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ABSTRACT
Recently we have shown how a blind source extraction (BSE) al-
gorithm can be equipped with some prior information about mixing
parameters of the desired source in order to extract this source. The
prior information, which may contain errors, is used to construct a
matrix from linear combinations of correlation matrices. The extrac-
tion filter is easily obtained from the specific eigenstructure of this
matrix.

Here we project the beamformer design problem onto the above
mentioned BSE algorithm by parameterizing the mixing system. We
show in three ways that the proposed method is efficient and flexible.
First, with one procedure an LCMV and MVDR beamformer can be
obtained. Second, by taking only two appropriate linear combina-
tions of correlation matrices, which may be interpreted as selection
beamformers, the desired source can be selected. Third, selection
beamformers can be designed for a subset of sensors while the final
beamformer exploits data from all sensors.

Index Terms— Beamforming, blind signal extraction, second
order statistics, prior information, direction of arrival

1. INTRODUCTION

During the last decades, beamformers have been designed for sev-
eral sensor array signal processing applications, each with different
characteristics such as fixed, adaptive, and blind beamformers [1, 2].

We focus on an intermediate approach where we incorporate
available prior information into a blind signal processing (BSP)
framework, which leads to a source extraction algorithm. Typically,
in a BSP scenario the order in which sources are extracted is un-
known because of a permutation indeterminacy [3]. To tackle this
problem we suggest to incorporate information about the desired
source into a blind source extraction (BSE) algorithm such that
directly the desired source can be extracted [4]. A strength of this
method is that the extraction filters are independent from errors in
the a priori information that is used, as long as the desired source is
selected. In the context of blind beamforming especially the work in
[4] is interesting since it exploits prior information about the mixing
parameters of the desired source.

The contribution of this work is threefold. First, we general-
ize the work from [4] such that the algorithm can handle complex
mixtures and signals. Second, we show that two types of extrac-
tion filters can be obtained. Typically, an extraction filter has the
requirement that the contribution of all undesired sources has to be
zero, which corresponds to a linear constraint minimum variance
(LCMV) extraction filter or beamformer. We show that with the
same procedure and similar effort also a minimum variance distor-
tionless response (MVDR) solution can be obtained. The MVDR
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Fig. 1. Model of the BSE problem where D sensors observe S latent
source signals that are mixed by a complex mixing system A. An ex-
traction filter w that extracts the desired source has to be identified;
therefore, prior information about the desired source is required.

extraction filter or beamformer has the requirement that the desired
source is extracted without distortion while the output power is min-
imized, i.e., a tradeoff between interference and noise reduction is
made. Third, the beamformer design problem is projected onto the
BSE problem by parameterizing the mixing system. Exploiting this
parametrization we are able to improve the efficiency and flexibility
of the proposed method. In [4] linear combinations of correlation
matrices are taken based on an a priori guess of the mixing param-
eters that correspond to the desired source. The number of linear
combinations that have to be taken is depending on the number of
sources. In this work we show that a linear combination can be in-
terpreted as a selection beamformer. By choosing two appropriate
selection beamformers, based on the parameterized structure of the
problem and a guess of the direction of arrival (DOA) of the desired
source, we are able to identify the desired LCMV and MVDR beam-
formers. These selection beamformers can even be designed if the
positions of only a subset of sensors are available, which leads to
linear combinations of only a few correlation matrices.

The structure in this work is as follows. In Section 2 we gener-
alize the BSE algorithm from [4] to complex mixtures. In Section 3
we project the beamformer design problem onto the BSE algorithm.
In Section 4 the validity of this method is illustrated by means of a
computer simulation. Finally, in Section 5 conclusions and sugges-
tions for future research are given.

