
Architectural Styles for Opportunistic Mobile
Communication: Requirements and Design Patterns

Davy Preuveneers
Department of Computer

Science
Katholieke Universteit Leuven

Celestijnenlaan 200A
B-3001 Leuven, Belgium

{davy.preuveneers,ansarulhaque.yasar,yolande.berbers}@cs.kuleuven.be

Ansar-Ul-Haque Yasar
Department of Computer

Science
Katholieke Universteit Leuven

Celestijnenlaan 200A
B-3001 Leuven, Belgium

Yolande Berbers
Department of Computer

Science
Katholieke Universteit Leuven

Celestijnenlaan 200A
B-3001 Leuven, Belgium

ABSTRACT
Mobile computing has been in the research epicenter for sev-
eral decades. We have seen drastic shifts with mobile com-
puting systems and wireless ad hoc networks dynamically
adapting to create co-operating nodes that provide the right
services at the right time. One aspect of such systems that
has been poorly addressed is the complexity of developing
applications for mobile users that require group interactions
in large scale networks, especially between people unfamil-
iar with one another but with similar goals. Such systems
need to know the type of social interaction, the context of all
participants and nodes in the network, and a proper archi-
tectural design to implement scalability up to city wide net-
works. In this paper, we analyze which architectural styles
and design patterns are the best suited the implement the
various interaction requirements. We address scalability for
interactions in large-scale networks from a software architec-
tural perspective and focus on event-driven service oriented
architectures to make the design of context-aware systems
for large-scale mobile interactions a less complex task.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering, selection pro-
cess.; H.3.5 [Information Storage and Retrieval]: On-
line Information Services—data sharing.; H.2.11 [Software
Engineering]: Software Architectures —patterns.

General Terms
Performance, Design.

Keywords
Context-Awareness, Publish-Subscribe, Event-Driven Archi-
tecture, Scalability.

1. INTRODUCTION
The growing presence of WiFi and 3G wireless Internet ac-
cess and sensor network technologies will give further rise
to the mobile computing paradigm. In a mobile computing
environment information and intelligent services will be em-
bedded in the environment around us, and large amounts
of data will circulate in order to create smart and proactive
environments that will significantly enhance both the work
and leisure experiences of people.

The problem that we want to address is the lack of proper
architectural support for developing applications that initi-
ate collaborations in social groups within mobile networks,
where the members of the group are unfamiliar with one an-
other but share the same goals. In this paper we propose
a context-driven reference architecture based on a combi-
nation of several architectural styles that are effective for
large-scale networks for mobile opportunistic communica-
tion. The issues related to the location awareness and pri-
vacy also arise while dealing with the large-scale networks,
but have not been addressed in detail in this paper as a lot
of research [6] has already been conducted in this domain.
’Large-scale interactions’ is a vague term that needs some
clarification. The concept is three-fold and assumes commu-
nication between at least two participants. The ’large-scale’
attribute can refer to (1) the distance between the partici-
pants, (2) the number of participants, and (3) the number
of messages transmitted between the participants. To fur-
ther explain how these aspects of interaction can become a
concern, we will considered them in terms two real life based
scenarios related to mobile human computer interaction; (i)
Geo-caching in a urban-based environment and (ii) Mobile
social networks at the airport.

A first scenario deals with mobile gaming and intertainment,
and explores the interactions within a geo-caching game:

Geo-caching can played in an intelligent environment by two
to tens of thousands people. Geo-caching can be played within
a small building or across the globe by quite a large number
of people thus involving a large-scale network. It is an en-
tertaining adventure game for GPS users. It is a good way
to take advantage of the wonderful features and capability of
a GPS device by participating in the cache hunt. The basic
idea behind the cache is that different people or organizations
setup caches all over the world and share the GPS coordi-

Nanang
Typewritten Text

Nanang
Typewritten Text

Nanang
Typewritten Text

Nanang
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. The International Conference on Mobile Technology, Applications & Systems 2008 (Mobility Conference), 10-12 September, 2008, Ilan, Taiwan. Copyright 2008 ACM 978-1-60558-089-0. $5.00.

nates over the internet. GPS users can then use the location
coordinates to find the caches. Once found, a cache may pro-
vide the visitor with a wide variety of rewards known as the
traditional cache or coordinates to another cache known as
the multi-cache or offset cache. In an intelligent environ-
ment the game can be made even more exciting by hiding
online puzzles that need to be solved to obtain clues or hints.

