ J : µ̄v,Q ≥ 0 (9)

Note that the above KT conditions are necessary and sufficient, that is, a solution for our continuous convex optimiza-
tion problem is optimal if and only if it satisfies the KT conditions.

Characterizing the Optimal Solution. The KT conditions enable us to identify structural properties of the optimal
solution. Let us first introduce some notation. AcomponentC is a subset ofQ ∪ J . For a componentC, define
V (C) = {v : v ∈ (C ∩ J)}, Q(C) = {Q : Q ∈ (C ∩ Q)}, E(C) = {(v,Q) : v ∈ V (C), Q ∈ Q(C) ∩Q(v)}, and
defineW (C) =

∑
Q∈Q(C) WQ. We consider a special set of components determined by the optimal solution that we

call≡-components. We define a relation≡ betweenv ∈ J andQ ∈ Q as follows:v ≡ Q iff ( mv = MQ∧Q ∈ Q(v))
in the optimal solution. If we take the symmetric transitive closure of≡ we obtain an equivalence relation that
partitionsJ ∪ Q into a set of componentsC = {C1, . . . , Cc} which we call≡-components. Each≡-component
C ∈ C has an associated memory allocationM(C), i.e., sinceC is a≡-component,∀v ∈ V (C),mv = M(C) and
∀Q ∈ Q(C),MQ = M(C).

Lemma 2 The setC of≡-components has the following properties:

(a) LetC,C ′ ∈ C andC 6= C ′. Then∀v ∈ V (C),∀Q ∈ Q(C ′), it is the case that̄µv,Q = 0 ∧M(C) ≥ M(C ′).

(b) For any≡-componentC,

∀Q ∈ Q(C) : WQ · |V (C)|
W (C)

=
∑

v∈V (C)

µ̄v,Q (10)

∀v ∈ V (C) :
∑

Q∈Q(v)∩Q(C)

µ̄v,Q = 1 (11)

(c) The memory allocation for the≡-components satisfies the following two equations:

∀C ∈ C : −W (C)Φ′(M(C)) = λ|V (C)| (12)∑
C∈C

M(C) · |V (C)| = M (13)

(d) ∀C,C ′ ∈ C : M(C) < M(C ′) iff W (C)
|V (C)| < W (C′)

|V (C′)|

Proof: (a) Suppose that, forv ∈ V (C) andQ ∈ Q(C ′), Equations (5) to (9) have a solution with̄µv,Q > 0.

Equation (7) implies thatmv = MQ which in turn implies thatv ≡ Q, and as a result,C = C ′ by the definition of
a≡-component. This leads to a contradiction, and thusµ̄v,Q = 0. Further, suppose thatM(C) < M(C ′), which
implies thatmv < MQ. However, we again have a contradiction becauseQ ∈ Q(v), and as a result,MQ ≤ mv in the
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optimal solution (due to Equation 3).

(b) Consider a≡-componentC. Due to part (a), we can rewrite Equations (5) and (6) as follows:

∀Q ∈ Q(C) : −WQ
Φ′(M(C))

λ
=

∑
v∈V (Q)∩C

µ̄v,Q (14)

∀v ∈ V (C) :
∑

Q∈Q(v)∩C

µ̄v,Q = 1 (15)

If we sum Equation (14) over allQ ∈ Q(C), and we sum Equation (15) over allv ∈ V (C), we obtain the following
two equations:

−W (C)
Φ′(M(C))

λ
=

∑
Q∈Q(C)

∑
v∈V (Q)∩C

µ̄v,Q (16)

∑
v∈V (C)

∑
Q∈Q(v)∩C

µ̄v,Q = |V (C)| (17)

Now we immediately have−Φ′(M(C))
λ = |V (C)|

W (C) , which when substituted into Equations (14) and (15) completes the
proof.

(c) For a givenC ∈ C, we sum Equation (5) over allQ ∈ Q(C). We then use the result from Equation (17) and obtain
Equation (12). Since for a≡-componentC we know that∀v ∈ V (C),mv = M(C), Equation (8) can be rewritten as
Equation (13).

(d) First, note that− 1
Φ′(M(C)) is proportional toW (C)

|V (C)| by Equation (12). Since functionΦ′ is negative and strictly

decreasing,− 1
Φ′ is positive and strictly increasing. ThusM(C) < M(C ′) implies− 1

Φ′(M(C)) < − 1
Φ′(M(C′)) which

gives the result. �

Once we have identified the setC of ≡-components (for the optimal solution), then part (c) of Lemma 2 tells
us how to allocate memory optimally to the various componentsC ∈ C, and also, its vertices and queries since
mv = MQ = M(C) for all v ∈ V (C) andQ ∈ Q(C). Thus, we simply need to compute the setC, and parts (a), (b),
and (d) of Lemma 2 guide us in identifying this set. We now give a result that allows us to efficiently check whether
Part (b) in Lemma 2 is true for a candidate≡-componentC; this result is Lemma 3. Note that the other parts can be
checked in a straightforward way. Before we state Lemma 3, let us introduce some notation.