2. BSE FOR COMPLEX MIXTURES

2.1. Model and assumptions

A model of the BSE problem is depicted in Figure 1. The D ob-
served sensor signals x1, · · · , xD contain complex mixtures of S,
possibly complex, source signals s1, · · · , sS and may be contami-
nated by additive noise. The relation between the observed sensor
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signals and the source signals is as follows:

x[n] = As[n] + ν[n] =
S∑

j=1

a
jsj [n] + ν[n] ∀n ∈ Z (1)

where the column vectors x[n] =
[
x1[n], · · · , xD[n]

]T
, s[n] =[

s1[n], · · · , sS [n]
]T

, and ν[n] =
[
ν1[n], · · · , νD[n]

]T
contain re-

spectively the sensor, source, and noise signals at discrete time in-
dex n with a sampling rate such that no aliasing occurs. The complex
mixing system is represented by the matrix A =

[
a1, · · · ,aS

]
from

which mixing column vector aj =
[
aj
1
, · · · , aj

D

]T
corresponds to

source j for j ∈ [1, S], with (·)T representing a transpose without
conjugation. In this work, without loss of generality, we assume to
have the same number of sensors as sources for simplicity; however,
we keep using the symbols D and S for transparency.

The assumptions on the second order statistics (SOS) of the sig-
nals are the same as in [4], i.e., the source signals are assumed to be
uncorrelated w.r.t. each other and w.r.t. the noise signals. Addition-
ally, we assume to know a noise-free region of support (NF-ROS),
which consists of correlation time-lag pairs for which only the source
signals are correlated [4, 5]. Finally, we assume that the source au-
tocorrelation functions are linearly independent in the NF-ROS. For
a mathematical description of these assumptions we refer to [4].

The objective is to identify a filter w that extracts the desired
source signal from the observations. The relation between the output
of the extraction filter y[n] and the observed signals is

y[n] = w
H
x[n] = w

H
As[n] +w

H
ν[n] (2)

where (·)H represent the Hermitian transpose.
Notation in this paper is as follows. Matrices and vectors are

represented by bold, upper case and lower case letters such as matrix
A and vector w, respectively. A matrix can be decomposed in its
row and column vectors. In order to distinguish between the row
and column vectors of a matrix we use sub- and superscript indices,
respectively. Thus, the j in aj tells us that the vector represents the
j’th column of the matrix A. Similarly, both sub- and superscript
indices are used together to represent a single element in a matrix,
i.e., the element in row i and column j of matrix A is aj

i . The
symbol for the imaginary unit is j =

√−1 and (̄·) represents a
complex conjugate. Further notation is addressed at occurrence.

2.2. Identifying extraction filters

The extraction algorithm uses the following set of sensor correlation
matrices:

C
x
i =

⎡
⎢⎣
rxi1[Ω1] rxi1[Ω2] · · · rxi1[ΩK ]

...
...

. . .
...

rxiD[Ω1] rxiD[Ω2] · · · rxiD[ΩK ]

⎤
⎥⎦ ∀ i ∈ [1, D] (3)

where the sensor correlation function for time-lag pair Ωκ =
{n, k}κ is defined as follows:

rxiii2 [Ωκ] = E {xi1 [n]x̄i2 [n− k]} ∀ 1 ≤ i1, i2 ≤ D (4)

where E is the mathematical expectation operator.
Since the correlation functions are evaluated in the NF-ROS we

obtain the following noise-free structure in the correlation matrices:

C
x
i = Ā diag (ai)C

s ∀ i ∈ [1, D] (5)

where Ā is the D × S conjugate without transpose mixing matrix,
diag (ai) is an S×S matrix with the elements of the i’th row vector
of the mixing matrix on the diagonal, and Cs is the S × K source
autocorrelation matrix with the following structure:

C
s =

⎡
⎢⎣
rs11[Ω1] rs11[Ω2] · · · rs11[ΩK ]

...
...

. . .
...

rsSS [Ω1] rsSS [Ω2] · · · rsSS [ΩK ]

⎤
⎥⎦ (6)

If the source autocorrelation functions are linearly independent in the
NF-ROS and the number of time-lag pairs K is larger than or equal
to the number of sources S then the source autocorrelation matrix
has full row rank, which is required later on. We assume from now
on that the number of time-lag pairs equals the number of sources,
i.e., K = S; otherwise, if K > S then reduction techniques can be
used [5, 3]. For K < S the problem is underdetermined and cannot
be solved using these techniques.