In this scenario the ’large-scale’ is mainly in terms of the
number of participants and the distance between the par-
ticipants as geo-caching can be played with any number of
people located across the globe. Different types of inter-
actions in this scenario either in the form of a query or a
message are listed as under:

1. Where are my team members?

2. Who can help me with this puzzle?

3. Send a clue to all players in this region.

4. How many people are participating in the game?

5. Which caches are currently active?

6. How far I am from a particular cache?

The second scenario deals with mobile social networks which
is another emerging field in the domain of mobile human
computer interactions.

Let us assume that there is a large Software Engineering con-
ference in Leuven in which more than 500 people are partic-
ipating from across the globe. Each of the participants uses
a different mode of transportation but we will only consider
the air route. The participants from several countries land
at the Brussels International Airport which is quite a large
and busy airport in Europe. It served approximately 48000
passengers everyday with different flights in 2007 [1]. Some
of the participants are planning to take a taxi to from the
airport to the conference centre, some of them want to meet
the persons speaking the same language or taking the same
flight to the same destination. The participants could share
a taxi with someone else going to the same place and in or-
der to help in reducing the cost. But on an airport with such
a huge traffic of people it is nearly impossible to find the
person with the same interest. It would be really nice if all
the persons boarding the same flight get notified about each
other or if everyone receives information about all the flights
departing and arriving at the airport or if they get notified
about all the facilities in their vicinity, etc.

Travellers can take part in different types of interactions, ei-
ther with other travellers or with people offering services in
the environment. Some of the interactions that the traveller
may initiate at the airport in this scenario include:

1. Where can I find a taxi? Is there one available?

2. Who is interested in sharing a taxi to this hotel?

3. Who is attending also the conference?

4. Who speaks my language?

5. Who is returning to the airport around that time?

6. When and at which gate will the boarding start?

Context-awareness is an important factor required in many
applications for ubiquitous and mobile computing and many
of these applications will run on computing devices that vary

from a traditional personal computer to smart handheld de-
vices like mobile phones, PDAs and other smart devices with
computing and communication capabilities. These comput-
ing devices are connected to various wired and wireless net-
works to assist us in our daily activities. The earlier work
in the area of context-awareness has mainly focused on the
location area networked (LAN) devices. However the net-
works are growing larger with time from a local area net-
work resident in a small office and home environment to
global wide area network (WAN) that cover whole cities or
even larger regions. Developing context-aware applications
that deal with such large networks is a complex undertak-
ing. We need guidelines for developing applications dealing
with large-scale interactions. This increases the demand for
a context-driven software architecture that can serve as a
reference to build context-aware applications for large-scale
interactions. There are several issues identified earlier [8]
while dealing with the large-scale networks, like scalability,
automatic discovery, fault tolerance and the heterogeneity
and dynamicity of the context sources. We will retreat these
issues in the architectural styles.

The need for the proper architectural support for large-scale
interactions arises while considering the scenarios mentioned
earlier. A context-driven architecture for large-scale net-
worked interactions can help in devising a solution that en-
ables a minimal quality of service by adapting to the needs
of the system and the users. For example, the need for
an immediate event notification to each of the participants
about a new clue in geo-caching or another conference par-
ticipant interested in sharing a taxi illustrate the need for
proper mobile data management in large scale ad hoc net-
works. The information should be filtered and only relevant
information should be transmitted in both the scenarios for
certain reasons later discussed in the paper. Evaluation of
the architecture based on the scenarios is presented later in
this paper. While reviewing the main architectural styles we
will also describe how they relate to the scenarios and also
to other examples in terms of large-scale interactions.