Let us define theflow graphF of a componentC as follows: F (C) is a directed graph with capacities on the
edges. The vertices ofF (C) are the elements ofC plus two designated verticess andt. F (C) contains the following
edges: (1)∀v ∈ V (C), edge(s, v) with capacity1, (2) ∀v ∈ V (C),∀Q ∈ Q(v) ∩ Q(C), edge(v,Q) with capacity
∞, and (3)∀Q ∈ Q(C), edge(Q, t) with capacityWQ · |V (C)|

W (C) .
Now, a flow froms to t assigns a positive real value to each edge inF (C) such that (1) the flow value for each

edge does not exceed the edge’s capacity, and (2) for each vertex, the flow is conserved, that is, the sum of the flows
along incoming edges is equal to the sum of the flows along outgoing edges. The maximum flow is one for which the
flow out of s is maximum (note that due to flow conservation, this is also the flow intot). Given a flow, we refer to
a vertexv ∈ V (C) assaturatedif the flow enteringv is equal to the capacity of edge(s, v), which is 1. Similarly,
vertexQ ∈ Q(C) is said to be saturated if the flow out ofQ equals the capacity of(Q, t), which isWQ · |V (C)|

W (C) . We
call vertices that are not saturated as simplyunsaturatedvertices.

Lemma 3 Let C be a component, and letF (C) be its flow graph. Equations (10) and (11) have a solution if and
only if there is a flow betweens andt of size|V (C)|.

Proof: First, observe that in order the the flow froms to t to have size|V (C)|, all verticesv ∈ V (C) andQ ∈ Q(C)
have to be saturated. Since Equations (10) and (11) are exactly the flow conservation equations whenever the flow
from s to t is exactly|V (C)|, the equations have a solution if and only if the maximum flow froms to t is |V (C)|. �
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Algorithm 1 : ComputeSpace(J,M)
Require: J is a join graph,M is available memory.
Ensure: vector ofmQ’s, associated error.

1: V = J ∪Q
2: E = {(v,Q) : v ∈ J,Q ∈ Q(v)}
3: C = ∅
4: repeat
5: C′ = FindConnectedComponents(V,E)
6: for all C ∈ C′ do
7: E′ = SelectEdges(C)
8: E = E \ E′

9: if E′ = ∅
10: V = V \ C
11: C = C ∪ C
12: endif
13: end for
14: until (V = ∅)
15: return ComputeMemory&Error(C,M)

Algorithm 2 : SelectEdges(C)
Require: C is a component.
Ensure: Returns the set of edges to be deleted fromC.

1: MF = Maxflow(F (C))
2: SF = Forward-Mark(C,MF )
3: SB = Backward-Mark(C,MF )
4: return{(v,Q) : v ∈ V (C) ∧Q ∈ Q(C) ∩Q(v) ∧ ((Q ∈ SF ∧ v 6∈ SF ) ∨ (Q 6∈ SB ∧ v ∈ SB))}

Note that we can implement the check in Lemma 3 efficiently with any max-flow algorithm, for example the
Ford-Fulkerson Algorithm [7].

Algorithm For Finding Optimal Solution. We are now in a position to present our algorithm for determining
the setC of ≡-components that characterize the optimal solution, and which can then be used to compute the optimal
values forMQ and mv using Lemma 2(c). At a very high level, our optimal space computation procedure (see
Algorithm 1) starts with the initial componentC = J ∪ Q and the set of edgesE = E(C). In each iteration of the
outermost loop, it deletes fromE a subsetE′ of edges between pairs of distinct≡-components, until the final set
of ≡-components is extracted intoC. The procedureSelectEdges computes the set of edgesE′ deleted in each
iteration, and in the final step,C is used to compute the optimal memory allocationMQ (by solving Equations (12)
and (13)) that minimizes the error

∑
Q WQΦ(MQ).

Algorithm 3 : Forward-Mark(C,MF )
Require: C is a component,MF is a max-flow solution ofF (C).
Ensure: All vertices in components fromT<.

1: S = {v : v ∈ V (C) ∧MF (s, v) < 1}
2: repeat
3: S′ = S
4: S = S ∪ {v : Q ∈ S ∧ v ∈ V (C) ∩ V (Q) ∧MF (v,Q) > 0}
5: S = S ∪ {Q : v ∈ S ∧Q ∈ Q(C) ∩Q(v)}
6: until (S′ = S)
7: returnS
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Algorithm 4 : Backward-Mark(C,MF )
Require: C is a component,MF is a max-flow solution ofF (C).
Ensure: All vertices in components fromT>.

1: S = {Q : Q ∈ Q(C) ∧MF (Q, t) < WQ
|V (C)|
W (C) }

2: repeat
3: S′ = S
4: S = S ∪ {v : Q ∈ S ∧ v ∈ V (C) ∩ V (Q)}
5: S = S ∪ {Q : v ∈ S ∧Q ∈ Q(C) ∩Q(v) ∧MF (v,Q) > 0}
6: until (S′ = S)
7: returnS

We now turn our focus to AlgorithmSelectEdges , which uses Lemmas 2 and 3, to identify the edges between
≡-components inC that should be deleted. In the algorithm,MF is a max-flow solution of the flow graphF (C)
of C, andSF andSB are the sets of vertices reachable inC from unsaturatedv andQ vertices, respectively. Note
that when computing the vertex setSF (SQ), an edge(v,Q) is traversed in the direction fromQ to v (v to Q) only
if MF (v,Q) > 0. In Lemma 4 below, we shown that all edges returned bySelectEdges in Step 4 are between
≡-components.