The identification of the desired extraction filter is based on joint
diagonalization of linear combinations of correlation matrices. Lin-
ear combinations of correlation matrices from (3) are defined as

Γl =
D∑
i=1

ξliC
x
i with ξ

l =
[
ξl1 · · · ξlD

]T ∀ l ∈ [1, L] (7)

The column vectors ξl for l ∈ [1, L] are used to calculate the l’th
linear combination of correlation matrices. Later we show how to
choose these vectors and benefit from their degrees of freedom.

The structure of a linear combination of correlation matrices is
quite similar to (5), i.e.,

Γl = Ā diag
([
α1

l · · · αS
l

])
C

s (8)

where αj

l = 〈ξl,aj〉 � ∑D

i=1
ξ̄lia

j
i .

Under the assumption that the source autocorrelation matrix is
real, which can be accomplished for stationary complex sources by
averaging the sensor correlation functions for the same positive and
negative lag, we use the eigenvalue decomposition of the following
matrix M to identify extraction filters:

M =
L∑

l=2

Γ̄l (Γ1)
−1

Γl

(
Γ̄1

)−1 ≡ AΛ (A)−1 (9)

where Λ is a diagonal matrix containing the following eigenvalues

λj =

∑L

l=2

∣∣αj

l

∣∣2
∣∣αj

1

∣∣2 with αj

l =
〈
ξ
l,aj

〉
(10)

and the equivalence follows from the structure in (8).
From (9) it follows easily that the left eigenvectors correspond to

the rows from the inverse of the mixing matrix, while the right eigen-
vectors correspond to columns of the mixing matrix. This means that
the LCMV solution is found if we select the appropriate left eigen-
vector. For the MVDR solution we have to select the appropriate
right eigenvector and minimize the output power over the space that
is orthogonal to the direction of that eigenvector.

With this identification procedure two inevitable indetermina-
cies known from blind signal processing show up. First, the eigen-
vectors can be identified up to an unknown scaling. In this work we
deal with this scaling indeterminacy without using additional prior
information by normalizing either the extraction filter length or the
output power. Second, the identified eigenvectors are ordered ar-
bitrarily. This means that we do not know which filter belongs to
which source. In order to deal with this permutation problem some
additional prior information is required.
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2.3. Selecting the desired extraction filter

From Section 2.2 it follows that two types of BSE problems can be
solved by performing an eigenvalue decomposition on the matrix
M from (9). What follows as well is that eigenvector μm, i.e., the
eigenvector that extracts the j’th source, has a corresponding eigen-
value λm that is only depending on the mixing column of source j
and the vectors to take linear combinations. For the eigenvalues it
holds thus that λm = λ(aj , ξl) for a single j and all l ∈ [1, L].

By choosing the vectors ξl for l ∈ [1, L] based on prior informa-
tion about the mixing column that corresponds to the desired source
we can characterize the eigenvalue that corresponds to the desired
source. By calculating its corresponding eigenvector we obtain the
desired extraction filter.

Suppose we have a guess â of the mixing column ad that cor-
responds to the desired source sd[n], with d ∈ [1, S], for which the
following condition holds:

∣∣〈â,ad
〉∣∣

||ad|| >

∣∣〈â,aj
〉∣∣

||aj || ∀ 1 ≤ j 	= d ≤ S (11)

This condition means that the angle between the guessed mixing col-
umn and each true mixing column has to be the smallest for the de-
sired mixing column; in other words, the guessed mixing column has
to be a ‘good’ guess.

If we now choose the vector ξ1 in the direction of the guessed
mixing column with length one, i.e., ξ1 = â/ ||â||

2
and we choose

D − 1 vectors ξ2, · · · , ξD such that the L = D vectors together
form an orthonormal basis, i.e., 〈ξl1 , ξl2〉 = δl2l1 , then we know that
the smallest eigenvalue of the matrix M corresponds to the desired
source.