From above scenarios, we distill a list of requirements for
context-aware applications and software architectures that
target large-scale network scalability with a large number of
participants in section 2. We describe a number of relevant
architectural styles in section 3. Section 4 shows how various
architectural styles have been integrated into a single soft-
ware architecture that can serve as a reference design well
suited for large-scale networks. Evaluation of the scenarios
within the proposed suitable architectural style is presented
in section 5. We describe related work in section 6. We
conclude and propose future work in section 7.

2. REQUIREMENTS FOR LARGE-SCALE

CONTEXT-AWARE INTERACTION
Fueled by ongoing developments in mobile and ubiquitous
computing, context-awareness has attracted a lot of atten-
tion over the recent years to achieve non-intrusive behav-
ior on personal and multi-user systems in highly dynamic
environments. For example, a boarding warning notifica-
tion service at the airport will inform the mobile phone that
boarding will start soon. Although the network may not
be that large-scale, the service needs to address from all
the travellers at the airport those with a particular flight

Figure 1: Event-driven coordination in city-wide
network.

number and that are not already only located at their des-
ignated gate. It is clear that there are several requirements
to implement large-scale interactions. In this section we will
describe the most important requirements for scalability in
terms of network size, number of participants, and number
of messages.

2.1 Event-driven interactions
Event-driven coordination is required for notification by the
devices / users working in the large-scale networks for scal-
ability. If we take the scenario of sharing a taxi mentioned
in the previous section, all the persons at the airport could
get notified in case of an arriving taxi event. For exam-
ple, travelers could get detailed information about the bus,
train and the taxi going into the direction of the confer-
ence centre, or the person should get notified as soon as
there is another person interested in sharing a taxi to the
same place. The communication is mediated by the infras-
tructure. It typically involves asynchronous communication,
there is no channel topology and the relaying of the infor-
mation is based on the content and may address multiple
receivers at the same time.

In event-driven coordination processes raise events and an
event is delivered to the processes which subscribed their
interest to its specific type of events. The events can be
created whatever the current state of the system. An event
plays a role in the system until it is implicitly removed from
the system. An event has restricted visibility and suitable
in the large-scale environment i.e. it is only and exactly
available to the subscribed processes / users / devices.

2.2 Context-awareness
The term ”context” has been defined manifold by various re-
searchers [2] according to the situation. As we will focus on
large-scale interactions in terms of networks and number of
participants, we have taken into consideration how the term
context has been defined for these application areas. Con-
text is defined by [6] to be the set of environmental states
and interactions that either determines an application’s be-
havior or in which an application event occurs as that is of
interest to the user. It refers to the idea that the computing

devices can both sense and react based on their environment
and situation.

To address the network scalability aspect, we rely on tech-
niques that have already proven their usefulness for large
distributed systems for many years. Two of these tech-
niques include replication and caching. Replication is used
for availability and caching for performance and scalabil-
ity. A combination of both is indeed a requirement to sup-
port the large-scale networks to provide synchronization and
availability of information.

The objective of replication is to improve the quality of
service when people require continuous access to a partic-
ular service from various places in the large-scale network.
Therefore, we need a group of processes that handle incom-
ing events that trigger the replication of data or computa-
tion. In the case of data replication the processes maintain
the stored service data, reply to synchronization requests.
When we replicate computation (e.g. context-aware ser-
vices) the only goal is to achieve a higher fault-tolerance to
network disruptions by connecting to the nearest replicated
service.

Caching of shared context data over multiple nodes can help
in improving the performance of context-aware services. Not
only is this one of the major goals in a context-aware large-
scale network, but it also helps in fault-tolerance in case of a
failure. Both caching and replication provides synchroniza-
tion of information and services across multiple nodes in a
large-scale network. This will ensure that access to services
and information is available whenever required.