Let C1, . . . , Cl be the≡-components inC. Note thatC is connected with respect toE(C), and since, as we show
below,
SelectEdges only returns edges between≡-components,C contains only entire≡-components. Let us define two
different setsT< andT> of ≡-components that contain all≡-componentsCi in C for which W (Ci)

|V (Ci)| < W (C)
|V (C| , and

W (Ci)
|V (Ci)| > W (C)

|V (C| , respectively. Further, letE′ = {(v,Q) : v ∈ V (C) ∧ Q ∈ Q(C) ∩ Q(v) ∧ ((Q ∈ T< ∧ v 6∈
T<) ∨ (Q 6∈ T> ∧ v ∈ T>))}.

Lemma 4 Consider an invocation of AlgorithmSelectEdges with componentC. Then the following properties
hold.

(a) If E′ = ∅, thenC contains exactly one≡-component.

(b) The following is true for setsSF andSB computed in the body of the algorithm.

∪Ci∈T<Ci = SF (18)

∪Ci∈T>Ci = SB (19)

(c) AlgorithmSelectEdges returns exactly the setE′.

Proof: (a) If E′ = ∅, then for every≡-componentCi in C, W (Ci)/|V (Ci)| = W (C)/V (C). Thus, due to

Lemma 2(c), allM(Ci) are equal in the optimal solution, and sinceC is connected with respect toE(C), it follows
that all vertices inC belong to a single≡-component.

(b) We prove Equation (18) in part (b) in 4 steps. (The proof of Equation (19) is similar). In the following, we use the
symbolsv andQ generically to refer to vertices inV (C) andQ(C), respectively.

(Step 1) There cannot be an edge(v,Q) in the flow graphF (C) such thatv ∈ T< andQ 6∈ T<. This is because, due
to Lemma 2(d), we would getmv < MQ in the optimal solution, which is not feasible.

(Step 2) AllQ ∈ T< and allv 6∈ T< are saturated, and for every edge(v,Q) in F (C) such thatv 6∈ T< andQ ∈ T<,
MF (v,Q) = 0 in the max-flow solution. Consider any componentCi in T<. We know that W (Ci)

|V (Ci)| < W (C)
|V (C)| , and

so for eachQ vertex inCi, the capacityWQ
|V (C)|
W (C) of edges(Q, t) in F (C) is less thanWQ

|V (Ci)|
W (Ci)

. Note that from

Lemma 3, we know that with(Q, t) edge capacities set toWQ
|V (Ci)|
W (Ci)

, all Q vertices inT< can be saturated with
the incoming flow intoT<. Thus, due to Step 1 above, since there is no flow out ofT<, (with smaller(Q, t) edge
capacities) we get that inMF all Q vertices inT< are saturated, andT< contains at least one unsaturatedv vertex. By
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a symmetric argument, for everyCi not in T<, since W (Ci)
|V (Ci)| ≥

W (C)
|V (C)| , we can show that all the incoming flow into

verticesv 6∈ T< can be pushed out ofQ vertices not inT<. Thus, in the max-flow solutionMF , there cannot be any
flow along edge(v,Q), wherev 6∈ T< andQ ∈ T<, since pushing any such flow out of aQ vertex not inT< would
increase the total flow froms to t beyondMF . Thus, it follows that inMF , all v vertices not inT< are saturated.

(Step 3) Now let us consider the setSF computed byForward-Mark . Clearly, since onlyT< contains unsaturated
v vertices, there are no outedges from a vertexv ∈ T< (due to Step 1), and incoming edges into a vertexQ ∈ T< have
a flow of 0 (due to Step 2), vertices that do not belong toT< will not be added toSF . Thus, we only need to show that
all the vertices inT< will be added toSF . We do this in the next step.

(Step 4) Suppose thatS′
F is the subset ofv andQ vertices inT< that do not belong toSF . Clearly, all thev vertices

in S′
F must be saturated (since otherwise, they would have been added toSF ). Similarly, we can show that there is no

flow out ofS′
F in the max-flowMF . We show that there must be an edge into aQ vertex inS′

F from av vertex inSF ;
but this would cause theQ vertex to be added toSF , and thus lead to a contradiction. Suppose that there is no(v,Q)
edge fromSF to S′

F . Then, this would imply that if the capacity of each(Q, t) edge forQ ∈ S′
F were increased, it

would not be possible to saturate all theQ vertices inS′
F with the incoming flow intoT<, and this violates Lemma 3.

The reason for not being able to saturate allQ vertices inS′
F is that everyv vertex inS′

F is already saturated, there is
no outgoing flow fromS′

F in MF , and there are no incoming edges intoS′
F from SF . Thus,SF contains all vertices

in T<.

(c) Part (c) follows directly from Part (b) above and the set of(v,Q) edges returned in Step 4 ofSelectEdges . �

Theorem 5 AlgorithmComputeSpace computes the optimal solution to the average-error continuous convex opti-
mization problem in at mostO(min{|Q|, |J |} · (|Q|+ |J |)3) steps.

Proof: There can be at mostmin{|Q|, |J |} ≡-components inC, and by Lemma 4(c), each call toSelectEdges
with componentC causes the≡-components inT< andT> to become disconnected. Thus,SelectEdges is invoked
at most2 min{|Q|, |J |} times, and since the time complexity of each invocation is dominated byO((|Q| + |J |)3),
the number of steps required to compute the max-flow for components containing at most|Q|+ |J | vertices, the time
complexity ofComputeSpace is O(min{|Q|, |J |} · (|Q| + |J |)3). By Lemma 4(a),computeSpace terminates
only if C contains individual≡-components. Thus, solving the equations in Lemma 2(c), we can compute the optimal
solution and its error. �

In the following example, we trace the execution of
ComputeSpace for a join graphJ .