Proof. The mixing column vectors aj for j ∈ [1, S] can be decom-
posed in terms of the basis vectors, i.e., aj =

∑D

l=1
αj

l ξ
l where

αj

l = 〈ξl,aj〉. From (11) it follows that
∣∣αj

1

∣∣ has the largest value
for the desired source, i.e., j = d, if all mixing columns are normal-
ized, which we may assume because of the scaling indeterminacy.
The eigenvalues from (10) can be rewritten as follows:

λj =

∑L

l=2

∣∣αj

l

∣∣2
∣∣αj

1

∣∣2 =

∣∣∣∣aj
∣∣∣∣2

2
− ∣∣αj

1

∣∣2
∣∣αj

1

∣∣2 (12)

Because we know that
∣∣αj

1

∣∣ has the largest value for the desired
source, i.e., j = d, it follows that the numerator and denominator in
(12) have respectively the smallest and highest value for the desired
source. This means that the smallest eigenvalue of M corresponds
to the desired source.

One of the main advantages of this approach is that the prior
guess is not required to be exact. Deviations from the actual mixing
column are allowed and the limitations are fully specified by (11).

3. BEAMFORMER DESIGN AS A BSE PROBLEM

It follows from the previous sections that the generalization from
the BSE algorithm for real mixing scenarios [4] to a complex
mixing scenario algorithm is a natural procedure. Instead of trans-
forming every facet of previous work we map the beamformer
design problem onto the complex BSE algorithm and illustrate
that an improved efficiency and increased flexibility compared to
the non-parameterized algorithm can be obtained by exploiting the
parameterized structure.

3.1. Mapping beamformer design onto BSE

In a beamforming context only the direction of arrival (DOA) gives
information for far field sources, which is represented by the angle
θj for j ∈ [1, S]. This DOA is used in a unit length, two dimensional
vector qj that points from the source into the direction of the sen-
sor array. The positive x-axis and y-axis correspond to 0◦ and 90◦,
respectively. This means that the DOA information vector is given
as qj = q(θj) =

[− cos θj − sin θj
]T

for j ∈ [1, S]. A guessed

DOA of the desired source is represented by θ̂ and vector q̂ = q(θ̂).
Based on these assumptions the mixing column vectors are array

response vectors, i.e., aj = a(θj) for j ∈ [1, S] with elements

aj
i = ai(θj) = exp (−j 2π p

T
i q(θj)) (13)

where pi for i ∈ [1, D] are frequency-normalized sensor positions,
i.e., the physical sensor positions divided by the wavelength.

Suppose that we have a guess θ̂ of the DOA θd of the desired
source. In beamformer design, errors in the guess θ̂ is dealt with
by diagonal loading or designing with uncertainty, which leads to a
performance degradation [2]. If (11) holds for array response vector
a(θ̂), then we can choose ξ1 = a(θ̂)/||a(θ̂)||2 and D− 1 orthonor-
mal vectors ξl for l ∈ [2, D], which follows from Section 2.3. Us-
ing this procedure we identify the optimal beamformer independent
of errors. Although the restriction in (11) seems rather complex, it
becomes clearer when we interpret the vectors ξl as selection beam-
formers. The beampattern of selection beamformer ξl is as follows:

B(ξl, θ) =
∣∣∣〈ξl,a(θ)〉

∣∣∣ =
∣∣∣(ξl)Ha(θ)

∣∣∣ ≡ |αl(θ)| (14)

Using this interpretation the restriction in (11) implies that the gain
of selection beamformer ξ1 has to be higher for the DOA of the
desired source than for the DOAs of the other sources. We use this
interpretation to increase the efficiency and flexibility of the method.

3.2. Exploiting the parameterized structure

If we take only two linear combinations of correlation matrices then
the eigenvalues of M as function of DOA angle θ become the ratio
of two selection beampatterns, i.e.,

λ(θ) =

∣∣∣∣∣
〈
ξ2,a(θ)

〉
〈
ξ1,a(θ)

〉
∣∣∣∣∣
2

=
B2(ξ2, θ)

B2(ξ1, θ)
(15)

If the following requirements hold for the selection beamformers: 1)
ξ1 has the highest gain for θ̂, 2) ξ2 has the lowest gain for θ̂, and
3) ξ1 and ξ2 have symmetric and monotonically decreasing and in-
creasing beampatterns, respectively, then we know that the smallest
eigenvalue corresponds to the source with a DOA closest to θ̂.