2.3 Scalability in mobile networks
In a large-scale network the number of nodes, users and
information flow can be enormous. In this situation a user
might only be interested in relevant piece of information
according to its contextual needs and the requirements.

Small scale devices cannot handle large amounts of events
or data. Context-aware filtering achieves considerable reduc-
tions in the transmission of data. In context-aware filtering,
the system takes into account whether the data that is cur-
rently being received from sensors/nodes are relevant within
the estimated range for the user’s current contextual posi-
tion and if it can be used or processed by the user’s device.
Thus context-aware filtering allows the flow of only relevant
information for the users / devices.

For example, context-aware filtering can play a vital role to
address the location-awareness of the nodes in a large-scale
network by the help of the past information. For example, in
the taxi scenario, we only would like to address nodes with
a particular destination. In the case of the geo-caching sce-
nario mentioned earlier, only members of a team need to be
made aware of any solution or hint one of its members may
have found. With multiple teams playing in multiple games,
each of the teams involved in a particular game should only
be notified with the information concerning to them. If we
refer to Figure 1 all the information being available in a
large-scale city-wide network should not be transmitted to
every node in the city rather it should be filtered and sent
accordingly to places, users or devices that consider the in-

Figure 2: Blackboard Architecture.

formation relevant for their own purposes.

2.4 Relevance feedback
The previous requirements are needed, but they are not fool-
proof. For example, caching is irrelevant at places where
nobody uses the information. In highly dynamic environ-
ments, context-aware filtering and event-driven notification
may not be sufficient.

Implicit or explicit relevance feedback is a requirement that
helps to decide whether information that is being distributed
is actually being used. Also, feedback may also help to see
which requests could not being addressed due to lack of in-
formation. It intends to improve a user’s query and assist
retrieval of information relevant to a user’s request. The
main idea is to take the returned results of the current re-
quest into account and to decide that whether the obtained
information is relevant or not. If not, the filtering may need
to be adapted or the relevant information should be repli-
cated at other places. As such, relevance feedback is another
very important aspect that helps to improve the quality of
service for a user in a large-scale network where the informa-
tion is in enormous quantity and only relevant information
is required.

3. ARCHITECTURAL STYLES
There are several architectural styles / patterns suitable for
specific large scalability scenarios. We investigated several
architectural styles because there is no single architectural
style that can handle all the issues mentioned earlier in sec-
tion 1, so we propose a combination of architectural styles
for large-scale interactions.

3.1 Blackboard architecture
Blackboard models have been widely used as a particular
kind of problem solving model [4]. The blackboard model
allows multiple independent nodes to share information in a
central store known as the blackboard. Figure 2 represents
the blackboard model.

For example, the blackboard architecture could be used as a
shared message board in the taxi scenario. A person could
use it to inform other travelers about his whereabouts and
travel destinations. It could also be used as a traffic infor-
mation system to inform any other related information.

However, blackboard models are difficult to test, no good so-
lution is guaranteed, difficulty of establishing good control

Figure 3: Peer-to-Peer Architecture.

Figure 4: Pipes and filters Architecture.

strategy and no support for parallelism [4]. There is a fair
chance of a bottle neck as well in the case of enormous num-
ber of nodes. Thus, the blackboard architectural pattern
alone is not suited for supporting a large-scale network.

3.2 Peer-to-peer architecture
Another architectural pattern that is used to share informa-
tion is known as the peer-to-peer architecture as shown in
Figure 3.

In a peer-to-peer architectural style each of the participating
nodes collaborates in such a manner that they have a direct
communication channel in between. This type of architec-
tural style is not very well suited for large-scale networks as
the performance degrades with the increase in the partici-
pating nodes.