Example 6 Consider a join graphJ with verticesv1, . . . , v5. LetQ = {Q1, Q2, Q3} and letV (Q1) = {v1, v2, v4},
V (Q2) = {v2, v3} andV (Q3) = {v4, v5}. Also, letWQ1 = WQ2 = 3 andWQ3 = 9. The flow graphF (C) for
the initial connected componentC with whichSelectEdges invoked (in the first iteration ofComputeSpace ) is
depicted in Figure 5(a). Each edge in the figure is labeled with its capacity and the max-flow that can be pushed along
the edge. For instance, the capacity for the edge out ofQ1 is WQ1

|V (C)|
W (C) = 3 5

15 = 1, whereas the the capacity for

the outgoing edge fromQ3 is equal toWQ3
|V (C)|
W (C) = 9 5

15 = 3. Also, all vertices except forv3 andQ3 are saturated.
Further, the setsSF = {v1, v2, v3, Q1, Q2} (reachable fromv3, but not traversing 0-flow edges from aQ vertex to a
v vertex) andSB = {v4, v5, Q3} (reachable fromQ3, but not traversing 0-flow edges from av vertex to aQ vertex).
Thus, sinceQ1 ∈ SF and v4 ∈ SB , edge(v4, Q1) is returned bySelectEdges and deleted from the edge set
E. In the second iteration,ComputeSpace invokesSelectEdges with the following two connected components:
C1 = {v1, v2, v3, Q1, Q2} andC2 = {v4, v5, Q3}. The edge capacities and max-flows for each component is shown in
Figure 5(b). For instance, the capacity for the edge out ofQ1 isWQ1

|V (C1)|
W (C1)

= 3 3
6 = 3/2, whereas the the capacity for

the outgoing edge fromQ3 is equal toWQ3
|V (C2)|
W (C2)

= 9 2
9 = 2. Since there are no unsaturated vertices,SF = SB = ∅

andSelectEdges returns no edges, thus causingComputeSpace to terminate and return the space allocation for
C = {C1, C2}. Solving Equations (12) and (13), we getM(Q1) = M(Q2) = mv1 = mv2 = mv3 = M(C2) = M/6
andM(Q3) = mv4 = mv5 = M(C2) = M/4. �
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Figure 5: Example trace of AlgorithmComputeSpace .

The final remaining step is to go from the optimal continuous solution to a near-optimal integer solution, by
rounding down eachMQ returned by AlgorithmComputeSpace . Clearly, by rounding down eachMQ to the
biggest integer less than or equal toMQ, our near-optimal solution still satisfies Equations (2) to (4)4. In addition, we
can show that the average-error for the rounded down solution is not too far from the average-error for the optimal
integral solution.

Theorem 7 The average-error of the rounded optimal continuous solution is no more than(1 + 2|J|
M ) times the

average-error of the optimal integral solution. (Note that for optimizing average-error, we chooseΦ(MQ) = 1/MQ.)

Proof: Suppose thatC = {C1, . . . , Cc} is the set of≡-components. Then, solving Equations (12) and (13), we

get that eachM(Ci) = MP
j

√
W (Cj)·|V (Cj)|

√
W (Ci)
|V (Ci)| . Thus, the average error for the continuous optimal solu-

tion is given by
∑

Q
WQ

MQ
=

∑
j

W (Cj)
M(Cj)

=
(
P

j

√
W (Cj)·|V (Cj)|)2

M . Now, the error for the rounded down solution is∑
Q

WQ

bMQc =
∑

j
W (Cj)
bM(Cj)c . Since 1

bM(Cj)c ≤
2+M(Cj)
M(Cj)2

, we can derive the following (after substituting forM(Cj)):∑
Q

WQ

bMQc ≤ (1 + 2|J|
M )

∑
Q

WQ

MQ
. Thus, the theorem follows since the average error for the optimal continuous

solution cannot be more than the average error for the optimal integral solution. �

4.2 Minimizing the Maximum Error

We now turn our attention to the problem of allocating space to the vertices ofJ to minimize the maximum query
error; that is, we seek to minimize the quantitymaxQ∈Q{WQ

MQ
}, subject to the constraints: (1)

∑
v mv ≤ M , and (2)

MQ = minv∈V (Q){mv}. Fortunately, this turns out to be a much simpler problem than the average-error case – we can
actually solve it optimally using a simple algorithm that relies on fairly standard discrete-optimization techniques [19].

4If MQ < 1, then we can avoidMQ from being rounded down to 0 by pre-allocating 1 unit of memory to everyQ ∈ Q and
v ∈ J . Thus, we would then chooseΦ(MQ) to be1/(1 + MQ) instead of1/MQ, and the available memory to beM − |J |.
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To see this, we first perform a simple transformation of our objective to obtain an equivalent max-min problem.
Clearly, our problem is equivalent tomaximizingminQ∈Q{MQ

WQ
} subject to the same constraints forMQ, mv. Since,

MQ = minv∈V (Q){mv}, some simple rewriting of the objective function gives:

min
Q∈Q

{MQ

WQ
} = min

Q∈Q
{
minv∈V (Q){mv}

WQ
}

= min
v
{mv min

Q∈Q(v)

1
WQ

}

= min
v
{ mv

maxQ∈Q(v) WQ
}

SincemaxQ∈Q(v) WQ is a constant for a given vertexv, the above transformation shows that our maximum-error
problem is basically equivalent to a linear max-min optimization which can be solved optimally using standard tech-
niques [19]. A simple (optimal) algorithm is to first compute the optimal continuous solution (where eachmv is
simply proportional tomaxQ∈Q(v) WQ), round down eachmv component to the nearest integer, and then take the
remaining spaces ≤ |J | and allocate one extra unit of space to each of the nodes with thes smallest values for
mv/ maxQ∈Q(v) WQ. The complexity of this procedure isO(|J | log |J |) and a proof of its optimality can be found in
[19].