Of course, more advanced selection beamformers may be de-
signed in order to select the desired source based on more advanced
prior information about the DOAs of the desired and undesired
sources. For example asymmetry in the selection beamformers can
be incorporated to prefer an error on the left over an error on the
right w.r.t. the guessed DOA.

However, here we suggest the design of selection beamformers
that increase the efficiency of the method by using only a subset of
the sensors from the sensor array. If for example the positions of
only two sensors are known, then the selection beamformers can be
designed for these two sensors. Subsequently, linear combinations
of correlation matrices containing the data of all sensors are used to
identify the final LCMV or MVDR beamformer. As a result, always
the optimal beamformer for all sensors is identified even if prior in-
formation is available for only a subset of sensors.
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Fig. 2. Simulation results for the LCMV and MVDR objectives. Red crosses represent the sensor positions, spokes represent the DOAs of
the sources, and the guessed DOA was θ0 = 30◦. In (a) the selection beampatterns are depicted. The beampatterns in (b) and (c) are based
on: two selection beamformers, linear combinations of three orthonormal vectors, and the optimal beamformer.

4. SIMULATION RESULTS

We illustrate the proposed method by means of a computer simu-
lation. In the example scenario we assume that S = 5 far field,
autoregressive sources, with different temporal structure and DOAs
−175◦, −55◦, 22◦, 42◦, and 127◦, are observed by D = 5 sensors.
The sensor array setup is depicted as the red crosses in Figure 2 and
the DOAs are represented by red spokes. Three sensors are placed
as a circular array with mutual distance over wavelength of 1/4 and
two sensors are placed at ±0.8 in the x-axis direction. This means
that spatial aliasing occurs for these two microphones.

From now on we assume that only the positions of the three sen-
sors from the circular sub-array are known. With traditional beam-
forming techniques it is then only possible to use these three sensors
to build a beamformer from the parameterized model. We show that
with our method the desired LCMV and MVDR beamformer for
five sensors can be extracted from a mixture of five sources using
the DOA guess θ0 = 30◦ for only the sensors in the circular array.

Simulation results are depicted in Figure 2. We designed the
smooth beamformers for the sub-array as

[
ξ1 ξ2

]
= (

[
â(θ0) â(−θ0)

]†
)H (16)

with (·)† the Moore-Penrose pseudoinverse for which the beampat-
terns are depicted in Figure 2a. In Figure 2b and Figure 2c the
LCMV and MVDR problems are solved, respectively. In each fig-
ure the first beamformer is designed by using two selection beam-
formers, the second beamformer is designed from three orthonor-
mal vectors, and the third beamformer is the optimal beamformer
calculated from the simulation setup having all information. White
Gaussian noise signals were used, which had a power per sensor of
rνii[0] = 0.01; therefore, the NF-ROS was chosen as lags 1 up to 3.

We observe from the simulations that both techniques presented
in this work select the desired source at 22◦ and find the optimal
LCMV and MVDR beamformers that extract the desired source
from noisy observations based on an a priori guess about the DOA
of the desired source. Because of errors in the estimation of the cor-
relation data the beamformers are not exactly the same. In order to
discuss the extraction performance in terms of signal to noise ratio a
more extensive performance study is required where also reduction
techniques [5, 3] are incorporated; however, this was not the focus
of this work.

5. CONCLUSIONS

We generalized the BSE algorithm for real mixtures such that it can
deal with complex mixtures of complex signals. We have shown
that based on an a priori guess of the mixing column of the desired
source the desired beamformers can be found for two well known
objectives, i.e., the LCMV and MVDR beamformers. An advantage
of this method is that the a priori guess is not required to be exact
in order to identify the desired beamformer. Deviations from the ac-
tual mixing column are allowed as long as the desired beamformer is
selected. Using the parametrization we have shown that a more effi-
cient and flexible algorithm can be used to extract a desired source.
By means of a computer simulation the validity of this method is
depicted.

Future research topics are as follows. Reduction techniques
should be incorporated such that overdetermined mixtures can also
be dealt with and such that the method becomes more robust to
noise and estimation errors in the correlation data. Subsequently,
a performance study and real-life experiments should illustrate the
robustness and performance of the method.
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