3.3 Pipes and filters architecture
Pipes and filters is another type of the architectural style as
shown in Figure 4. This is a well known architectural style
for the data stream oriented processing [6]. Each processing
step is implemented as a filter. In pipes and filters each
node has a set of inputs and outputs. A component reads
a stream of data as input produces a stream of data as its
output [6]. The stream of information is passed through the
pipes in between the filters and the sink. The data after
passing through a series of pipes and filters reaches the sink.

This architectural style can be used in the geo-caching sce-
nario. For example, a member of team A in Belgium has
solved a puzzle and gained a hint that is relevant for his col-
league(s) in France. This means that the information flow
should be filtered on place and addressees.

Figure 5: Service-oriented Architecture.

Some of the advantages of the pipes and filters architecture
are [4]; (i) filters can be exchanged flexibly, (ii) filters can
be reused, (iii) parallel processing support and (iv) filters
are isolated from each other. Some of the disadvantages are
[4]; (i) sharing state information is expensive, (ii) parallel
processing in real sense cannot be achieved as some of the
filters may need all the inputs before producing an output
and (iii) there is an overhead in the data transformation.
Thus, making the architecture not well suited to support
the large-scale networks.

3.4 Service oriented architecture
Service-oriented architecture is another popular type of ar-
chitectural style as shown in Figure 5. In the service-oriented
architecture the functionality is divided into smaller units
known as services and distributed over a network. The ser-
vices communicate with each other by passing data from one
service to another.

Service-oriented architecture has loosely coupled interactions
i.e. the services are invoked independent of their technology
and location, has one-to-one communication where one spe-
cific service is invoked by one consumer at a time and is
synchronous.

3.5 Event driven architecture
Event driven architecture is another important type of ar-
chitectural styles. It deals with the production, detection,
consumption and reaction of events and it complements the
service-oriented architecture. An event can be a significant
change in the state. It is shown in Figure 6.

Event driven architecture consists of event producers and
event consumers. Event producers and consumers are sub-
scribed to an event manager. Whenever an event manager
receives an event from the producer the manager forwards
the event to consumer. Event driven architecture uses mes-
saging also known as store-and-forward, to communicate
among two or more processes. A major advantage of event
driven architecture over service-oriented architecture that it
has decoupled interactions in which event publishers are not
aware of the existence of the event subscribers. Moreover, it
provides many-to-many communication in an asynchronous
way which makes it very well suited for notification applica-
tions.

4. ARCHITECTURE FOR LARGE-SCALE

INTERACTIONS
A combination of event driven, service-oriented, pipes and
filters and blackboard architectural styles can result in an
architectural pattern which is well suited for the large-scale
interactions. These three architectural styles have already
been explained in the previous section.

Figure 6: Event Driven Architecture.

The combination of the architectural styles will enable the
asynchronous and synchronous communication, interactions
between one-to-one, one-to-many and many-to-many com-
munication, location-awareness and privacy in large-scale
networks. The architectural style is shown in Figure 7. The
peer-to-peer architectural style is not explicitly shown in this
figure as a way for nodes to communication with one another
but it could serve the purpose of relaying events to other in-
frastructures.

In this architectural style the Location-aware node is serv-
ing as a location based server to which all the other nodes
publish their location information and the same information
can be used by the other nodes. This concept is related to
the blackboard architectural style. There is a privacy man-
agement node which is also acting as a privacy server. This
server will not reveal the identity of a particular node to an-
other node interested in communication until both the par-
ties accept the communication. Platform for Privacy Pref-
erences (P3P) is the suggested [7] solution to be used for
handling the privacy issue. The communication is bidirec-
tional where a node can request a service from a particular
node through message passing and one service can be called
by many subscribers.

5. EVALUATION
As the main topic of this paper is about large-scale inter-
actions we evaluate the proposed architecture in terms of
scalability and flexibility. Therefore, we have chosen not to
evaluate the proposed architecture in terms of performance
or network throughput but rather in terms of design and sim-
plicity. The evaluation will be carried out from a qualitative
perspective rather than from a quantitative perspective and
this with the scenarios in mind.