5 Computing a Well-formed Join Graph

In the previous section, we showed that for agiven well-formed join graphJ (Q), computing the optimal space
allocation to the vertices ofJ (Q) such that the average error is minimized, is anNP-hard problem (Theorem 4.1).
The optimization problem we are interested in solving is actually more general, and involves finding a join graph that
is both well-formed and for which the query error is minimum. Unfortunately, this problem is tougher than the space
allocation problem that we tackled in the previous section, and is thusNP-hard for the average error case. Further,
even though we optimally solved the space allocation problem for the maximum error case (see previous section), the
joint problem of finding a well-formed graph for which the maximum query error is minimized, isNP-hard. In fact,
even for the simple case whenWQ = 1 for all queries, the joint problem isNP-hard. The reason for this is that when
all queries have the same weight, then the maximum error is minimized whenMQ for all queries inJ (Q) are equal.
This implies that, in the optimal solution, the memoryM is distributed equally among vertices of the join graph, and
the joint problem reduces to that of finding a well-formed join graphJ (Q) with the minimum number of vertices –
this problem isNP-hard due to the following theorem.

Theorem 8 The problem of finding a well-formed join graphJ (Q) with the minimum number of vertices isNP-
complete.

Proof: We show a reduction from the vertex cover problem, an instance of which seeks to find vertex cover of sizek
for a given graphG = (V,E). For an instance of the vertex cover problem, we construct an instance of our problem of
finding the smallest well-formed join graph inJ (Q) as follows. For each vertexv ∈ V , there is a relationRv, and for
every edgee = (u, v) in E, there are three relationsRe, Re,u andRe,v. Our query setQ contains the following three
queries per edgee = (u, v) in E: Qe =SELECT COUNT FROMRu, Rv WHERERu.A1 = Rv.A1, Qe,u =SELECT
COUNT FROMRu, Re, Re,u WHERERu.A1 = Re.A2 ∧ Re.A3 = Re,u.A3, andQe,v =SELECT COUNT FROM
Rv, Re, Re,v WHERERv.A1 = Re.A3∧Re.A2 = Re,v.A2. Figure 6(a) depicts the join subgraph for the three queries
Qe, Qe,u andQe,v corresponding to edgee = (u, v). In the figure, all vertices for the same relation are coalesced in
the join graphsJ (Qe), J (Qe,u) andJ (Qe,v), and each vertex is labeled with its corresponding relation. Each edge
is labeled with its corresponding triple, and edges for different queries are represented using different types of lines.
Observe that for an edgee = (u, v) ∈ E, relationRe only appears in queriesQe,u andQe,v, and for a vertexv ∈ V ,
relationRv appears in queriesQe andQe,v for every edgee incident onv in G.

The key observation we make is that the join subgraph for edgee in Figure 6(a) is not well-formed. The reason for
this is that due to the common attributesRu.A1, Rv.A1, Re.A2 andRe.A3, all edges are forced to share the sameξ
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Figure 6:Join subgraph for edgee in G

family. Consequently, theξ families for the edges belonging to queriesQe,u andQe,v are identical. Now consider one
of the relationsRu or Rv, sayRv. Suppose we don’t coalesce the vertices forRv in J (Qe) andJ (Qe,v), causing the
resulting join subgraph fore to be well-formed, as shown in Figure 6(b). The reason for this is that only theξ family
for the edge pair incident onRe and associated with attributeRe.A2 (or alternately,Re.A3) are forced to be the same,
and these belong different queriesQe,u andQe,v. In the following, we show thatG has a vertex cover of sizek if and
only if there exists a well-formed join graph containing no more than|V |+ 3|E|+ k vertices.

Suppose thatV ′ is a vertex cover forG of sizek. Then we construct the well-formed join graphJ by coalescing
vertices inJ (Qe), J (Qe,u) andJ (Qe,v) for all e ∈ E as follows. For each edgee ∈ E, coalesce all vertices for
relationRe in J , and for every vertexv 6∈ V ′, coalesce all vertices for relationRv in J . For each vertexv ∈ V ′,
coalesce all vertices forRv and belonging to queriesQe into one vertex, and coalesce the remaining vertices forRv

(and belonging to queriesQe,v) into a separate vertex. Since for each edgee = (u, v) ∈ E, one ofu or v is in V ′,
(sayv), the resulting join subgraph for edgee in J is as shown in Figure 6(b). Thus, as we argued earlier, edges for
queriesQe,u andQe,v are not forced to share the sameξ family. Also,J contains at most|V |+3|E|+k vertices:3|E|
vertices for relationsRe, Re,u andRe,v, |V | − k vertices for relationsRv, v ∈ V − V ′, and2k vertices for relations
Rv, v ∈ V ′.

On the other hand, suppose there exists a well-formed join graphJ containing no more than|V | + 3|E| + k
vertices. Then, clearly, for eache = (u, v) in E, there must be two vertices for one ofRv or Ru since otherwiseJ
would contain the subjoin graph in Figure 6(b), and thus cannot be well-formed (note that while it is possible thatJ
contains two vertices forRe, the same effect can be achieved by two vertices forRu or Rv). Thus, if we defineV ′ to
be the set of vertices inV such thatJ contains more than one vertex forRv, thenV ′ is a vertex cover forG. Further,
|V ′| ≤ k sinceJ contains a total of|V | + 3|E| + k vertices, and inJ there are3|E| vertices per edgee ∈ E (for
Re, Re,u, Re,v), and at least one vertex for eachv ∈ V . �

In Algorithm 5, we present a greedy heuristic for computing a well-formed join graph with small error. Algorithm
CoalesceJoinGraphs , in each iteration of the outermost while loop, merges the pair of vertices inJ that causes
the error to be minimum, until the error cannot be reduced any further by coalescing vertices. AlgorithmComputeSpace ,
is used to compute the average (Section 4.1) or maximum error (Section 4.2) for a join graph. Also, in order to ensure
that graphJ always stays well-formed,J is initially set to be equal to the set of all the individual join graphs for
queries inQ. In each subsequent iteration, only vertices for identical relations that have the same attribute sets and
preserve the well-formedness ofJ are coalesced. Note that checking whether graphJ ′ is well-formed in Step 10 of
the algorithm can be carried out very efficiently, in time proportional to the number of edges inJ ′. Well-formedness
testing essentially involves partitioning the edges ofJ ′ into equivalence classes, each class consisting ofξ-equivalent
edges, and then verifying that no equivalence class contains multiple edges from the same join query. Also, observe
that CoalesceJoinGraphs makes at mostO(N3) calls to ComputeSpace , whereN is the total number of
vertices in all the join graphsJ (Q) for the queries, and this determines its time complexity.
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Algorithm 5 : CoalesceJoinGraphs(Q,M)
Require: Q is query workload,M is available memory.
Ensure: Returns a well-formed join graphJ (Q).

1: J = ∪Q∈QJ (Q)
2: (m, err) = ComputeSpace(J,M )
3: flag= true
4: while (flag= true) do
5: cur err =∞
6: flag= false
7: for all pairs of verticesvi, vj in J such thatR(vi) = R(vj) andA(vi) = A(vj) do
8: Let J ′ be the join graph aftervi andvj are coalesced inJ
9: (m′, err′) = ComputeSpace(J ′,M )

10: if (err′ < cur err and J ′ is well-formed)then
11: cur err = err′

12: cur J = J ′

13: end if
14: end for
15: if (cur err ≤ err) then
16: err = cur err
17: J = cur J
18: flag= true
19: end if
20: end while
21: return (J , ComputeSpace(J,M ))

6 Experimental Study

In this section, we present the results of an experimental study of our sketch-sharing algorithms for processing multiple
COUNTqueries in a streaming environment. Our experiments consider a wide range ofCOUNTqueries based on the
TPC-H benchmark, and with synthetically generated data sets. The reason we use synthetic data sets is that these
enable us to measure the effectiveness of our sketch sharing techniques for a variety of different data distributions and
parameter settings. The main findings of our study can be summarized as follows.

• Effectiveness of Sketch Sharing.Our experiments with the TPC-H query workload indicate that, in practice,
sharing sketches among queries can significantly reduce the number of sketches needed to compute estimates. This,
in turn, results in better utilization of the available memory, and much higher accuracy for returned query answers.
For instance, for the TPC-H query set, the number of vertices in the final coalesced join graph returned by our sketch-
sharing algorithms decreases from 34 (with no sharing) to 16. Further, even withWQ = 1 (for all queriesQ),
compared to naive solutions which involve no sketch sharing, our sketch-sharing solutions deliver improvements in
accuracy ranging from a factor of 2 to 4 for a wide range of multi-query workloads.

• Benefits of Intelligent Space Allocation.The errors in the approximate query answers computed by our sketch-

sharing algorithms are smaller if approximate weight informationWQ = 8Var[X]
E[X]2 for queries is available. Even with

weight estimates based on coarse statistics on the underlying data distribution (e.g., histograms), accuracy improve-
ments of upto a factor of 2 can be obtained compared with using uniform weights for all queries.

Thus, our experimental results validate the thesis of this paper that sketch sharing can significantly improve the
accuracy of aggregate queries over data streams, and that a careful allocation of available space to sketches is important
in practice.
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Q1 1, 2 Q9 1 Q17 8, 9 Q25 2, 7
Q2 4, 5 Q10 6, 7 Q18 5, 9 Q26 1, 6
Q3 3, 4, 5 Q11 5, 8 Q19 6, 8 Q27 3, 8
Q4 4, 5, 8 Q12 10 Q20 7, 8 Q28 1, 2, 3
Q5 4, 5, 8, 9 Q13 4 Q21 8 Q29 2, 3, 4
Q6 2 Q14 3 Q22 6
Q7 5 Q15 3, 4 Q23 7
Q8 9 Q16 5, 8 Q24 2, 3

Table 1: Workload Queries.

6.1 Experimental Testbed and Methodology

Algorithms for Answering Multiple Aggregate Queries. We compare the error performance of the following two
sketching methods for evaluating query answers.

• No sketch sharing.This is the naive sketching technique from Section 2.2 in which we maintain separate sketches
for each individual query join graphJ (Q). Thus, there is no sharing of sketching space between the queries in the
workload, and independent atomic sketches are constructed for each relation, query pair such that the relation appears
in the query.