5.1 Evaluating the Urban-based gaming sce-

nario
Urban based gaming: Geo-caching can be played world wide
as explained earlier in the previous section 2.1. Let’s as-
sume that 500 people in groups of 5 from all over the globe
are playing for a multi-cache finally located in La Plagne,
France. All of them are equipped with GPS enabled PDA’s
/ cell phones. Traditionally the participants are unaware of
the total participants in a particular cache and the cache is
always some physical entity.

Figure 7: Context-driven Architecture for Large-scale Interaction - a combination of Black-
board/SOA/EDA/Pipes and filters.

But using our context-driven architecture for large-scale net-
works all the participants are notified about total number of
participants looking for a particular cache, when a new par-
ticipant joins or an old participant leaves a particular cache.
The cache can also be either a physical or virtual entity.
For example the participants have to find such a spot near
some ski resort where they get notified of either the next
coordinates or the virtual cache.

Only the participants playing as a team gets notifications
about the location information of all the team members. If
one of the team members get a cache / hint it is automat-
ically being transmitted to other team members for infor-
mation or action. Our context-driven architecture supports
multi cache geo-caching played among a large group of peo-
ple in new fashion.

5.2 Evaluating the Mobile social networks sce-

nario
The second scenario is also an interesting scenario for in-
formation sharing at Brussels International Airport. The
participants for the conference in Leuven arrive at the air-
port. All of them have scheduled their conference plans. The
ones planned to take a taxi from the airport to the confer-
ence venue; a message gets posted automatically according
to the context anonymously over the network to the other
participants with the same interest. All the participants go-
ing to the same conference and planning to take a taxi at the
airport gets notified. If one or more participants are inter-
ested in sharing a taxi then as they accepts the message all
the interested participants gets notified about each other’s
identity information. Information about a nearest meeting
point is also sent automatically for all the interested par-
ticipants. The information about the facilities available at
the airport is being sent to all the interested persons waiting
at the airport or the flight information is being transmitted
over to everyone at the airport. If someone wants to meet
the person speaking the same language or taking the same

flight he/she must be notified about it upon request.

Our context-driven architecture for large-scale networks sup-
ports the scenario for taxi sharing. It can easily handle the
issues of context-driven messaging between the people with
common interests at a particular place. It also caters the
privacy and location-awareness issues.

5.3 Applying other architectural styles
There are many other architectural styles that have not been
discussed in this paper. The reason for this is that they may
have not matured yet to be used in real life scenarios. For
example, two of these styles are search-oriented architecture
and shared nothing architecture.

Search-oriented architecture is a new architecture for the
search engines. In it the data tier may be replaced by an-
other tier which contains a search engine and search en-
gine index which is queries in-place of the database manage-
ment system. The search engine itself crawls the relational
database management systems along with conventional data
sources such as web pages or conventional file systems. This
architecture increases the response time of the system like a
search engine.

Shared nothing architecture is a distributed computing ar-
chitecture where each node is independent and self-sufficient
and there is no single point of conflict across the system.
Shared nothing architecture is currently popular in web de-
velopment due to its scalability which is also an important
factor in the domain of large-scale networks.

6. RELATED WORK
In [8] the authors discuss the concern of having a large-scale
multitude of context sources that continuously publish that
contextual information. Another concern that they investi-
gated for context-awareness in wide area environments is the
presence of even more clients that search for and consume

this context information. Many protocols do not address the
unique challenges of such environments. The authors sum-
marize scalability, fault tolerance, heterogeneity, dynamicity
and automated discovery as key challenges for large scale in-
teractions.

The pipe-and-filter architectural style is also discussed in [6]
to design and implement a large-scale context fusion net-
work. They have demonstrated the effectiveness of this
architectural pattern with various applications for smart
spaces and emergency response.

In [7] the authors discuss location management system to
gather process and manage location information from a va-
riety of physical and virtual location sensors. They discuss
scalability in terms of a large numbers of sensors and a large
number of clients. They also address distribution of location
information through the network.