• Sketch sharing.In this case, atomic sketches for relations are reused as much as possible across queries in the
workload for the purpose of computing approximate answers. Algorithms described in Sections 4 and 5 are used to
compute the well-formed join graph for the query set and sketching space allocation to vertices of the join graph (and
queries) such that either the average-error or maximum-error metric is optimized. There are two solutions that we
explore in our study, based on whether prior (approximate) information on join and self-join sizes is available to our
algorithms to make more informed decisions on memory allocation for sketches.

• No prior information. The weights for all join queries in the workload are set to 1, and this is the input to our
sketch-sharing algorithms.

• Prior information is available. The ratio8Var(X)
E[X]2) is estimated for each workload query, and is used as the query

weight when determining the memory to be allocated to each query. We use coarse one-dimensional histograms
for each relational attribute to estimate join and self-join sizes required for weight computation. Each histogram
is given 200 buckets, and the frequency distribution for multi-attribute relations is approximated from the indi-
vidual attribute histograms by applying the attribute value independence assumption.

Query Workload. The query workloads used to evaluate the effectiveness of sketch sharing consist of collections of
JOIN-COUNT queries from the TPC-H benchmark. Figure 7 depicts a subset of the tables in the TPC-H schema, and
the edges represent the attribute equi-join relationships between the tables. We did not consider the tables NATION and
REGION since the domain sizes for both are very small (25 and 5, respectively). We consider three query workloads,
each consisting of a subset of queries shown in Figure 6.1. In the figure, each query is described in terms of the equi-
join constraints it contains; further, except for equi-join constraints, we omit all other selection conditions/constraints
from the query WHERE clause. The first workload consists of queriesQ1 throughQ12, which are the standard TPC-H
benchmark join queries (restricted to only contain equi-join constraints). In order to get a feel for the benefits of sketch
sharing as the degree of sharing is increased, we consider a second query workload containing all the queriesQ1 to
Q29. Observe that workload 2 contains a larger number of queries over the same relations, and so we expect to see
better improvements from sketch sharing for workload 2 compared to workload 1. Finally, workload 3 contains queries
Q6 to Q12 andQ28. We use this workload to demonstrate the accuracy gains obtained as a result of using non-uniform
query weights. In our experiments, we did not realize much benefit from taking into account approximate query
weights for workloads 1 and 2. This is because both workloads contain queries with large weights that are distributed
across all the relations. These heavy queries determine the amount of sketching space allotted to the underlying
relations, and the results become very similar to those for uniform query weights.
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Figure 7: Relations, join attributes and equi-join constraints for TPC-H schema.

Data Set. We used the synthetic data generator from [26] to generate the relations shown in Figure 7. The data
generator works by populating uniformly distributed rectangular regions in the multi-dimensional attribute space of
each relation. Tuples are distributed across regions and within regions using a Zipfian distribution with valueszinter

andzintra, respectively. We set the parameters of the data generator to the following default values: size of each
domain=1024, number of regions=10, volume of each region=1000–2000, skew across regions (zinter)=1.0, skew
within each region (zintra) =0.0–0.5 and number of tuples in each relation = 10,000,000.

Answer-Quality Metrics. In our experiments we use the square of the absolute relative error ((actual−approx)2

actual2 ) in
the aggregate value as a measure of the accuracy of the approximate answer for a single query. For a given query
workload, we consider both the average-error and maximum-error metrics, which correspond to averaging over all
the query errors and taking the maximum from among the query errors, respectively. We repeat each experiment 100
times, and use the average value for the errors across the iterations as the final error in our plots.

6.2 Experimental Results

Results: Sketch Sharing.Figures 8 through 11 depict the average and maximum errors for query workloads 1 and
2 as the sketching space is increased from 2K to 20K words. From the graphs, it is clear that with sketch sharing,
the accuracy of query estimates improves. For instance, with workload 1, errors are generally a factor of two smaller
with sketch sharing. The improvements due to sketch sharing are even greater for workload 2 where due to the
larger number of queries, the degree of sharing is higher. The improvements can be attributed to our sketch-sharing
algorithms which drive down the number of join graph vertices from 34 (with no sharing) to 16 for workload 1, and
from 82 to 25 for workload 2. Consequently, more sketching space can be allocated to each vertex, and hence the
accuracy is better with sketch sharing compared to no sharing. Further, observe that in most cases, errors are less
than 10% for sketch sharing, and as would be expected, the accuracy of estimates gets better as more space is made
available to store sketches.

Results: Intelligent Space Allocation. We plot in Figures 12 and 13, the average and maximum error graphs for
two versions of our sketch-sharing algorithms, one that is supplied uniform query weights, and another with estimated
weights computed using coarse histogram statistics. We considered query workload 3 for this experiment since work-
loads 2 and 3 have queries with large weights that access all the underlying relations. These queries tend to dominate in
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Figure 8: Average error (workload 1)
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Figure 9: Maximum error (workload 1)
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Figure 10: Average error (workload 2)
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Figure 11: Maximum error (workload 2)
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Figure 12: Average error (workload 3)
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Figure 13: Maximum error (workload 3)
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the space allocation procedures, causing the final result to be very similar to the uniform query weights case. But with
workload 3, queryQ29 has a considerably larger weight than other queries in the workload (since it has 3 equi-joins),
and so our space allocation algorithms are more effective and allocate more space toQ29. Thus, with intelligent space
allocation, even with coarse statistics on the data distribution, we are able to get accuracy improvements of upto a
factor of 2 by using query weight information.

7 Concluding Remarks

In this paper, we investigated the problems that arise when data-stream sketches are used to processmultipleaggre-
gate SQL queries concurrently. We provided necessary and sufficient conditions for multi-query sketch sharing that
guarantee the correctness of the result-estimation process, and we developed solutions to the optimization problem
of determining sketch-sharing configurations that are optimal under average and maximum error metrics for a given
amount of space. We proved that the problem of optimally allocating space to sketches such that query estimation
errors are minimized isNP-hard. As a result, for a given multi-query workload, we developed a mix of near-optimal
solutions (for space allocation) and heuristics to compute the final set of sketches that result in small errors. We
conducted an experimental study with query workloads from the TPC-H benchmark; our findings indicate that (1)
Compared to a naive solution that does not share sketches among queries, our sketch-sharing solutions deliver im-
provements in accuracy ranging from a factor of 2 to 4, and (2) The use of prior information about queries (e.g.,
obtained from coarse histograms), increases the effectiveness of our memory allocation algorithms, and can cause
errors to decrease by factors of up to 2.

References
[1] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. “Tracking Join and Self-Join Sizes in Limited Storage”.

In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Philade-
plphia, Pennsylvania, May 1999.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approximating the Frequency Moments”. In
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pages 20–29, Philadelphia, Pennsylvania,
May 1996.

[3] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom. “Characterizing Memory Requirements
for Queries over Continuous Data Streams”. InProc. of the 21st ACM Symposium on Principles of Database Systems,
Madison, Wisconsin, June 2002.

[4] Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. “Counting distinct elements in a data stream”.
In Proc. of the 6th Intl. Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM’02),
Cambridge, Massachusetts, September 2002.

[5] Moses Charikar, Kevin Chen, and Farach-Colton. Martin. “Finding Frequent Items in Data Streams”. InProc. of the Intl.
Colloquium on Automata, Languages, and Programming, Malaga, Spain, July 2002.

[6] Jianjun Chen, David DeWitt, Feng Tian, and Yuan Wang. “NiagaraCQ: A Scalable Continuous Query System for Internet
Databases”. InProc. of the 2000 ACM SIGMOD Intl. Conference on Management of Data, Dallas, Texas, May 2000.

[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to Algorithms. The MIT Press, Massachusetts,
1990.

[8] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. “Processing Complex Aggregate Queries over Data
Streams”. InProceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pages 448–459,
Seattle, Washington, June 1998.

[9] Pedro Domingos and Geoff Hulten. “Mining high-speed data streams”. InProceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 71–80, Boston, Massachusetts, August 2000.

[10] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. “An ApproximateL1-Difference Algorithm
for Massive Data Streams”. InProceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, New
York, NY, October 1999.

23



[11] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. “Querying and Mining Data Streams: You Only Get One Look”.
Tutorial in28th Intl. Conf. on Very Large Data Bases, Hong Kong, China, August 2002.

[12] Johannes Gehrke, Flip Korn, and Divesh Srivastava. “On Computing Correlated Aggregates over Continual Data Streams”.
In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara, California,
September 2001.

[13] Phillip B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event Reports”. InProc.
of the 27th Intl. Conference on Very Large Data Bases, Roma, Italy, September 2001.

[14] Phillip B. Gibbons and Srikanta Tirthapura. “Estimating Simple Functions on the Union of Data Streams”. InProceedings of
the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, Crete Island, Greece, July 2001.

[15] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss. “Surfing Wavelets on Streams: One-pass Sum-
maries for Approximate Aggregate Queries”. InProceedings of the 27th International Conference on Very Large Data Bases,
Roma, Italy, September 2000.

[16] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss. “How to Summarize the Universe: Dynamic
Maintenance of Quantiles”. InProc. of the 28th Intl. Conference on Very Large Data Bases, Hong Kong, China, August 2002.

[17] M. Greenwald and S. Khanna. “Space-efficient online computation of quantile summaries”. InProceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, Santa Barbara, California, May 2001.

[18] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. “Clustering data streams”. InProceedings of the 2000 Annual
Symposium on Foundations of Computer Science (FOCS), November 2000.

[19] Toshihide Ibaraki and Naoki Katoh.“Resource Allocation Problems – Algorithmic Approaches”. MIT Press Series in the
Foundations of Computing, 1988.

[20] Piotr Indyk. “Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Computation”. InProc. of the
41st Annual IEEE Symposium on Foundations of Computer Science, pages 189–197, Redondo Beach, California, November
2000.

[21] Gurmeet Singh Manku and Rajeev Motwani. “Approximate Frequency Counts over Data Streams”. InProc. of the 28th Intl.
Conference on Very Large Data Bases, Hong Kong, China, August 2002.

[22] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. “Efficient and Extensible Algorithms for Multi Query Optimiza-
tion”. In Proc. of the 2000 ACM SIGMOD Intl. Conference on Management of Data, Dallas, Texas, May 2000.

[23] Timos K. Sellis. “Multiple-Query Optimization”.ACM Transactions on Database Systems, 13(1):23–52, March 1988.

[24] Stefan M. Stefanov.Separable Programming, volume 53 ofApplied Optimization. Kluwer Academic Publishers, 2001.

[25] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. “Dynamic Multidimensional Histograms”. InProc. of the 2002
ACM SIGMOD Intl. Conference on Management of Data, Madison, Wisconsin, June 2002.

[26] Jeffrey Scott Vitter and Min Wang. “Approximate Computation of Multidimensional Aggregates of Sparse Data Using
Wavelets”. InProceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia,
Pennsylvania, May 1999.

24