In [10] the authors discuss large-scale networks and the use
of data replication as a solution for greater scalability in
wide area networks. They base their research on top of con-
tent addressable networks to achieve the centralized object
locating and routing. The authors also propose analytical
approach to examine their system techniques in the absence
of actual large-scale deployments.

The service-oriented architectural style is also discussed in
[9] to facilitate service discovery composition and verifica-
tion by taking into consideration the requesters context to
enhance the precision of request service match making.

The use of event driven middleware for context-awareness
in mobile computing has been discussed in [5]. The authors
propose an event model that provides a highly composable
event notification framework that uses multiple levels of en-
vironments monitors to provide a complex setup of compos-
ite events.

The importance of caching context information has also been
addressed in [3]. As disconnections between nodes in large-
scale networks may occur due to nodes mobility, the au-
thors discuss smart caching algorithms that improve the
traditional methods for distributed systems by using vari-
ous kinds of meta-data.

7. CONCLUSION AND FUTURE WORK
In this paper we have proposed an architectural design for
context-aware systems that target large-scale interactions.
We have discussed how large-scale interactions can reflect
itself in terms of number of participants, distance between
participants and size of the network. In order to cover these
challenging concerns we have studied and analyzed various
architectural styles with respect to these scalability aspects.
We finally proposed an architectural style that integrates
four different architectural styles with a proven track record
in the software engineering domain. Combined they offer
the required flexibility to implement context-aware appli-
cations in four various mobile human computer interaction
scenarios.

For further research into this domain we are planning to look
into further upcoming architectures like search-oriented and

shared nothing architecture. The distinction between the ar-
chitectures are not clear so we will further investigate that
how these architectures can map onto our reference archi-
tecture proposed earlier. After a detailed study we might
enhance our reference architecture with some interesting fea-
tures of the studied architectures.

We are also planning to work on a modeling tool support for
high design without dealing with the implementation issues.
This will enable us to design before we can implement. Later
on we can see how these modeling tools simplify development
for the large-scale networks.

8. REFERENCES
[1] Brussels airport, 2008.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. In
HUC ’99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing,
pages 304–307, London, UK, 1999. Springer-Verlag.

[3] M. Anandarajah, J. Indulska, and R. Robinson.
Caching context information in pervasive systems. In
MDS ’06: Proceedings of the 3rd international
Middleware doctoral symposium, page 1, New York,
NY, USA, 2006. ACM.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-oriented software
architecture: a system of patterns. John Wiley & Sons,
Inc., New York, NY, USA, 1996.

[5] . A. T. S. Chan, S.-N. Chuang, J. Cao, and H.-V.
Leong. An event-driven middleware for mobile context
awareness. In The Computer Journal, 2004.

[6] G. Chen, M. Li, and D. Kotz. Design and
implementation of a largescale context fusion network.
In Proceedings of the First Annual International
Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous), 2004.

[7] J. Indulska, T. McFadden, M. Kind, and
K. Henricksen. Scalable location management for
context-aware systems, 2003.

[8] Y. Liu and K. Connelly. Towards wide area
context-aware environments. In PERCOMW ’06:
Proceedings of the 4th annual IEEE international
conference on Pervasive Computing and
Communications Workshops, page 616, Washington,
DC, USA, 2006. IEEE Computer Society.

[9] S. J. H. Yang, B. C. W. Lan, and J.-Y. Chung. A new
approach for context aware soa. In EEE ’05:
Proceedings of the 2005 IEEE International
Conference on e-Technology, e-Commerce and
e-Service (EEE’05) on e-Technology, e-Commerce and
e-Service, pages 438–443, Washington, DC, USA,
2005. IEEE Computer Society.

[10] B. ZHAO, A. JOSEPH, and J. KUBIATOWICZ.
Localityaware mechanisms for large-scale networks,
2002.

